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ABSTRACT 

An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated 
in this paper. An evolution equation corresponding with the beam system is established in an appropriate Hilbert space. 
The spectral analysis and semigroup generation of the system operator of the beam system are discussed. Finally, a 
variable structural control is proposed and a significant result that the solution of the system is exponentially stable un-
der a variable structural control with some appropriate conditions is obtained. 
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1. Introduction 
A great attention has been paid to the dynamics and con- 
trol of flexible robot (see [1-5]) in the past thirty years 
since the high-speed performance and low energy con- 
sumption are highly demanded. In this paper, as a con- 
tinuation of our work [6-9], we shall investigate an elas- 
tic robot system formulated by partial differential equa- 
tions with initial-boundary value conditions. By means of 
functional analysis and semigroups of linear operators, 
the beam system is described as an evolution equation in 
an appropriate Hilbert space. Spectral properties and 
semigroup generation of the system operator correspond- 
ing to the evolution equation are studied. Several signifi- 
cant results are obtained. 

Let us consider a robot system composed of two 
link-arm and three joints, an electrical machinery is in- 
stalled on each joint, the beam connecting with based 
stand is rigid and forearm is elastic. By means of the 
space kinetic and Hamilton's variation principle, we can 
obtain the following second-order hyperbolic system that 
describes the motion of the elastic beam system [10]: 
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with the following boundary conditions: 

          1 10, 0, 0, , 0, , ,u t u t p u l t p u l t mg       

(3) 

        2 20, (0, ) 0, , 0, , 0,v t v t p v l t p v l t        
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where    , , ,u x t v x t  are vertical and horizontal bend- 
ing vibration displacements of the forearm of the robot 
respectively;  1p x

1

, and  are vertical and hori- 
zontal local bending rigidity of the forearm of the robot 
respectively; and 

 2p x

 , 1 , 2 , and 2  are positive 
constants such that  
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   0 . 1i i ip x i , 2 ; , ,      

, ,

    are the re- 
spective base stand azimuth, the angle of eleva- 
tion-depression of the forearm and the rear-arm of the 
robot; 1 2 3  

L

 are the control moments of the forces on 
the electrical machineries installed on the three joints;  
and  are the length of the forearm and the rear-arm 
respectively; 

l

  is the damping coefficient of the struc- 
ture;   is the line density of the forearm;  is the  m

mass of the tip body; g  is the acceleration of gravity; 
here  ,  , , m g  and 1I , 2I , 3I  are all positive 
constants; the symbols  and  express u u u t   and 

u x  respectively. 

2. Evolution Equation of the Beam System 

We start this section with defining following operators 
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It should be noted that f  in  satisfying (1) 

can be written as 
 1D A

f u u , where the function  suits 
(1) and (3), and the function  suits (3) and following 
differential equation 
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By solving Equation (5) and (3) we find 
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Obviously, f  in  must suit Equation (1) if 
 suits (1) and (3), as well as  suits (5) and (3) 

 1D A
u u

Lemma 2.1 The operators 1A  and 2A  are positive 
self-adjoint operators in  2L 0, l , moreover, 1

1A  and 
1

2A  exist, and they are compact operators. 
Proof Apply integration by parts with the definition of 

A  and the boundary conditions included in  1D A  to 
find 
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Since , we have  1 1 10 p x     
21

1 1, 0A f f f   ,          (7) 

and hence, 1A  is a symmetric operator. 
In order to show that 1A  is self-adjoint, it suffices to 

show that there is a constant  such that 0c 
 1 1,A f c f f D  A  (see [11]). 

