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ABSTRACT 

With the aid of Mathematica, new exact travelling wave solutions for fifth-order KdV equation are obtained by using 
the solitary wave ansatz method and the Wu elimination method. The derivation of conservation laws for a fifth-order 
KdV equation is considered. 
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1. Introduction 

It is well-known that nonlinear complex physical phe-
nomena are related to nonlinear partial differential equa-
tions (NLPDEs) which are involved in many fields from 
physics to biology, chemistry, mechanics, etc. As mathe- 
matical models of the phenomena, the investigation of 
exact solutions to the NLPDEs reveals to be very important 
for the understanding of these physical problems. Many 
mathematicians and physicists have well understood this 
importance when the importance of this so they decided to 
pay special attention to the development of sophisticated 
methods for constructing exact solutions to the NLPDEs. 
Thus, a number of powerful methods have been presented. 

We can cite the inverse scattering transform [1], the 
Bäcklund and Darboux transform [2-5], Hirota’s bilinear 
method [6], the homogeneous balance method [7], Jacobi 
elliptic function method [8], the tanh-method and ex-
tended tanh-function method [9-15], F-expansion method 
[16-18] and so on. 

The notion of conservation laws is important in the 
study of nonlinear evolution equations (NLEEs) appear-
ing in mathematical physics [19]. The mathematical ori-
gin of conservation laws results from the formulation of 
familiar physical laws such as for mass, energy and mo-
mentum [20]. As is known, the investigation of conser-
vation laws of the Korteweg-de Vries (KdV) equation led 
to the discovery of a number of techniques to solve 
NLEEs [21], e.g., Miura transformation, Lax pair, in-
verse scattering technique and bi-Hamiltonian structures. 

On the other hand, it is useful in the numerical integra-
tion of NLEEs [22] (e.g., to control numerical errors); 
particularly with regard to integrability and linearization, 
constants of motion, analysis of solutions, and numerical 
solution methods [23]. Consider a dynamical system, 

 , , , , , ,t x tu f x t u u u u xt           (1) 

where  ,u u x t  is a function of two independent 
variables t and x. The functional  ,I u x t   is said to 
be a constant of motion or an integral of Equation (1), if  

it satisfies  d
,

d
I u x t

t
0.    Generally, we can derive  

constants of motion from conservation law, which enjoys 
the general form as [24] 

   d d
, ,

d d
V u x t G u x t

x t
0               (2) 

while the components V  and  of the conserved 
vector 

G
 ,V G  are functions of ,x t and derivatives of 

. The equality (2) is assumed to be satisfied for any 
solution of the corresponding system of equations,  is 
called conserved density and G  is called conserved 
flow. With the assumption that the function 

u
V

 t,u x  and 
its derivatives with respect to x  go to zero sufficiently 
fast as x   

   , , dI u x t V x t x



                 (3) 

is obtained to be a constant of motion. It has already been 
proved that a large number of NLEEs possess an infinite 
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number of conservation laws such as the fifth-order KdV 
equation 

2. Exact Solution for Fifth-Order KdV  
Equation 

With the rapid development of science and technology, 
the study kernel of modern science is changed from lin-
ear to nonlinear step by step. Many nonlinear science 
problems can simply and exactly be described by using 
the mathematical model of nonlinear equation. Up to 
now, many important physical nonlinear evolution equa-
tions are found, such as sin-Gordon equation, KdV equa-
tions, Schrodinger equation all possess solitary wave 
solutions. There exist many methods to seek for the soli-
tary wave solutions, such as inverse scattering method, 
Hopf-Cole transformation, Miura transformations, Dar-
boux transformation and Bäcklund transformation [2-5], 
but solving nonlinear equations is still an important task. 
In this paper, with the aid of Mathematica, a traveling  

wave solution for a class of fifth-order KdV equation 

2
5 3 210 20 30t x x x xu u uu u u u u    x       (4) 

In order to obtain the soliton solution of (4), the soli-
tary wave ansatz is assumed as 

  , sech , ,nu x t A B d x ct           (5) 

where A  is the soliton amplitude,  is the width of 
the soliton,  is the soliton velocity and 

d
c B  is constant 

to be determined later, the unknown index n  will be de- 
termined during the course of derivation of the solution 
of Equation (4). From Equation (5), I obtain Equation (6). 

With the aid of Mathematica or Maple, from (5) and 
(6

uating the exponents  
), we can get Equation (7). 
Now, from Equation (7) eq

1 3n  and 3 2n  leads 1 3 3 2n n   , which gives 
2.n   From (7) setting the coeffici  

sinh
ents of 

3sech   , 5sech sinh   and 7sech sinh   to  

 
zero, I get Equations (8)-(10). 

