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ABSTRACT

A system, coupled by an incompressible Navier-Stokes and a Fokker-Planck equation, is investigated. The global weak

solution with small initial data is obtained.
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1. Introduction

The dilute suspensions of passive rod-like particles can
be effectively modeled by a coupled microscopic Fok-
ker-Planck equation and macroscopic Navier-Stokes equa-
tion, known as Doi model (see Doi [1]). We refer to [2]
for the Doi model for suspensions of active rod-like
particles without considering the effects of gravity. Re-
cently an extended model under gravity was introduced
by Hezel, Otto and Tzavaras [3], which reads

o, f+V,-(uf)=A, f+V, -[(Id=n®n)V,unf | o
=V,-(ld+n®n)(e, f + WV f)
o=[q.[(dn®n—Id)f Jdn )
Re[du+(u-V, )Ju]-Au+V,p
= V-0 = B[ Tan)e,
V,-u=0 “4)

where (t,x,n)€[0,0)xQxS"",QeR’ is a bounded
domain with 8Q of class C' and S*' <R’ being
the unit sphere; o is a stress tensor, p is the pressure,
e, is the unit vector in the upward direction; V- and
A, denote the tangential divergence and Laplace-Bel-
trami operator on S°7', respectively. In this model,
f (t,x,n) is a distribution function which represents the
configuration of a suspension of rod-like particles and
u(t,x) is the fluid velocity induced by the other
particles in the suspension. Re>0 is a Reynolds

3)
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number. The coefficients f>0 and y >0 are con-
stants (see [3], Remark 2.1 - 2.2).

If Re=0, the model includes a Stokes equation. In
this case, Chen, Li and Liu [4] obtain the global weak
solution and its uniqueness to the two dimensional
(d = 2) initial-boundary problem. In Remark 3.2 of [4],
they point out that it is a mathematically interesting
question to ask if the above result is still valid when the
Stokes equation is replaced by the Navier-Stokes equa-
tion (Re > O), and there are some technical difficulties
in solving this problem. The main purpose of this note is
to answer this question by using an assumption of small
initial data. See [5-7] etc. for more results on Doi related
model without considering the effects of gravity.

For conciseness in presentation, we set
Re=f=y=1 in the rest of this paper. Define

H={uel’(Q):V,-u=0u-v|, =0
V={ueH;(Q):V,-u=0}, S:=S' and

F(s)=s(logs—1)+1,5€[0,00) . Let L>1, define
the cut-off function

0, if s<0,
E-={s, ifs<L,
L, if s>L.

Set the initial and boundary conditions as follows,
f|t:O: fo§u|t:0:uo; (%)

(ld+n®n)(e,f +V,f)-v|a=0; u|,,=0. (6)
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2. The Main Result

Theorem 2.1 Let d=2 . Suppose that u,eH ,
f,e?(Q2xS), and f, >0 ae. are on QxS. Then
there exists ¢ > 0, such that if

||U0||iz(g) +|  F(fy)dndx<e, (7

the initial-boundary problem (1)-(6) has a global weak
solution (u, f) which satisfies fora.e. te[0,0),

"U ”L2 +2 axs F ( )) (S)HZLZ(Q) ds

2 2
+4j0[ VATO, e, 7 TE) Lz(gxs))ds
< "u0"2|_2(9) +2 QxS F (f )dndx+C||f ”l_1 Qxs)

®)
Definition 2.2 The weak solution (u, f) is in the fol-
lowing sense,

ueL”(0,000H)NL*(0,00V ), u e Hp (0,00V") 5
©)

f >0ae on[0,0)xQxS, f el” (O,oo; L' (QxS))
(10)

f e (0,007 (QxS)) (11)

R

f e Lo (0,002 (xS)) N L, (0,00 H' (xS,

fe H,OC(O,OO;(H3(Q><S)),J;

(12)
for any VeCS"([O,oo)xQ) with V,-v=0.
[ [ u-ovdxdt+ [ [ (u-V,u)-vdxdt
(v UV o vdxdt
1 )

2n ®n-— f V, vdndxdt

L Lt
S

forany ¢eC; ([O,w)xQx S),
_J.:.[st fa‘(pdndth_,[:J.st (uf )V, pdndxdt

fe, - vdndxdt +j )-v(0,%)dx;

7 Vaf -V, pdndxdt
=I°°IM[ (1d =n®n)V,unf |-V, pdndxdt (14)

-H

+I O x,n)dndx.

(ld+n®n)(e, f +V, f)-V pdndxdt

Proof. The proof follows that of [4] (some ideas and
techniques come from [8]). Here we only show the dif-
ferent details.

Step 1. Approximate problem. For any fixed

Open Access

0<7<1 and for any ke N, given (u
approximate problem with cut-off reads

J-u"—u
Q

T
+.|' ( Tha v )u"-vdx

——j 2n®n

K fk’l), the

k-1

~vdx+J'QVXuk 1V vdx
(15)
Id) f*: v, vdndx
—j fke, -vdndx, YveV;
QxS

k-1

fl—f
o™

- st(u" ).V odndx

@dndx

+[os Vo £V pdndx

=[_J(1d=-n®n)v,un] E”l/"(f")-vngodndx

QxS
[, (1d+n®n [e2E”H(f")+fok]~Vx¢dndx,

VpeH'(QxS).
(16)

Similarly as the proof of [4], we have

Lemma 2.3

Let Z ::if € LZ(QXS)Z f 20a.e.Q><S}.

