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Abstract 

Acylation of allylic esters with acylsilanes and acylstannanes in the presence of a palladium com-
plex was investigated theoretically using the DFT (B3PW91) method. We examined along the reac-
tion that was reported by Tsuji’s. In this mechanism for generating active species, a Pd dinuclear 
complex 5 (the reaction of Pd and 2) was produced. Then, 5 is decomposed to two mononuclear 
complex 6. The reaction of 6 and 1 forms an intermediate 7, which is active species. In catalytic 
cycle from 7, the O (1) atom of 7 attacks the Si or Sn atom in TS7-8 to produce 8. Then, the C(1)-C(2) 
reductive elimination from 8 occurs through the TS8-9 to yield 9. Therefore, 9 decomposed to Pd(0), 
3 and 4. However, reaction mechanism from 9 to 6 should be considered because Pd(0) + 3 + 4 are 
less stable than 9 by 29.2 kcal/mol, 9 does not decompose. We proposed the reaction mechanism 
from 9, as shown below: 1) 2 attacks 9 to form 10. 2) 10 released 4 to produce a five coordinated 
intermediate 11. 3) 11 changes its structure to another π-allyl complex 12. 4) The product 3 was 
released from 12 and 6 formed again for a next catalytic cycle. The rate-determining step of these 
reaction is nucleophilic attack of carbonyl oxygen to RA (7 → 8), and the ∆G‡ for I, II and III was 
calculated to be 27.1, 39.1, and 30.9 kcal/mol, respectively. As a result, we elucudated the reaction 
mechanism of acylation of allylic esters with acylsilanes and acylstannanes in the presence of a 
palladium complex. 
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1. Introduction 
The palladium-catalyzed acylation of allylic esters has been widely applied in organic synthesis and is one of the 
most important reactions. Carbanions [1]-[5], enolates [6]-[10], and amines [11]-[15] are often employed as the 
nucleophilic agent of this reaction until now. The acylated products obtained by this reaction are used as materials 
for constructing natural products, pharmaceutical compounds, low molecular organic compounds, polyesters, 
and polycarbonates. However, since functional groups that can be directly introduced to the allylic system are 
still limited, further developments of the research are expected. 

In 1993, Tsuji and co-workers found out the palladium-catalyzed silylation reaction of allylic esters with dis-
ilanes (Scheme 1) [16]. Additionally, they reported new acylation reaction of allylic ester with acyl silane or 
acyl stannane based on reactions in the past [17] [18]. 

In these reactions, acyl silane and acyl stannane act as the acylating agent in the presence of Pd catalyst. Three 
kinds of reactions by the difference in the substituents (RA and RB) as shown in Scheme 2 were reported by 
these works. In these three reactions, I and II proceeds, but III does not occur. 

Reaction mechanism of this acylation is proposed by Tsuji and co-workers as shown in Scheme 3. The first 
step of these catalytic cycles is formed a π-aryl complex by Pd complex and 2. After this reaction, a π-aryl com-
plex reacts with 1 to form 4 and a new π-aryl complex. Finally, 3 is generated from a π-aryl complex, a Pd cata-
lyst reproduces. Thus, several experimental works have been well performed, but a reaction mechanism has not 
been theoretically investigated yet, to our knowledge.  

In this study, we theoretically investigated the Pd-catalyzed acylation reaction of allylic ester using the DFT 
method [19]. Here our attentions were focused on clarifying the reaction mechanism and the substituent effect in 
these reactions. 

 

 
Scheme 1. Silylation reaction reported by Tsuji and co-workers.                                            

 

 
Scheme 2. Acylation of 2 with 1.                                                                  

 

 
Scheme 3. Catalytic cycle with Pd(II) complex.                                                           



S. Sanada et al. 
   

 
248 

2. Computational Details 
All geometry optimizations were calculated with the DFT method, where the B3PW91 [20] [21] functional was 
used for the exchange-correlation term. We ascertained that each equilibrium structure exhibited no imaginary 
frequencies, and each transition state had only one imaginary frequency. In these calculations, the following ba-
sis set system was employed. The (541/541/211/1) [22] [23] basis set was used to represent the valence electrons 
of Pd, where the effective core potentials (ECPs) were employed to replace core electrons (up to 3d) [24]. The 
LANL2DZ basis set was used for Sn. For C and O atoms, the usual 6-311G(d) basis sets were employed. For Si 
atom, the 6-311G(2d) basis set was used. For H atom, the 6-31G(d,p) basis set were employed. To investigate 
the solvent effects of tetrahydrofuran (THF), we performed single point calculations with the SMD [25] method 
using the optimized structures. The values of free energies were calculated with thermodynamic cycle [26].  

All of these calculations were carried out with the Gaussian 09 program package [27]. 

