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Abstract 
The use of intramolecular reactions involving palladium/imidazolium salts to synthesize hetero-
cyclic compounds is described. Reactivity of phenyl, ethyl and methyl substituents leading to iso-
lation of various isomeric products is also illustrated. Rearrangement of phenyl intermediates to 
furnish benzoxazoles is also mentioned. 
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1. Introduction 
Palladium mediated reactions play significant role in organic synthesis. Intramolecular Heck reactions in partic-
ular have become useful for the synthesis of carbocylic and heterocyclic rings [1] [2]. Conventional coupling 
methods require the use palladium phosphine complexes as catalyst for Heck reactions. The mechanism for 
these palladium catalyzed coupling reactions involves four key stages namely, i) oxidative addition of aryl ha-
lide to Pd(0); ii) intramolecular carbometallation; iii) β-hydride elimination and lastly iv) reductive elimination 
to regenerate the Pd(0) catalyst for the continuation of the catalytic cycle [3]. 
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The choice of ligand is very important in these palladium catalyzed reactions. In recent times, the develop-
ment of novel ligands for transition metal catalysis and the study of their mechanistic pathway have received 
greater attention [4] [5]. Sterically hindered phosphine ligands for palladium-catalysed reactions in particular, 
have improved greatly the applications of many metal mediated transformations [6]. 

Despite their wider application in palladium mediated synthesis, phosphine ligands do suffer limitations. This 
has necessitated the search for practical alternatives to phosphines as ligands in metal mediated cyclisation reac-
tions [7].  

N-heterocyclic carbenes (NHC) are now potential candidates as alternative ligands in transition metal cata-
lyzed reactions due to their advantages over their conventional phosphine counterparts. They are known to be 
excellent donors and tend to form strong bonds with metals, giving them very good catalytic activity [7] [8].  

NHCs have also found use in palladium catalysis. In complexes where NHC is coordinated to palladium (II), 
catalytic activity of these species have been examined and confirmed. In particular, catalytic properties of palla-
dium-carbene complexes have been proven in amination, Heck and Suzuki reactions [9]. 

Hartwig and Nolan [10] [11], have reported that palladium-NHC complexes may be produced as interme-
diates when imidazolium salts are employed as additives in palladium catalyzed transformations. Although a full 
mechanistic rational is yet to be established, it is assumed that, the palladium and imidazolium salts generate ei-
ther neutral or cationic palladium-carbene complexes in situ during the course of the metal catalytic cycle [12]. 
Nevertheless it can be appreciated that palladium-NHC complexes are proving valuable in synthetic organic 
chemistry [13].  

We previously reported the successful use of Pd-carbene complexes in intramolecular Heck reactions involv-
ing aromatic chlorides. This indicates the effectiveness of these Pd-NHC complexes in metal catalyzed reactions, 
particularly involving the less reactive aryl chlorides, [14]. Improved yields were achieved with addition of te-
trabutyl ammonium salts. These reactions require generation of the carbene in situ from imidazolium salts and 
subsequent completion of the catalytic cycle leading to the generation of heterocyclic compounds.  

We describe herein our findings on palladium/imidazolium salt mediated protocols for intramolecular cyclisa-
tion reactions on to aryl iodides. Our studies have revealed that palladium/imidazolium salt catalysis can be used 
to synthesize a range of heterocyclic compounds from cheaper and readily available starting materials and pre-
cursors. Yields of these reactions are particularly good, and the products are free from contamination by phos-
phine related by-products, making them easily isolable. 

2. Experimental 
2.1. Chemicals and Instruments 
Melting points were carried out on Gallenkemp melting point apparatus and are uncorrected. IR spectra were 
recorded on a Perkin Elmer transform instrument as thin film neat of a solution dissolved in nujol. All nmr spec-
tra were recorded on Bruker Fourier transform instruments with frequencies quoted in mega Hertz recorded in 
all experimental data. All coupling constants (J values) were quoted in Hertz. Chemical shifts are reported up-
fields in parts per million. Mass spectra were recorded on Kratos or Fisons double focusing spectrometers. X-ray 
crystallography experiments were carried out using Enraf Nonius diffractometer. Thin layer chromatography (tlc) 
was performed using Merck Kieselgel precoated silica gel plates and visualized with UV light, vaporized iodine 
or potassium permanganate solution. Flash chromatography was carried out using Merck Kieselgel 230-400 
mesh. Organic solvents were purified by distilling over drying agents. Throughout the experimental, imidazo-
lium salt refers to the ligand 1,3-bis-(2,6-diisopropylpheynyl)imidazolium chloride. 

