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ABSTRACT

In the present paper, we answer the question: for 0 < o < 1 fixed, what are the greatest value p(a) and the least value
g(a) such that the inequality J,(a,b)< 4% (a,b)G"“(a,b)<J, (a,b) holds for all a,b>0 with a=b? where
for peR, the one-parameter mean J, (a,b), arithmetic mean 4(a,b) and geometric mean G(a,b) of two posi-

a, aib,
ap+1_bp+l
M, a+b,p+-10,
(p+1)(a”—b”) b
tive real numbers « and b are defined by J,(a,b)= A(a,b):a and

ab(loga—logb) 2
—— = a#bp=-]

a-b
a——bl azb p=0,
loga—logbh

G(a,b) =~ ab , respectively.
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1. Introduction

For peR, the one-parameter mean J,(a,b), arithme-
tic mean A(a,b) and geometric mean G(a,b) of
two positive real numbers a and b are defined by

a, aib,
ap+1_bp+1
u, a#b,p+-10,
(p+l)(a”—b”)
J,(a.b)= ab(loga—logh) @)
AR B awbp=-1,
a-b
_azb a#b p=0,
loga—logh
A(a,b)= D and G(a,b) =~ ab , respectively.

There has been some literature on the one-parameter
mean values J,(a,b), see [1-6]. It is well-known that
the one-parameter mean Jp(a,b) is continuous and
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strictly increases with respect to peR for fixed
a,b>0 with a=b. Many means are special cases of
the one-parameter mean, for example:

Jl(a,b): a+b

= A(a,b), the arithmetic mean,

++ab+b
Ty, (a,b) :%:

J_y2 (a,b)=~lab = G(a,b) , the geometric mean, and
J,(a,b)= Zabb = H(a,b), the harmonic mean.
+

In [1], Gao and Niu found the greatest values p,s,
and the least values ¢,s, such that the inequalities

J, (a,b) <4” (a,b)Gﬂ (a,b)Hl'“'ﬂ (a,b) <J, (a,b)

He(a,b) , the Heronian mean,

and
G, (a,b) < 4" (a,b)Gﬂ (a,b)Hl’”’ﬂ (a,b) <G, (a,b)
hold forall @,6>0 with a=b,where a+£e(01),
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aS +bT
(a +b)

In [2], Cheune and Qi proved the logarithmic con-
vexiity of the one-parameter mean values J, (a,b) and
presented the monotonicity of J(-r)J(r) for reR.

In [3], Wang, Qiu and Chu obtained the greatest value
r, and the least value r, such that the double inequality

J,1 (a,b) < aA(a,b)+(1—a)H(a,b) < J,? (a,b)

( ) Y(s-1)
and Gx,l(a,b):[ ] , as the Gini mean.

holds forall a,b>0 with a#b.

In [4], Hu, Tu and Chu presented the greatest value 7
and the least value r, such that the double inequality
J, (a,b)<T(a,b)<J, (a,b) holds for all a,b>0
with a = b, where

2ab
2arctan (a _b)
(a + b)
denotes the first Seiffert mean.

In [5], Long and Chu found the greatest value p and
the least value ¢ such that the inequality

Jp (a,b)S aA(a,b)+(1—a)H(a,b)SJq (a,b)

T(a,b)=

holds forall a,b>0 with a=b.

In [6], the authors established Schur-convexities of
two types of one-parameter mean values in »n variables,
and obtained Schur-convexities of some well-known func-
tions.

The purpose of this paper is to answer the question: for
0<a <1 fixed, what are the greatest value p(«) and
the least value ¢ () such that the inequality

J,(a,b)< A% (a,b)G"* (a,b) < J, (a,b)

holds forall a,6>0 with a#b?

2. A Preliminary Lemma

In order to prove the main theorem of this paper, we need
the following lemma.
Lemma 2.1. For all > 1, one has

_t(t+1)log’ ¢

1. 2
m(t) T 0)
Proof. The logarithmic derivative of m(t) is
m()_ )
m(t) =[logm(r)] = t(¢* ~1)loge’ ®)

where
n(t)=—(¢* +4r+1)logt+3(¢* 1), limn(t)=0. (4)
t—1"

Simple calculations lead to
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n'(t):5t—4—%—2(t+2)logt,Iimn'(t):O 5)
t—1"
n"(z)=3-§+ti2-zlog¢,nmn(z)=o, (6)
11"
—2(1—1)2
n (1) =— =<0, (7)
(2) follows from (3)-(7) and the fact
lim m(t) =1.
1"
3. Main Result

The main result of this paper is the following theorem.
Theorem 3.1. Let O0<a <1. Then for any a,b>0
with a # b, we have

S (a,b)< 4% (a,b)G"*(a,b) < Jsa (a,b). (8)

2 2
Moreover, the bounds J,_, (a,b) and J,,_,(a,b)
2 T2
are optimal.