If (u*', f*")eV xZ, then there exists
(U, F*)eVx(ZNH'(@xS)) which solves (15)-(16).

Step 2. Uniform estimate. Suppose that u, eH ,
f,e’(QxS) and f;>0 ae.on QxS.Let

u’=u’(z) be the solution of u’ —774Au® =u°. Then
2
ol ey = Slulie A

and u’ —>u, weakly in H as 7 -—0. Moreover, let
0= 14(1‘) Then ( o f )eV><Z Using Lemma
23 iteratlvely, we obtain a sequence of approximate so-
lutions,

(U, ) eV x(ZNH'(Qxs)) (18)

to (15)-(16). Similarly as the proof of Lemma 3.5 and
Lemma 3.6 in [4], we have

Lemma 2.4
sup"f "L‘ Qxs) |f "U (oxs) 19)
Forany keN,
1 2
E”uk (@) *laws F ( A )dndx
Ll b ket :
+—Z||u pLa PP +rZ|V U0
i=1 2 20)
i
+ZTZ( \/_ L2(0x8) ! v"\/f_ LZ(st)j
%"uo"u +],. F(fy)dndx+C]| f0||L1(QXs)
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Lemma 2.5 For any T >0 we might as well set
N =T/z . Then

k
IEESI?\I f Lz(Q s) +TZ( 12 (0x s) LZ(Q s))
<C(T).
(21

Proof. Following the proof of (3.44) in [4], we have

that
i k
" L2(QxS) +TZ( L( st)

_"fo L2 QxS)+CTZ( Q) +1)||f

Applying (20), one has & > 0, such that if
(uo, f 0) satisfies ||u0||2L2(Q) +| _F(f,)dndx<e, then

|_2 st))

L2(axs)’

<L Furthermore, let 7 <1/4C, then

()4

2

(@) + 1)” A

K 2 1 ¢x|P
CT( qu L2(QxS) SEHf

(axs)’

and hence

2l
2 k-1
S" f0||L2(Q><S) +CT§( 2(Q) +1)||f

Using (20) again, and the discrete Gronwall inequality,
We finish the proof of (21).
Definition 2.6 Define the piecewise function in t by

u, (t,)=u"(), 7.u, (t,-)=u""("),te ((k —1)r,er

and the difference quotient of size r by

ofu, (t,~):2M,t € ((k -1)z, k‘[]

L2(QxS)

(axs)’

T
Likewise, define f_and 0 f,.
Lemma 2.7
f.>0ae on[0,T]xQxS. (22)
N _ k—l
O, L2(0,Tv") kZ:

gc(&[ oo o
P )

N ke
(B0l

k=1
<C ("vxur L((0.T)xQ)
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(@)

((0.T)xQ)

<C. 23)

(OT (o) ))ﬂLZ(O,T;V)

* (0,752 (@x8))NL* (0,73 K (x5) <C (T ) 24

Proof. We can use (17), (19)-(21) directly to finish the
proof. Here we only show that m_u_ is bounded. In fact,
it follows from (17) and (20) that

*(O,T;LZ(Q)) }’

foraa <o

()

LZ(O,T;LZ(Q))

0 i|l?
(@) ()
2 il?
<o g <€
Lemma 2.8
o, 2(0,TvY *loct. LZ(O,T;(H-’(QXS))'] = C(T) (25)

Proof. Observing that
.[Q(uk’1 ~Vx)uk -vdx = —J'Q(uk’1 ~Vx)v-ukdx, veV

we deduce from (15) that,

+“|uk||uk 1

Therefore, please see the Equation (26) below.
Employing Gagliardo-Nirenberg inequality and Holder
inequality, one has from (23) that

uk — k!

T

+C||f

2(Q Cla'(s)”

2

(1)) <|u, ) <C.

(0,Tv) ac(o,T;Lz(Q)

T u < C. Then it follows from

T°T

Similarly,

L“((O T)xQ)
(23), (24) and (26) that

z'

<C(T). Accord-

(OTV)

ing to (16), we have that for any ¢ € H*(QxS),

S \Y2
+||fk
L2 (QxS) (26)
S \V2
LZ(Q) (st)i| j
e L4((0,T)x2) ((o,T)xst))’
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kK gkl
I L'(andX

oxs T

< |uk||fk||Vx(p|dndx+ [ |ank||Vn(p|dndx
QxS QxS

+C | |quk||fk||Vngo|dndx
QxS

+C _[ (|fok|+|fk|)|VX(p|dndx.
QxS

Consequently
f k f k-1

T

(H(0xs))

<C{Ju o |
Similarly as the proof of (26), we have from (23) and

- 2
(24) that |o; f, LZ(O,T;(H%st))'j <C(T).
Step 3. Convergence. With the above uniform esti-
mates at hand, we can use the Aubin-Lions lemma for
time-piecewise functions (see [9]) to perform the com-
pactness argument. This concludes the proof of Theorem
2.1.

12(0x8) +|| T "H‘(QXS) )
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