2.2. General Method for the Alkylation of Benzyl Alcohol 
A suspension of 2-iodobenzylalcohol (1.0 eq) and NaH (2.0 eq) in THF was stirred at room temperature for 30 
min. Alkenyl halide (2.0 eq) was added and the reaction mixture stirred for a further 16 h. The reaction mixture 
was then filtered through celite, washed with water and the aqueous layer extracted with Et2O. The combined 
organic fractions were dried (MgSO4), filtered and solvent removed in vacuo to give the product as an oil. 

2.3. General Method for the Synthesis of Phenylacrylamide  
To a solution of acyl chloride (1.0 eq) in Et2O at 0˚C was added slowly 2-iodoaniline (2.0 eq) and the reaction 
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mixture left to warm to room temperature for 2 h. This was then quenched with HCl (0.5 M), washed with 
NaHCO3 solution followed by water and the aqueous layer extracted with Et2O. The combined organic fractions 
were dried (MgSO4), filtered and solvent removed in vacuo to give a crude sample which was purified by flash 
chromatography (Silica gel) [eluent-Pet:Et2O, 20:1 - 5:1] to give the title compound as a solid. 

2.4. General Method for the Synthesis of Isochromene and Isochroman 
Iodobenzyl ether (1.0 eq), Cs2CO3 (1.5 eq), Pd2(dba)3 (1 mol%) and imidazolium salt (1 mol%) were placed in a 
reaction vessel and purged with nitrogen under vacuum. N,N-dimethylacetamide was then added and the mixture 
heated at 140˚C for 15 h. The reaction mixture was allowed to cool to room temperature, dissolved in diethyl 
ether and filtered through celite. The filtrate was washed with water and aqueous layer extracted with diethyl 
ether. Combined organic fractions were dried (MgSO4), filtered and solvent removed to give crude sample 
which was purified by flash chromatography (silica gel) [eluent-Pet:Et2O, 20:1 - 10:1] to give the desired com-
pound. 

2.5. General Method for the Synthesis of Benzoxazole 
Iodo-benzamide (1.0 eq), Cs2CO3 (1.5 eq), Pd2(dba)3 (1 mol%), and imidazolium salt (1 mol%), were place in a 
reaction vessel and purged with nitrogen under vacuum. N,N-dimethylacetamide was then added and the mixture 
heated at 140˚C for 10 h. This was allowed to cool to room temperature, dissolved in diethyl ether and filtered 
through celite. The filtrate was washed with water and the aqueous layer extracted with ether. Combined organic 
fractions were dried (MgSO4), filtered and solvent removed to give crude sample which was purified by flash 
chromatography (silica gel) [eluent-Pet:Et2O, 20:1 - 5:1] to give the desired compound. 

3. Spectral and Analytical Data 
1-Allyloxymethyl-2-iodobenzene (3.1) 
Rf Pet:EtOAc, 6:1 (0.8). 
νmaxcm−1 3406, 3048, 2935, 1695, 1451, 1345, 1090, 1004, 915, 736. 
δH (300 MHz, CDCl3) 7.72 (1H d, J = 7.7, ArH ), 7.40 (1H, d 7.7, ArH), 7.22 (1H, dd, J = 7.7, 7.3 ArH) 6.87 

(1H, app. t, J = 7.7, ArH), 5.90 (1H, ddt J = 17.1, 10.3, 6.7, -CH2OCH2CHCH2), 5.28 (1H, d J = 10.3, 
-CH2OCH2CHCH2), 5.12, (1H, J = 17.1, -CH2OCH2CHCH2), 4.4 (2H, s, -CH2OCH2CHCH2) 4.02 (2H,d J = 6.7, 
-CH2OCH2CHCH2). 
δC (75 MHz, CDCl3) 141.04 (C), 139.53 (CH), 134.13 (CH), 130.66 (CH), 129.87 (CH), 128.84 (CH), 

