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ABSTRACT 

A new mathematical model of time fractional order heat equation and fractional order boundary condition have been 
constructed in the context of the generalized theory of thermo piezoelasticity. The governing equations have been ap-
plied to a semi infinite piezoelectric slab. The Laplace transform technique is used to remove the time-dependent terms 
in the governing differential equations and the boundary condition. The solution of the problem is first obtained in the 
Laplace transform domain. Furthermore, a complex inversion formula of the transform based on a Fourier expansion is 
used to get the numerical solutions of the field equations which are represented graphically. 
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1. Introduction 

Chen and Gurtin [1-3] have formulated a theory of heat 
conduction in deformable bodies, which depends upon 
two distinct temperatures, the conductive temperature   
and the dynamical temperature T. Regarding time inde-
pendent situations, the difference between these two 
temperatures is proportional to the heat supply. However, 
in the absence of any heat supply, the two temperatures 
are identical [1,2]. On the other hand in time dependent 
problems, particularly for wave propagation problems, 
the two temperatures are generally different regardless of 
the presence of heat supply. The two temperatures T,  
and the strain are found to have representations in the 
form of a traveling wave plus a response, which occur 
instantaneously throughout the body [4]. Warren and 
Chen [5] investigated the wave propagation in the two- 
temperature theory of thermoelasticity, but Youssef [7] 
investigated this theory in the context of generalized 
thermoelasticity. 

Because the non-local property of fractional order of 
differential equations (FODE), FODE becomes prominent  

and extensively used in many applications in fluid me- 
chanics, physics, engineering, viscoelasticity and many 
other fields. The presence of the fractional order operator 
in the differential equations affects the history of the 
system, which means that the next states of the system 
will depend, on the current state and also upon all of its 
previous states, making it more realistic: Caputo [7], 
Mainardi [8] and Podlubny [9]. FODE has been used 
successfully in modeling of various physical phenomena 
and in many applications such as chemistry, biology, 
electronic, wave propagation and viscoelasticity Hilfer 
[10], Caputo and Mainardi [11], Caputo [12], Bagley and 
Torvik [13], Koeller [14] and Rossikhin and Shitikova 
[15].  

In the second half of the 19th century, both of the the-
ory of fractional derivatives and integrals were estab-
lished. The first application of fractional derivatives was 
applied by Abel to solve an integral equation that arises 
in the formulation of the Tautochrone problem [16,17]. 

Various definitions and approaches of fractional de-
rivatives have become the main purpose of many studies  
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[18,19]. 
Kimmich [19] study time—fractional diffusion—wave 

equation and use the Riemann-Liouville fractional inte- 
gral as follows: 
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where    is the Gamma function. 
Fujita [20,21] considered a fractional order heat wave 

equation for the case 1 2   obtained from the non 
local constitutive equation for the heat flux components 

 in the form iq
1 ,   1 2i iq I T                (2) 

Povestenko [22,23] used the heat Equation (2) to study 
the theories of thermal stresses based on space-time frac-
tional telegraph equations. 

To eliminate the paradox of the instantaneous propa-
gation of heat, Cattaneo [24] introduced a law of heat 
conduction to replace the classical Fourier law of heat 
conduction. The propagation of discontinuities of solu-
tions in this theory was investigated by Ezzatt and Kara-
many [25]. 

Ezzatt and Karamany [25-28] established a new model 
of fractional heat equation based on a Taylor expansion 
of time-fractional order. They studied the non-homoge- 
neous anisotropic elastic solid using two new models and 
they considered the uniqueness theorem in linear frac-
tional two temperatures thermoelasticity and the theory 
of a perfect conducting thermoelastic medium. Also, they 
constructed a new model of electro-thermoelasticity in 
the context of a new consideration of heat conduction 
with fractional order. 