3. Results and Discussion 
The reaction mechanism proposed by Tsuji and co-workers were shown in Scheme 4. In the first step of this 
reaction mechanism, Pd dinuclear complex 5 is formed to by catalyst and allylic ester. 5 is decomposed into two 
molecules, Pd mononuclear complex 6 is formed. 1 is close to 6, and intermediate 7 generates. 

Although these molecular structures are not known precisely, Pd complex such as 7 were assumed to be the 
active species in the catalytic cycle for the acylation with allylic ester. However, the reaction mechanism starting 
from 7 has not yet been investigated. We proposed the reaction mechanism from 7 as shown in Scheme 5. The 
O(1) atom of 7 attacks the Sn or Si atom through the transition state, TS7-8, to produce 8. The C(1)-C(2) reduc-
tive elimination from 8 occurs through the TS8-9 to yield 9. 

The Sn-C and Sn-O(1) distances of 7 in Reaction I were calculated to be 2.238 and 2.749Å, respectively (see 
Figure 1). On the other hand, since the Sn-C and Sn-O(1) distances of 8 in Reaction I were 4.900 and 2.073Å, 
respectively, the Sn-C bond is broken and new Sn-O(1) bond is formed. In reaction (8 → 9), the Pd-C(1) and 
Pd-C(2) distances of 8 and 9 in Reaction I were 2.072 and 3.963 Å, respectively. As the reaction progresses, we 
find out that the Pd-C(2) bond have been dissociated. Moreover, 8 in Reaction I was a π-aryl complex, but 9 in 
Reaction I was not. Reaction II and III showed these results similar to Reaction I. 

The Si-C and the Si-O(1) distances of 7 in Reaction II were 1.939 and 3.030Å, respectively (see Figure 2). 
On the other hand, the Si-C and Si-O(1) distances of 8 in Reaction II were calculated to be 4.838 and 1.740Å, 
respectively. When comparing Reaction I and II, the Si-C and Si-O(1) bonds are stronger than the Sn-C and 
Sn-O(1) bonds. From these results, it was suggested that dissociations of the Sn-C and Sn-O bonds are easier 
than those the Si-C and Si-O bonds. 

 

 
Scheme 4. Reaction mechanism proposed by Tsuji and co-workers.                                

 

 
Scheme 5. Proposed reaction mechanism from 7.                                               
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Figure 1. Optimized structures of I-7, I-TS7-8, I-8 and I-9.                               

 

 
Figure 2. Optimized structures of II-7, II-TS7-8 and II-8.                                     

 
The ∆G‡ values of the reaction (7 → 8) for Reaction I, II and III were calculated to be 27.1, 39.1 and 30.1 

kcal/mol, respectively. Additionally, the ∆G‡
 values of the step (8 → 9) for Reaction I, II and III were 21.2, 20.4 

and 23.1 kcal/mol, respectively. Intermediates 9 for Reaction I, II and III are much more stable than 7 by 21.2, 
21.7 and 34.8 kcal/mol, respectively. As a result, the reactions leading to 9 in Reaction I, II and III will occur 
easily.  

In the proposed reaction mechanism, 9 is dissociated to Pd(0), 3 and 4. Figure 3 displays the free energy 
change between 9 and three product compounds in Reaction III. Product compounds (Pd(0), 3 and 4) in Reac-
tion III are much more unstable than 9 by 29.2 kcal/mol, it can be considered than this reaction will not proceed. 
Therefore, we assumed a new reaction shown in Scheme 6. 

In this new reaction, 2 attacks 9 to form 10. 4 dissociates from 10, and a five coordinated intermediate 11 is 
generated. We examined the validity of this reaction mechanism. 

The Pd-C(1) and Pd-C(2) bonds of 9 + 2 in Reaction I were dissociated, respectively. Those distances of 10 in 
Reaction I were 2.123 and 2.162 Å, respectively, and new Pd-C(1) and Pd-C(2) bonds were formed. The ∆G‡ 

values of the reaction (9 → 10) for Reaction I was calculated to be 2.0 kcal/mol. Additionally, 10 in Reaction I 
was more stable by 8.3 kcal/mol than 9. Reaction II and III showed these results similar to Reaction I. In 
reactiton from 10 to 11, 4 dissociates from 10, and a five coordinated intermediate 11 is generated. The geome-
try changes and relative free energies of this reaction in Reaction I, II and III are shown in Figure 4 and Figure 
5, respectively. In this reaction, new Pd-O(1) bond was formed. This reaction proceeds with no barrier, and 11 
was more stable by 13.8 kcal/mol than 10 in Reaction I. From these results, it is considered that reaction 
proceeds. The succeeding isomerization (10 → 11) occurs, to yield a π-aryl complex 12. The ∆G‡ values of this 
reaction for Reaction I, II and III were calculated to be 10.4, 10.4 and 13.5 kcal/mol, respectively. Moreover, 12 
in Reaction I, II and III were more stable by 10.5, 10.5 and 3.4 kcal/mol than 11, respectively, and this reaction 
occurs easily. 
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Scheme 6. Proposed reaction mechanism from 9.                                         

 

 
Figure 3. Relative free energies from 9 to Pd(0), 3 and 4 in Reaction III.                     