117.76 (CH2), 98.15 (C), 72.07 (CH2), 69.55 (CH2). 
m/z (EI) 274 (M+, 25%), 231 (M+-C3H5, 63%) 217 (100%), 90 (75%). 
1-But-2-enyloxymethyl-2-iodobenzene (3.2) 
Rf Pet:Et2O, 5:1 (0.88). 
νmaxcm−1 3021, 2920, 1562, 1438, 1350, 1092, 1090, 1005, 959, 743. 
δH (300 MHz, CDCl3) 7.70 (1H d, J = 7.9, ArH ), 7.33 (1H, d 8.2, ArH), 7.22 (1H, dd, J = 7.7, 7.3 ArH) 6.83 

(1H, dd, J = 7.7, 7.3 ArH), 5.69 (1H, dq J = 15.2, 6.0, -CH2OCH2CHCHCH3), 5.58 (1H, dt J = 15.2, 6.0 
-CH2OCH2CHCHCH3), 4.36, (2H, s, -CH2OCH2CHCH3), 3.39 (2H, d, J = 5.8, (-CH2OCH2CHCHCH3), 1.63 
(3H, d J = 6.0, -CH2OCH2CHCHCH3).  
δC (75 MHz, CDCl3) 141.15 (C), 139.51 (CH), 130.25 (CH), 129.16 (CH), 128.72 (CH), 127.81N(CH), 

127.08 (CH), 98.26 (C), 71.84 (C), 66.43 (CH2), 18.33 (CH3). 
m/z (EI) 288 (M+, 20%), 244 (M+, 40%) 217 (M+-OC4H7, 100%), 36 (60%). 
1-Cynnamyloxymethyl-2-iodobenzene (3.3) 
Rf Pet:Et2O, 9:1 (0.55). 
νmaxcm−1 3033, 2848, 1557, 1443, 1354, 1107, 1090, 960, 746, 687. 
δH (300 MHz, CDCl3) 7.92 (1H d, J = 7.5, ArH ), 7.60 (1H, d J = 7.9, ArH), 7.42 (2H, dd, J = 7.5, 7.4 ArH), 

7.32-7.10 (4H, m, ArH), 7.07 (1H, apt. t J = 7.9 ArH), 6.57 (1H, d, J = 16.0, -CH2OCH2CHCHPh), 4.65 (2H, s, 
-CH2OCH2CHCHPh), 4.37 (2H, d J = 6.0, -CH2OCH2CHCHPh).  
δC (75 MHz, CDCl3) 141.108 (C), 139.68 (CH), 137.18 (C), 133.13 (CH), 129.71 (CH), 129.34 (CH), 129.10 

(CH), 128.76 (CH), 128.25 (CH), 127.07 (CH), 126.35 (CH), 98.47 (C), 76.43 (CH2), 71.79 (CH2).  
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m/z (ES) 386 (MNH4
+, 100%), 305 (100%).  

N-(2-Iodophenyl)-3-phenylacrylamide (3.6) 
Rf Pet:EtOAc 6:1 (0.41). 
Mp. 160˚C - 162˚C. 
νmaxcm−1 3189, 1655, 1620, 1451, 1374, 731. 
δH (300 MHz, CDCl3) 8.3 (1H, appt. d J = 7.5, NH), 7.74-7.72 (1H, m, ArH), 7.68 (1H, d J = 15.8, 

-COCHCH-), 7.56-7.49 (3H, m, ArH), 7.36-7.18 (4H, m, ArH), 6.79 (1H, appt. t J = 7.9, ArH), 6.52 (1H, d J = 
15.5 -COCHCH-).  
δC (75 MHz, CDCl3) 164.30 (C=O), 143.41 (C), 139.24 (C), 138.70 (CH), 134.82 (CH), 130.60 (CH), 129.75 

(CH), 129.32 (CH), 128.50 (CH), 126.44 (CH), 122.46 (CH), 120.98 (CH), 90.05 (C). 
m/z (EI) 349 (M+, 30%), 222 (M+-I, 80%), 131 (M+-C6H5NI, 100%). 
N-(2-Iodophenyl)-benzamide (3.7) 
Rf Pet:Et2O 6:1 (0.39). 
Mp. 140˚C - 142˚C. 
νmaxcm−1 3214, 1639, 1506, 1456, 1373, 1287, 739, 704. 
δH (300 MHz, CDCl3) 8.40 (1H, d J = 8.2, ArH), 8.22 (1H, s, NH), 7.90 (2H, dd, J = 8.2, 7.9, ArH), 7.74 (1H, 

d J = 7.9, ArH), 7.56-7.40 (3H, m, ArH), 7.34 (1H, dd, J = 8.2, 7.3, ArH), 6.81 (1H, dd, J = 7.5, 7.7, ArH). 
δC (75 MHz, CDCl3) 165.70 (C=O), 139.21 (C), 138.66 (C), 134.92 (CH), 132.60 (CH), 130.57 (CH), 129.83 