   
 

    
      
    

22 1

5 3 1 2 1
5

2 1 1

22 3 3 3

2 3

, sech , sech sinh .

sech sinh 4 1 sech sinh

4 1 sech sinh 6 1 2 sech sinh

1 2 sech sinh 2  1 2 sech sinh

3 1 1 2 sech

n n
t

n n
x

n n

n n

n

u x t B A u Acdn

u d An An n

An n An n n

An n n A n n n

An n An n n

  

   

   
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

 

 

 



  

   

    

     

    
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       
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 

3

3 3

5 5

2 1 1
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n
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n n
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n n
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n
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u Adn
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  

  

  

 

  nh .

 



             (6) 

 

 



 

2
5 3 2

2 3 3 5 5 1

3 5 3 2 5 2 3 3

5 3 5 4 5 5 3

5 5 2 5 3 5 4 5 5 5

10 20 30

30 10 sech sinh

20 8 30 20 10

20 10 2 sech sinh

24 50 35 10 sech sinh

60

t x x x x x

n

n

n

u u uu u u u u

AB dn Acdn ABd n Ad n

ABd n Ad n ABd n Ad n ABd n
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
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  
 
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n
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n

A B d n A d n

A d n A d n A d n

A dn

 

 

 









   

 

                 (7) 
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        (8) 

0,        (9) 

0.           (10) 

Solving the above system by the aid of Wu elimination 
method [25], I obtain the two solutions 

4       (11) 
and 

2 2 430 40 16 0,B c Bd d     

2 2 42 2 4Bd AB Ad d      

2 2 48 12A Ad d    

2 26 , 2 , 56 ,A d B d c d      

2 24
2 , , 16 .

3
4A d B d c d            (12) 

Then the soliton solutions of the fifth order KdV equa-
is given by tion 

   2 4
1 , 6 sech 56 2 ,nu x t d d x d t d   2

and 

   (13) 

   2 4 24
2 , 2 sech 16 .

3
u x t d d x d t d       (14) n

3. Systematic Construction Method
nfinitely Many Conservation L
ifth-Order KdV Equation 

We recall the definition [16,23] of a differe
(DE

 of  
aws for  I

F

ntial equation 
) that describes a pss. Let 2M  be a two dimensional

differentiable manifold with coordinates 
 

,x t . A DE 
for a real function  a  nec-
essary and sufficient conditi for the exi

unctions 

          (15) 

depending on u and its derivatives such that the 
one-forms 

,

 ,u x t  describes
on 

pss if it is a
stence of dif-

ferentiable f

, 1 3,1 2,ijf i j     

1 11 12 2 21 22 3 31 32d d , d d , df x f t f x f t f x df t       
(16)

isfy the structure equations of a pss, i.e.

 

sat , 

1 3 2 2 1 3 1 2d , d , d .3                (17) 

As a consequence, each solution of the D ovides a 
local metric on 

E pr
2M , who

DE for  is the integrability 
condition for the problem [14,26]: 

se Gaussian curvature is con-
stant, equal to −1. Moreover, the above definition is 
equivalent to saying that u

1d Ω , ,
2


  


 

              (18) 
 

where  denotes exterior differentiation,d     is a col-
um r and the 2 × 2 matrix 

 
n vecto  Ω Ω 1,2ij , ,i j  is 

traceless 

2 1 3

1 3 2 

Take 

1
Ω .

2   
   

 

,   (19) 

from Equations (18) and (19), we obtain 

   

d d d d
Ω d d

d d d d

x A t q x B t
S x T t

r x C t x A t




  
     

, ,x tS T                 (20) 

where S and T are two 2 × 2 null-trace matrices 

,
q

S
r




 
   

             (21) 

.
A B

T
C A

 
   

             (22) 

Here   is a pa eter, independent of ram x  and t , 
while q  and r  are functions of x  and t . Now  

 20 d dΩ Ω d d Ω Ω ,Ω           

which requires the vanishing of the two form 

Θ dΩ Ω Ω 0,               (23) 

or in component form 

0,

,

0,

2 2
xA qC rB

q Aq B B
– 2 2 0

t x

t xr C Ar C

   

   

  
          (

or 

24) 

11, 12, 31 22 21 32,

21, 22, 11 32 12 31,

31, 32, 11 22 12 21,

t x

t x

t x

f f f f f f

f f f f f f

f f f f f f

   

   

   

        (25) 

where 

   

  22 12 32 12 32

1 1 1
, , 

11 31 11 312 2

.
2 2 2

1 1
,q f f r f f

A f B f f c f f    

   
  (26) 

Chern and Tenenblat [27] obtain
rectly from the structure equations (17). By suitably 
choosing  and in (24), we shall obtain vari-
ous fifth V uation wh
Konno and Wadati introduced the function [28] 

ed Equation (24) di-

, ,r A B
 order Kd

C  
eq ich q  must satisfy. 