 

 
Figure 4. Relative free energies from 10 to 11 in Reaction I, II and III.                       

 
It is considered that the dissociation of 12 gives a product 3 and a mononuclear complex 6. The geometry 

changes and relative free energies of this reaction in Reaction I, II and III are shown in Figure 6 and Figure 7, 
respectively. The ∆G‡ values of this reaction for Reaction I, II and III were calculated to be 10.5, 10.5 and 9.1 
kcal/mol, respectively. Finally, the reaction between mononuclear complex 6 and 1 are formed an active species 
7, and the catalytic cycle is completed. 

We investigated the catalytic cycle starting from 7, as shown in Scheme 7. Figure 8-10 display the relative 
free energies from 7 in Reaction I, II and III, respectively. The rate-determining step is the nucleophilic attack of 
carbonyl oxygen to RA (7→8), their ∆G‡ values are 27.1, 39.1 and 30.1 kcal/mol, respectively. The ∆G‡ value of 
the rate-determining step in Reaction I is lower than that in Reaction II by 12.0 kcal/mol. This result showed the 
same tendency as the experimental one. 
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Scheme 7. New acylation reaction with Pd complex.                                                      

 

 
Figure 5. Optimized structures of I-10, II-10, III-10, I-11, II-11 and III-11.                                     
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Figure 6. Optimized geometries and relative free energies from 12 to 6 in Reaction I and II.                         

 

 
Figure 7. Optimized geometries and relative free energies from 12 to 6 in Reaction III.                              
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Figure 8. Optimized geometries and relative free energies from 7 in Reaction I.                  

 

 
Figure 9. Optimized geometry and relative free energies from 7 in Reaction II.                   

 

 
Figure 10. Optimized geometries and relative free energies from 7 in Reaction III.                     
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To investigate in details about these differences, we calculated the C-SiMe3 and C-SnMe3 bond energies. The 
C-SiMe3 bond energy is stronger than the C-SnMe3 one by 18.6 kcal/mol. In other words, it is easy to break the 
C-SnMe3 bond than the C-SiMe3 bond. Therefore, it is suggested that Reaction I (RA = SnMe3) is more favorable 
than Reaction II. 

On the other hand, since the ∆G‡ value in Reaction III is lower than that in Reaction II by 9.0 kcal/mol. Since 
only reactions of Reaction I and II occur in the experiment, this result obtained by our theoretical calculation is 
different with experimental one. To elucidate this cause, we focused on a formation reaction of the active spe-
cies. At the first step of the catalytic cycle, 6 reacts with 1 to form the active species 7. 7 in Reaction I and II are 
more stable than 6 by 2.5 and 1.6 kcal/mol, respectively. On the other hand, 7 in Reaction III is less stable than 6 
by 5.2 kcal/mol. From these results, it is suggested that the active species 7 generate only in Reaction I and III. 
In other words, since the active species 7 in Reaction II does not form, the catalytic reaction cannot proceed. As 
a result, even if the ∆G‡ value of the rate-determining step in Reaction II is low, it is considered that the reaction 
does not occur.  

From all results, it is suggested that this catalytic reaction starts from 6 without reaction III and the calculated 
results well explain the experimental one. 

4. Conclusions 
In the present study, we investigated the acylation of allylic esters with acylsilanes and acylstannanes in the 
presence of a palladium complex using the DFT method. Firstly, we examined the reaction mechanism starting 
from 7. The results of reaction mechanisms are summarized as follows:  

1) The O(1) atom of 8 attacks the Sn or Si atom in TS8-9 to produce 9. 
2) The C(1)-C(2) reductive elimination from 9 proceeds through the TS9-10 to yield 10. 
3) 2 attacks 10 to form 11.  
4) 11 released 4 to produce a five coordinated intermediate 12. 
5) 12 changes into structure to another π-acyl complex 6.  
6) The product 3 was released from 6 and 7 forms again for another catalytic cycle. 
The rate-determining step is the nucleophilic attack of carbonyl oxygen to RA (7→8), their ΔG‡ values are 

27.1, 39.1 and 30.1 kcal/mol, respectively.  
Therefore, we illustrated three kinds of reactions by the difference in the substituents (RA and RB). 
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