(CH), 129.36 (CH), 127.57 (CH), 126.44 (CH), 122.14 (CH), 90.59 (C). 
m/z (EI) 323 (M+, 10%), 196 (M+-I, 62%), 122 (87%), 105 (M+-C6H5NI, 100%). 
4-Methyl-1H-isochromene (4.1) 
Rf Pet:Et2O, 9:1 (0.87). 
νmaxcm−1 3048, 2844, 1640, 1484, 1354, 1448, 1140, 1107, 1007, 936, 72. 
δH (300 MHz, CDCl3) 7.18, (1H d, J = 7.5, ArH ), 7.07 (1H dd J = 7.5, 7.4 ArH), 7.01 (1H, d, J = 7.5 ArH), 

6.93 (1H, dd J = 7.5, 7.3, ArH), 6.39 (1H, s, -CH2OCHC-Me), 4.91 (2H, s, -CH2OCH-), 1.84 (3H, s, CH3).  
δC (75 MHz, CDCl3) 141.28 (CH), 131.34 (CH), 127.68 (C), 127.02 (CH), 125.61 (CH), 122.68 (CH), 

119.26 (CH), 110.36 (C), 67.20 (CH2), 12.07 (CH3). 
m/z (EI) 146 (M+, 85%), 117 (100%), 91 (15%).  
4-Ethyl-1H-isochromene (4.2) 
Rf Pet:Et2O, 10:1 (0.88). 
νmaxcm−1 3062, 2960, 2834, 1628, 1483, 1448, 1139, 1107, 935, 747. 
δH (300 MHz, CDCl3) 7.18, (1H d, J = 7.0, ArH ), 7.09 (2H dd J = 7.7, 7.3 ArH), 6.95 (1H, d, J = 7.9 ArH), 

6.40 (1H, s, -CH2OCHCCH2CH3), 4.89 (2H, s, -CH2OCHCCH2CH3), 2.31 (2H, q J = 7.5, -CH2OCHCCH2CH3) 
1.09 (3H, t J = 7.5, -CH2OCHCCH2CH3).  
δC (75 MHz, CDCl3) 142.26 (CH), 131.92 (2XC), 129.41 (CH), 128.39 (CH), 126.87 (CH), 124.36 (CH), 

120.58 (CH), 118.10 (C), 68.65 (CH2), 21.14 (CH2), 13.92 (CH3). 
m/z (EI) 160 (M+, 85%), 117 (100%), 91 (55%), 49 (80%).  
4-Benzyl-1H-isochromene (4.3) 
Rf Pet:Et2O 9:1 (0.8). 
Mp. 53˚C - 55˚C. 
νmaxcm−1 29684, 1623, 1454, 1448, 1141, 956. 
δH (300 MHz, CDCl3) 7.27, (1H d, J = 7.0, ArH ), 7.22-7.19 (3H, m, ArH), 7.08-7.05 (3H, m, ArH), 6.95 (2H, 

appt. t, J = 7.7 ArH), 6.40 (1H, s, -CH2OCHC-), 4.96 (2H, s, -CH2OCHCC-), 3.61 (2H, s-CH2Ph).  
δC (75 MHz, CDCl3) 144.79 (CH), 140.02 (C), 131.74 (2XC), 129.16 (CH), 128.81 (2 × CH), 128.78 (CH), 