1Γ ,
2




                 ( 27) 

this function first appeared used and explained in the 
uations in 

[11,13], and see also the classical pap
27]. Then Equati
: 

 
geometric context of pseudo spherical eq

ers by Sasaki [29] 
on (20) is reduced and Chern-Tenenblat [

to the Riccati equations

2 ,r q
x


    


            (28) 

22 .A C B
t


    


              (29) 

Equations (28) and (29) imply that 

Open Access                                                                                           JAMP 



E. M. AL-ALI 52 

   Г Г 2 Г.x tc r cq rB c Ar          (30) 

to both sides and using the expression  Гtr  Adding  

x cA q r  from (24), Equation (30) take rm s the fo

   Г Г 0,r A c
t x

 
  

 
          (31) 

let us show how an infinite number of conservatio
result from these results. The Riccati equations for  in 
the 

n laws 
Г

-x variable can be rearranged to take the form 

   2 Г
Г Г

r
r rq r r

x r
          

       (32) 

A similar pair of equations can be obtained for the t  
derivatives. Expand Гr  into a power series in the 
verse of 

in-
  so that 

  1
Г , , ,nn

r x t x t  n         (33) 



   

the n  are unknown at this point, however a recursion 
relation can be obtained for the n  by using (32), sub-
stituting (33) into the Г  equation in (32), I find that 

 

 
 


1

1
, n

nn
x t   




2

1

1

,

,

nn

n

n

rq x t

x t
r

r









  

  
 
 






 





a  

j n

n         (34) 

n

x

 


Appling the Cauchy product formul
2

    1

1 2
,

nn
nn n j

x t  n
j   

   
 

     
in (34), then I obtain 

 
  

   

1
12

, n
nn

x t  


 1 2

1

2
,

n n
j n jn j

rq x t   


 

     

1 1
2

, ,
.n n

n
x x

x t x t
r r

r r
  



   
   

 

 


   
    (35)

Now equate powers of 

 

  on both sides of this ex-
pression to produce the set of recursions,  

   

1 2

1

1 , , . 2

x

n
n

n k n k
x

r x t x t n
r



 

       
 

 (36) 

1

,

k

rq rq



     



Substituting (33) into (31), the followin
conservation laws appears 

g system of 

   
1 1

, ,
.n nn n

This procedure generates an infinite number of con-
servation laws for the equation under examination. To 
obtain conservation laws using (37) in a particular exam-
ple using this procedure, let us consider the fifth-order 

KdV Equation (4), for Equation (4) 

n n

x t x t
A c

t x r
   

 

  
      

 (37) 

3 2

5
2 2 3

4 2 2
2

2 2
4 3 2 28 6x x x xc u u uu u

3 3 2 2 4

1, , 6

3 ,
2

2 6 2 ,

6 6 2 .

x x

x

x

x

x x

q r u A u u uu

u u u

B u u u

u

uu u u u u

  x

  

 

 

   

     

   

   

    

    (38) 

nto (24), I obtain the fifth-order 
tting (38) into (37), it is found that 

     

Substituting (38) i
KdV Equation (4). Pu

   
1 1

, ,n nn n
n n

x t x t
A c

t x r
   

 

  
      

   

Since 

u

4.

ear wave that 
possesses remarkable stability properties. Typically, prob- 
lems that admit soliton solutions are in the form o
lution equations that describe how some variable or set of 
variables evolve in time from a given state. The equa- 
tio

tions, partial difference equa- 
tions, and integro-differential equations, as well as cou- 
pled ODEs of finite order. 

In this paper, we considered the construction of exact 
so

hysics and applied 
mathematics. Solitons are found in various areas of 
physics from hydrodynamics and plasma physics, non- 
linear optics and solid state physics, to field theory and 
gravitation. NLEEs which describe soliton ph
have a universal character. 

A travelling wave of permanent form has already been 
met; this is the solitary wave solution of the NLEE itself. 
Such a wave is a special solution of the governing equa-
tio

The Soliton equations play a central role in the field of 
integrable systems and also play a fundamental role in 
several other areas of mathematics and physics. 
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