Sherief et al. [16] used the following form of the heat 
conduction law 
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and derived the governing equations of the fractional 
order theory of thermoelasticity using Caputo [7] defini-
tion of fractional derivatives of order 0    of ab-
solutely continuous function  f t  given by: 
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where I   is the fractional integral of the function  f t  
of order   defined by [19]. In the limit as 1  , 
Equation (3) can be reduced to Cattaneo law [24]. 

A new formula of heat conduction has been considered 

in the context of fractional integral operator defined by 
Youssef [29] who introduces the following form of heat 
conduction law 

1 ,  0 2i o i iq q I T               (6) 

Taking into consideration the works of Fujita [20,21] 
and Povestenko [22,23], Youssef proved the uniqueness 
of the solutions in this case. 

In the present work a model for generalized ther-
mopiezoelasticity has been constructed in the context of 
the fractional heat equation where 0 2 

0
 to describe 

different types of diffusion where 1   corresponds 
to weak diffusion, 1   corresponds to normal diffu-
sion, 1 2   corresponds to strong diffusion and 

2   corresponds to ballistic diffusion. This is used to 
investigate the propagation of thermal wave through a 
semi infinite slab subjected to thermal loading of frac-
tional order of exponential type applied for finite period 
of time. 

2. Governing Equations 

In the absence of body force, free charge and inner heat 
sources, we consider generalized thermo-piezoelectric 
governing differential equations Youssef [29] and Yous- 
sef and Bassiouny [30] follows: 

Equations of motion: 
2

, 2
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Equation of entropy increment (in the absence of inner 
heat source): 

, ,i i oq T
t
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 


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Stress-strain-temperature: 

,ij ijkl kl kij k ijc e h D               (9) 

Gauss equation and electric field relation: 
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Equation of entropy density: 

ij ij i ie d D cT               (13) 

Strain-displacement relations: 

 , ,

1
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The heat conduction 
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where 
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The thermodynamical temperature   relates with the 
conductive temperature   by the relation 

,iia                   (17) 

in which  is the two-temperature parameter.  0a 
In the above equations, a comma followed by a suffix 

denotes material derivatives and a superposed dot de-
notes the derivatives with respect to time. 

3. One Dimension Formulation 

Consider a semi-infinite piezoelectric rod occupying the 
region . At the near end a uniform flow of heat is 
supplied to the rod during a finite period of time. All the 
state functions field will depend only on the dimension x 
and the time t. We assume the following form for the 
displacement component: 
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We consider the following forms of the linearized ba-
sic equations in one-dimensional formulation: 
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where  3 2 ,t      t  is the coefficient of the 
linear thermal expansion,  is the coefficient of ther-
mal conductivity and 


x  is the coordinate taken along 

the rod. 
It is convenient now to introduce the following dimen-

sionless variables: 
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From Gauss’s law, since there is no free charge inside 
the piezoelectric rod we have 
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D
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which gives 

constD                  (28) 

Substituting from Equation (26) into Equations (19)- 
(25) and dropping the primes for convenience, we obtain 
the following set of non-dimensional equations Youssef 
[29] and Youssef and Bassiouny [30] follows: 
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and the following relation between the conductive tem-
perature and the thermodynamical one: 
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The boundary conditions are: 
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where 0   , while the initial conditions are as-
sumed to be: 
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Applying the Laplace transform defined by: 
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to both sides of Equations (29)-(32), we obtain: 
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Using Equations (29) and (30) with the definitions (23) 
and (37) we can obtain 
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where s denotes the complex argument related to the 
Laplace transform. 

The transformed boundary conditions take the forms 
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and the corresponding transformed initial conditions of 
the Equations (36) assume the form: 
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Substituting from Equation (47) into Equation (41) we 
obtain 
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Using Equation (47) we can easily eliminate   be-
tween Equation (38) and (48) to obtain 
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Solving Equations (47) and (49) together we get the 