128.42 (CH), 127.07 (CH), 126.58 (CH), 124.29 (CH), 121.31 (CH), 115.10 (C), 68.81 (CH2), 34.36 (CH2). 
m/z (EI) 222 (M+, 55%), 57 (57%), 43 (100%), 28 (60%).  
4-Benzylidene-isochroman (4.4) 
Rf Pet:Et2O 9:1 (0.5). 
Mp. 78˚C - 80˚C. 
Elemental Analysis: Expected; C 86.45%, H 6.35%, O 7.20%. 
Found; C 86.62%, H 6.24%, O 7.14. 
νmaxcm−1 3379, 2983, 1712, 1596, 1492, 1447, 1268, 1100, 764. 
δH (300 MHz, CDCl3) 7.66 (1H, d J = 7.3, ArH), 7.27, (2H appt t, J = 7.5, ArH), 7.19 - 7.12 (5H, m, ArH), 
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7.08 (1H, s, -CH2OCH2CCH-Ph), ArH), 6.95 (1H, d, J = 7.3 ArH), 4.68 (2H, s, -CH2OCH2CCH-Ph), 4.66 (2H, 
d J = 1.5 -CH2OCH2CCH-Ph).  
δC (75 MHz, CDCl3) 137.09 (C), 135.27 (C), 132.68 (C), 132.57 (C), 129.72 (CH), 128.78 (CH), 128.04 

(CH), 127.60 (2 × CH), 127.59 (2 × CH), 126.58 (CH), 125.15 (CH), 123.81 (CH), 123.66 (CH), 69.01 (CH2), 
67.28 (CH2). 

m/z (EI) 222 (M+, 100%), 178 (60%), 115 (95%). 
2-Styryl-benzooxazole (4.5) 
Rf Pet:EtOAc 3:1 (0.7). 
Mp. 90˚C - 92˚C. 
νmaxcm−1 2984, 1637, 1530, 1453, 1372. 
δH (300 MHz, CDCl3) 7.81 (1H, d J = 16.3, -CHCHPh), 7.74 (1H, d J = 7.5 ArH) 7.73 (2H, dd J = 7.6, 7.4, 

ArH), 7.54 (1H, d J = 7.5 ArH), 7.43 (2H, dd J = 7.6, 7.6 ArH), 7.36-7.34 (3H, m ArH), 7.10 (1H, d J = 16.3 - 
CHCHPh). 
δC (75 MHz, CDCl3) 161.76 (-NC), 149.37 (C), 141.15 (C), 138.42 (CH), 134.1 (C), 128.74 (CH), 127.94 

(CH), 127.33 (CH), 126.52 (CH), 126.20 (CH), 124.18 (CH), 123.47 (CH), 118.84 (CH), 112.91 (CH), 101.29 
(CH). 

m/z (EI) 221 (M+, 80%), 220 (M+ - H 100%), 191 (45%). 
2-Phenyl-benzooxazole (4.6)  
Rf Pet:EtOAc 6:1 (0.81). 
Mp. 110˚C - 112˚C. 
νmaxcm−1 2986, 1611, 1550, 1458, 1373, 1233, 1045, 731. 
δH (300 MHz, CDCl3) 8.22-8.17, (2H, m, ArH), 7.72-7.69 (1H, m, ArH), 7.47-7.44 (4H, m, ArH), 7.30-7.27 

(2H, m, ArH).  
δC (75 MHz, CDCl3) 149.73 (C), 141.07 (C), 130.49 (C), 127.89 (2 × CH), 126.59 (2 × CH), 126.13(C), 

126.20 (CH), 124.08 (CH), 123.55 (CH), 118.99 (CH), 109.57 (CH). 
m/z (EI) 195 (M+, 100%), 167 (50%), 77 (40%), 63 (50%). 

4. Results and Discussion 
Starting materials were obtained by standard synthetic transformations, where 2-iodobenzylalcohol was depro-
tonated and the anion subsequently quenched with the corresponding alkenylbromide [15] [16], to furnish the 
desired alkenyloxymethyl-2-iodobenzene as the cyclisation precursors, 3.1-3.3 (Scheme 1). To obtain oxyin-
doles as final heterocyclic products, acrylamide precursors were synthesized by direct acylation of iodoaniline 
with enoyl chlorides to give desired products 3.4-3.6 (Scheme 2), [17]. 

 

 
Scheme 1. Synthesis of benzyloxy precursors used in the synthesis of bicyclic rings.     