Proof. It is no loss of generality to assume that a > b.

Let 12=%>1, pe{a_l,Ba_l} and

2 2
J,(#.1)
fl(t):A”(tz,l)le(tz,l)’

then

K0 o " (1)

m_[l gfl(tﬂ _t<t2+1)(t2"—1)(t2’”2—1),

9)

where

g (t)=1-a)t""* +(a+1) """ +(a-2p-1)1*"**
+(2p+1-a)t?” —(a+1)* +a-1
:(l—at)xz’”2 +(a +1)x2"+1 +(0{—2p—1)x”+2

+(2p+l-a)x’ —(a+l)x+a-1

= (x),
(10)
where x=¢*>1. Simple calculations lead to
lim i, (x) =0, (11)
x—-1t

W (x)=2(p+1)(1-a)x*"*" +(2p+1)(a+1)x*
+(p+2)(a-2p-1)x""

+p(2p+1—0{)x"’_1 -a-1,
(12)
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lim #/ (x) =0, (13)

11"

B(x) = x"%hy (%),

where
h, (x):2(2p+1)(p+1)(1—a)x”+2
+2p(2p+1)(a+1)x"" (14)
+(p+1)(p+2)(a—2p—1)x2
+(p—l)p(2p+l—a),
IirI] h, (x)=0, (15)
hy(x)=2(p+1)xhy(x),
where
hs(x):(p+2)(2p+l)(l—a)xp
+p(2p+1)(a+1)x"? (16)
+(p+2)(a—2p—l),
|ir{1 hy (x)zp(Zp—3a+l) @an
h3"()c)=p(2p-i—1)x”'2h4 (x) (18)
where
h(x)=(p+2)(1-a)x+(p-1)(a+1) (19)
IirB h, (x)z 2p—3a+1, (20)
1 (x)=(p+2)(1-a). (21)
We now distinguish between two cases.
Case 1. p= Sa-1 . We first consider the case

r .
o= 5 since in this case the one-parameter mean

J,(a,b) has different expression from others. The re-
sult

A (12)G (11) < Jy (1,0)
follows from Lemma 2.1 since
A (1)G (12) /75 (1) = m* (1,1) <1,
In the following we assume « # % :

From (21) we see that h,(x)>0 for x>1, which
implies £, (x) is strictly increasing for x>1. From
(20) we know that %, (x)>0 forall x>1.(18)implies

<0, for0<a<%,

s (%)

>0, for%<a<l,

from which we know £, (x) is strictly decreasing for
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ae(o,%j and strictly increasing for ae(%,l}. This
result together with (17) implies /,(x)<0 for
ae(o,%j and /,(x)>0 for ae[%,l}. The same

reasoning applies to A, (x),4'(x),h/ (x),h(x) as well,
and using (15), (14), (12), (11), (9) and (8), we know

g (1)<0  for ae(o,%j and g,(¢)>0 for

ae(%,lj.(S) implies f/(¢)>0 forall ¢>1.Thus

fi(¢) is strictly increasing for ¢>1, which together
with

lim £, (1) =1 (22)
11+
implies right-hand side inequality of (8).
Case2. p= aT_l. From (21) we know £, (x)>0

for all x>1, which implies that #,(x) is strictly in-
creasing for x>1. By (20) one has 4, (1*) =-2a<0,
and by (19) one has

lim h, (x) = +oo.

Thus there exists & >1 such that #,(x)<0 for
xe(L&) and h(x)>0 for xe(&,+o). (18) im-
plies 7, (x)>0 for xe(L¢&) and Ay(x)<0 for
xe(&,+o) . Thus hy(x) is strictly increasing for
xe(1,&) and strictly decreasing for xe(&,+»). By
(17) h(1)>0 and by

lim hg(x) =0

X—>+0

we know 7, (x)>0 forall x>1. The same reasoning
applies to  /y(x),hy(x),h(x),h(x) and g (7) as
well, and applying (9)-(16), we have g, (¢#)>0 for all
t>1. (9) implies f/(r)<0, thus f£(¢) is strictly de-
creasing for ¢>1. The left-hand side inequality of (8)
follows from (22).

Next we prove that the bounds J,, , (a,b) and

Jo:(a,b) areoptimal. ’
2

Forany &£>0 and ¢>0 sufficiently small,
Jsua , (1+2,1)
2
A% (1+4,1)GY (1+1,1)

4 —2¢-1)¢ “ o
=log t+(8a-2¢ )tz—lo (sz (1+t)1T
4t+(3a—25—3)t

log
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This implies
Jas  (61) < A" (1,1) G (1,1)
2

for ¢ sufficiently close to 1.
Forany &>0, since

J‘”—’1+g (t'l)
lim—Z—
>0 4% (1,1) G (1,1)

then there exists 7 >1 such that
Jou,, (1,1)> 4% (1,1) G (1,1)
2

For t+>T.
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