following fourth order equation 
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It is worth mentioning here that the roots of equation 
(51) are functions of s and assume the forms: 
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and (45). 
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While the constants 1 2  are related to the con-
stants 
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Substituting from Equations (57) and (58) into the 
Equations (55) and (56) the heat conduction and the 
strain field in the Laplace domain take the forms: 
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Using the expressions of   and of e  from Equa-
tions (60) and (61) to find the thermodynamical function 
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  and the stress in the Laplace transformed domain, 
thus Equations (39) and (48) become: 
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Equations (60)-(64) are the complete solutions of the 
, , ,e    and u , respectively, in the Laplace trans-

formed domain. 
In order to invert the Laplace transform, we adopt a 

numerical inversion method based on a Fourier series 
expansion Honig [31]. Using this method, the inverse 
 f t  of the Laplace transform  f s  is approximated 
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where N is a sufficiently large integer representing the 
number of terms in the truncated Fourier series, chosen 
such that 
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where 1  is a prescribed small positive number that 
corresponds to the degree of accuracy required and Re is 
the real part. The parameter c is a positive free parameter 
that must be greater than the real part of all the singulari-
ties of  f s . The optimal choice of c was obtained ac-
cording to the criteria described in [31]. 

4. Numerical Results and Discussion 

To investigate the role of various physical parameters 
involved in the current problem, we have investigated the 
role of varying the angular frequency of thermal vibra-
tion  on different system parameters, where it is ob-
served that increasing  increases the heat conduction, 
as depicted in Figure 1(a). Such behavior is in accor- 
dance with the fact that increasing the thermal vibrations 
will increase the kinetic energy of the ceramic slab 
molecules and results in increasing the amount of heat 
transferred by conduction mechanism. Variation of the  




 
 

 
 

 

Figure 1. Variation of (a) Heat conduction   (b) Thermo- 
dynamical temperature and (c) Displacement against x for 
various values of angular frequency of thermal vibration 
  at 0= 0.3 = 0.4 = 0.3 0.75t       . 

 
thermodynamical temperature for different , shows a 
peculiar behavior, as illustrated in Figure 1(b) and re- 
flected through the variation of the displacement distri-
bution shown in Figure 1(c). It is found that increasing 
the thermal vibrations will increase the amplitude of the 
thermodynamic temperature. The effect of increasing the 
thermal vibrations frequency on the stress and strain 
shows the same qualitative behavior, as illustrated in  


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Figure 2. Both of the stress and strain decreases initially 
by increasing x, but at a certain critical point further in-
crease in x increases the stress and strain. It is observed 
in Figure 2 that the thermal vibration increases the stress 
and strain in a symmetrical way with respect to a critical  

point. 
The effect of increasing time is shown to increase the 

heat conduction as well as the thermodynamic tempera- 
ture, as reflected in Figures 3(a) and (b), respectively. In 
fact it shows the same qualitative behavior of increasing 

 

 

Figure 2. The role of varying angular frequency   on the (a) Stress and (b) Strain at 0= 0.3 = 0.4 = 0.3 0.75t       . 

 

 
 

 

Figure 3. Variation of (a) Heat conduction   (b) Thermodynamical temperature and (c) Displacement against x for differ-

nt value of time at 0= 0.2 = 0.3 0. = 0.1   75   .  e
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the frequency of the thermal vibrations on the heat con- 
duction, illustrated in Figure 1(a). Such behavior can be 

strain will be an increasing function in x, as illustrated in 
Figure 4. The amount of energy delivered to the ceramic 

 

explained on the basis that increasing the time of heating 
the slab will increase the amount of energy delivered to 
the slab. The amount of energy delivered to the ceramic 
slab increases the entropy of the thermodynamic tem- 
perature. The minimum points of the stress and strain 
curves are shown to be an increasing function in x as 
time increases. Far from the near end of the slab the ef- 
fect of time damped as x increases and the stress and 

slab is a factor of heating time, which is the key answer 
to such behavior. An inverse proportion is noticed be- 
tween the value of the fractional order (i.e., the measure 
of the system memory) and the heat conduction at the 
near end of the slab, whereas a slight change in the dis- 
tribution curves is noticed for large values of x, as de- 
picted in Figure 5(a). The thermodynamic temperature is 
a decreasing function in the fractional order as shown in  

 

Figure 4. The role of varying time on the (a) Stress and (b) Strain at 

 
0= 0.2 = 0.3 0.75 = 0.1      . 