 

 
Scheme 2. Synthesis of amide precursors which gave oxazoles upon cyclisations.          
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When alkenyloxy precursors 3.1 and 3.2 were subjected to reaction conditions using the palladium/imidazo- 
lium salt protocol, the desired bicyclic isochromene products 4.1 and 4.2 were isolated in very good yields fol-
lowing purification by column chromatography. The cyclisations proceeded possibly via 6-exo fashion followed 
by rapid isomerization to give the products obtained, (Scheme 3). 

 

 
Scheme 3. Pd/ Im.S mediated cyclisations to produce bicyclic ring systems (Im.S = imidazo-
lium salt).                                                                     

 
When the phenyl substituted precursor 3.3 was subjected to the same reaction conditions, however, two iso-

meric products were isolated [18]. Benzylisochromene 4.3 [19], and benzylideneisochroman 4.4 [20] [21], nuc-
lei were obtained in yields of 22% and 63% respectively, (Scheme 4). 

 

 
Scheme 4. Phenyl substituted precursor gave isomers 4.3 and 4.4 when subjected to Pd/ 
Im.S conditions.                                                                    

 
Isolation of benzylideneisochroman 4.4 as the major product in this case means the reaction probably pro-

ceeded via 6-exo cyclisation. Unlike the previous examples where isomerization is presumed to have taken place 
following cyclisation to give the kinetically stable products, benzylideneisochroman 4.4 (Figure 1) happen to be 
the major isolated product from cyclisation of 1-cynnamyloxymethyl-2-iodobenzene, 3.3. Although there is a 
possible 1,3-hydrogen shift to generate isochromene 4.3, the isolation of isochroman 4.4 as the major product 
may be due to the conjugation system that extends from the alkene bond onto the phenyl ring to give a more sta-
ble isomer. 

 

 
Figure 1. Crystal structure of benzylideneisochroman 4.4, major isomer from phenyl substi-
tuted precursor.                                                                  
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It was disappointing to observe that, treating but-2-enoic phenyl amide and phenyl acrylamide substrates with 
palladium/imidazolium salt failed to give the desired oxyindoles. Surprisingly, what seemed to be loss of the al- 
kenoyl moiety leading to isolation of 2-iodoaniline was observed, (Scheme 5). 

 

 
Scheme 5. Reaction of alkenoyl moiety upon treatment with Pd/Im.S.         

 
When N-(2-iodophenyl)-3-phenylacylamide 3.6 was subjected to palladium/imidazolium salt protocols, there 

was conversion of starting material to product after heating for 3 h. It was revealed by spectral analysis that the 
desired oxyindole had not been formed, instead cyclisation had occur to give 2-styryl-benzooxazole 4.5, [22] 
[23], (Scheme 6), (Figure 2) [24]. 

 

 
Scheme 6. Cyclisation to give 2-styryl-benzooxazole using Pd/Im.S.             

 

 
Figure 2. Crystal structure of 2-styryl-benzooxazole, 4.5.                       

 
To further extend the scope of these findings, N-(2-iodophenyl)benzamide 3.7 and N-(2-iodophenyl) aceta- 

mide were subjected to the same reaction conditions. While the benzamide reacted possibly via o-arylation to 
produce 2-phenylbenzooxazole 4.6 in good yield, no product was isolated when the acetamide derivative was 
subjected to the same reaction conditions, (Scheme 7). 

 

 
Scheme 7. Under Pd/Im.S condition, iodophenylbenzamide gave Phenyl benzooxazole, 4.6 whiles the acetamide 
intermediate gave no desired product.                                                               
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We believe the ability of the phenyl substrates to efficiently undergo cyclisation may be due to the phenyl 
group providing strong steric and electronic effects leading to a stable rotamer with a configuration that allows 
the carbonyl oxygen to be within close proximity to the iodine, and thus favouring an attack on to the ring, 
(Scheme 8). 

 

 
Scheme 8. Rotation around the carbonyl showing a shift in equili-
brium to the more favourable rotamer.                           

5. Conclusion 
In conclusion, we have shown that palladium imidazolium salt protocols can be used to promote intramolecular 
cyclisation reactions, enabling the synthesis of fused bicyclic heteroaromatics with great efficiency. Phenyl 
substituents have strong influence on reaction outcomes as a result of steric and electronic factors. Iodophenyl-
benzamide substrates undergo cyclisation to give substituted benzooxazoles. The ease with which phenyl con-
taining amides undergo cyclisation to produce substituted benzooxazoles is noteworthy. 
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