In fact, we can see from (7) that 
21

1 1 1,A f f A f f f     

Applying the boundary conditions of  in , 
we can get the inequality [12]. 
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  . It follows that 
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and so 1A  is a positively defined self-adjoint operator. 
It is easy to see from (8) that 1

1A  exists. Now set 

1A f g , and 1
1f A g , then (8) gives us 

1
1

1
,A g g

c
   

this means that mapping    1 4 4
1 : 0, 0,A H l H l   is 

bounded, and 

1
1

1
.A

c
   

Thus, 1
1A  is a compact operator by Sobolev embe- 

ding theorem [13]. 
By similar manner, it can be shown that 2A  is a posi-

tively defined self-adjoint operator, and 1
2A  exists as a 

compact operator, and the proof is complete.  
We now choose Hilbert space    2 20, 0,H L l L l   

as a state space of Equations (1) and (2), on which inner 
product and norm are defined as follows: 

     1 1 2 2, , , , ,
H

u v u v u v u v H   ,  

here    is the inner 
roduct on 
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Then the Equations (1) and (2) with the initial-boun- 

dary conditions can be written as follows: 
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For the sake of establishing an evolution equation of 
the system (1) and (2), we introduce a Hilbert space 

H H  , on which inner product is defined as fol- 
lows: 
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then the robot system (9) can be described first-order 
abstract evolution equation as follows: 
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3. Spectral Analysis and Semigroup  
Generation 

We have discussed the spectral properties and semigroup 
generation of the system operator  in the system (10), 
and obtained the following significant results: 



Theorem 3.1 The operator   is an infinitesimal 
generator of a -semigroup  on , and there 
are constants  such that 
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We thus arrive at the following result: 
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It follows from the theorem 5.3 of [14] that  is the 
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Apply the result of [14] to conclude that  generates 
a 0 -semigroup  satisfying 
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Thus,  defined by the orthogonal sum of  T t  1T t  
and 2  is exactly -Semigroup on  generated 
by . Taking 

 tT


0C
max


 1 2, M M M  from (11) and (12), 

leads to the following result 

   e 0tT t M t   

The proof of Theorem 11 is complete. 

4. Stabilization with Variable Structural  
Control 

The variable structural system is a system whose struc- 
ture is intentionally changed with a discontinuous control 
and it drives the phase trajectory to a hyperplane or 
manifold. This method is well-known for its robustness 
to disturbance and parameter variations [15-18]. Conven- 
tionally, the variable structure control is based on the 
state-space approach in which a Lyapunov function need 
to be constructed so that the derivative of the Lyapunov 
function negative definite. As the method provides ro- 
bustness characteristics, there exists a major problem, 
that is, the chattering phenomenon, usually encountered 
in the practical implementation. This phenomenon is 
highly undesirable because it may excite the high-fre- 
quency unmodelled dynamics. 

In this section, let us consider the robot system (10) 
equipped with a feedback controller :   ,w u t t
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where  is a bounded linear operator acting on  
into . We shall first introduce the equivalent control 
theorem, and then apply the equivalent control theorem 
to the robot system to obtain a significant result that the 
solution of the system is exponentially stable under the 
variable structural control. 
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the solution of (17) can be written as follows 

  (20) 
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back term of the right side of (19) in view of [14], we 
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Employing egration by parts, and estimating
Subtract (20) from (19), and employ condition (1) and  

the inequality   2
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The consequence of Theorem 4.1 is now derived from 

the well-known Gronwall inequality. The proof is com-
plete.  

 system is described 
by partial differential equations with initial and boundary

ated. First, an abstract evolution equa-

. Krall and G. Payre, “Mod-
eling Stabilization and Control of Serially Connected
Beam,” SIAM  Optimization, Vol
25, No. 3, 198

It can be seen from Theorem 4.1 that the robot system 
(13), and therefore the robot system (10) are exponen-
tially stable under the variable structural control with 
some appropriate conditions. 

5. Conclusion 

In the present paper, an elastic beam
 

conditions investig
tion is established in an appropriate Hilbert space. Then 
the spectral analysis and semigroup generation of the 
system operator of the beam system are studied and ap-
plied to prove an equivalent control theorem. Finally, a 
significant result that the solution of the beam system is 
exponentially stable under the variable structural control 
with some appropriate conditions is proved by means of 
the equivalent control theorem. 
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