 
 

 

Figure 5. Variation of (a) Heat conduction  , (b) Thermodynamical temperature and (c) Displacement against x for differ-

ent fractional order parameter at 00.4 0.2 = 0.3 = 0.1t    =  . 
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Figure 5(b). It is apparent that increasing the system 
ractional order leads to reverse t

displacement distribution. The amount of energy deliv-
erhe effect of heating as in ed to the ceramic slab is affected by the weak conduc-

 

f
Figure 5. The qualitative behavior of the displacement 
distribution is shown to resemble the same behavior as in 
the case of the effects of thermal angular vibration and 
time but here; the fractional has a slight effect on the 

tivity imposed on the material by the system memory 
retained through the fractional parameter. Such behavior 
is confirmed through the role of the fractional parameter 
on the stress and strain curves as displayed in Figure 6. 

 

00.4 = 0.2 = 0.3 = 0.1t      .Figure 6. The role of varying fractional order parameter on the (a) Stress and (b) Strain at  

 

 

Figure 7. Variation of (a) Heat conduction  ; (b) Thermodynamic temperature  ; (c) Displacement U against x for differ- 

ent value of the two-temperature parameter at 00.25 = 0.75 = 0.3 = 0.1t      . 
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Figure 8. The role of varying the two-temperature parameter   on the (a) Stress and (b) Strain at 0.25t    

0= 0.75 = 0.3 = 0.1    . 

 
 pThe two temperature arameter ω, which depends on 

o distinct temperatures, the conductive temperature 
an
tw

d the thermodynamic temperature where the difference 
between these two temperatures is proportional to the 
heat supply, is found to increase the heat conduction as 
shown in Figure 7(a). The thermodynamic temperature 
increases by increasing ω as illustrated in Figure 7(b). 
The displacement is found to have a critical behavior at 

0.4x  , as depicted in Figure 7(c) where the displace-
ment distribution curves for all values of ω pass by this 

point and the distribution becomes positive after 
it. The strain distribution confirms similar qualitative be- 
havior as the stress distribution as illustrated in Figure 8. 
Both distributions of the stress and strain are decreased 
by increasing ω for 0.4

critical 

  , as shown in Figure 8. 
However, for 0.4   the stress and strain distributions 
remain decreasing func n the two temperature pa- 
rameter ω. 

tions i
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Nomenclatures 

: The components of relaxation time. 

ture parameter. 

: Coefficient of linear thermal expansion. 

ijA

a : The two-tempera

EC : Specific heat at constant strain. 

ijkl : The elastic constants. c

2
oc

 
 : Longitudinal wave sp


eed. 

: The components of electric displacement. 

: The pyroe

nsor. conductivity. 

 vector.  

ment vector. 

iD

id lectric constants. 

iE : The components of electric field vector. 

ijke l : The components of strain te

ijkh : The piezoelectric coefficients. 

ijk : The components of thermal. 

iq : The components of the heat flux

T : Absolute temperature. 

oT : Reference temperature. 

 Time. t :

iu : Components of displace

ectric potential function. i : The elv

2
oT


 

 : Dimensionless thermoelasti

T
: The components of dielectric tensor. ik

ij : The thermal modulus. 

 3 2 T     . 

c coupling con-

stant. 

 : The angular frequency of thermal vibration. 
: Kronecker delta function. ij

EC

 nstant 


 : Dimensionless mechanical coupling co

 : The entropy density. 

EC

k


  : The thermal viscosity. 

E

o

C
C

T




 oT T  

that 

: The dynamical temperature increment such 

1o

o

T T

T


 . 

,  : Lamé’s constants. 

 : Mass density. 

ij : Components of stress tensor. 

xx  : The principal stress component.  

o : One relaxation time parameter. 
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