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ABSTRACT 

The yield of bremsstrahlung (BS) from collisions of fast electrons (energy at least 6 MeV) with a Tungsten target can be 
significantly improved by exploitation of Tungsten wall scatter in a multi-layered target. A simplified version of a pre- 
viously developed principle is also able to focus on small angle scattered electrons by a Tungsten wall. It is necessary 
that the thickness of each Tungsten layer does not exceed 0.04 mm—a thickness of 0.03 mm is suitable for accelerators 
in medical physics. Further focusing of electrons results from suitable magnetic fields with field strength between 0.5 
Tesla and 1.2 Tesla (if the cone with multi-layered targets is rather narrow). Linear accelerators in radiation therapy 
only need to be focused by wall scatter without further magnetic fields (a standard case: 31 plates with 0.03 mm thick- 
ness and 1 mm distance between the plates). We considered three cases with importance in medical physics: A very 
small cone with an additional magnetic field for focusing (the field diameter at 90 cm depth: 6 cm), a medium cone with 
an optional magnetic field (field diameter at 90 cm depth: 13 cm) and a broad cone without a magnetic field (the field 
diameter at 90 cm depth: 30 cm). All these cases can be positioned in a carousel. Measurements have been performed in 
the existing carousel positioned in the plane of the flattening filter and scatter foils for electrons. 
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1. Introduction 

A principal problem in the creation of BS of linear ac- 
celerators used in radiotherapy is the lack of efficiency, 
since only a rather small part of the created BS is avail- 
able for applications. Even for a 40 × 40 cm2 field (dis- 
tance of 100 cm from the focus), the BS yield is small and 
most of it goes lost at the primary collimator and jaws. 
We have usually to deal in radiotherapeutic applications 
with much smaller field sizes than 40 × 40 cm2. Thus the 
effectivity in IMRT and stereotaxy are much smaller. A 
further source of BS loss is the flattening filter, which is 
used to homogenize transverse profiles. To circumvent 
some of the above disadvantages, a linear accelerator 
using multiple Beryllium targets has been suggested [1], 
with electron energies of the order of 80 - 100 MeV to  

yield a spectrum compared to a conventional machine 
with 4 - 6 MeV and a single Tungsten target. However, 
this concept has the disadvantage that electrons deceler- 
ated down to ca. 45 - 50 MeV have to be removed by a 
magnetic field, since they would produce low BS ener- 
gies in further Beryllium targets. 

In this communication, we present experimental re- 
sults of modified configurations of a multitarget system 
considered previously [2] consisting of very thin Tung- 
sten layers, with a thickness << 0.1 mm to create BS in a 
much more efficient way by the ordinarily used electron 
energies between 6 and 20 MeV. This way of BS crea- 
tion exploits two physical effects, which can be used to 
focus on scattered electrons, namely the wall scatter of 
high Z materials (Tungsten), a further option, and a suit- 
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able external magnetic field. 

2. Material and Methods 

2.1. Schematic Representation of BS by a Linear  
Accelerator 

The following Figure 1 shows the essential component 
modules of a linear accelerator. It starts with the imping- 
ing electron current on the BS target (Tungsten). The 
foregoing modules of the beamline such as klystron, 
modulator, acceleration tube, deflection of the electron 
current by a bending magnet are not of importance here. 
In the target two competition processes occur, namely BS 
creation and multiple scatter of electrons by simultaneous 
production of heat. 

This multiple scatter and heat production must be re- 
garded as the reason, that the BS creation does not show 
any preference direction. The beam line according to 
Figure 1 indicates that only that part of the BS can be 
used, which can pass through the opening of the primary 
collimator. The flattening filter immediately below the 
vacuum window affects the shape of the beam, which is 
further controlled by the jaws to obtain the desired field 
size. However, the flattening filter significantly attenu- 
ates the intensity of the photon beam, and due to the in- 
evitable Compton scattering, it also acts as a second 
source, which affects the shape of the profiles of larger 
field sizes (e.g. the penumbra). 

As a resume, we can conclude that the present linear 
accelerators do not provide a high efficiency, in particu- 
lar with regard to the novel irradiation techniques such as 
Stereotaxy, Rapid Arc, and IMRT, where very small field 
sizes are required and most of the produced BS goes lost 
by shielding of the accelerator head. Therefore the ques- 
tion arises, in which way we can significantly improve 
the yield of BS and reduce the required shielding mate- 
rial in the accelerator head. 
 
 

 

Figure 1. Schematic representation of a linear accelerator. 

2.2. Qualitative Considerations with Regard to 
Focusing of Electron Scatter 

Figures 2 and 3 indicate that by restriction to a single 
Tungsten target there is no mean to prevent the scatter of 
electrons within the target material. 

The thickness of the target of standard linear accelera- 
tors amounts to ca. 1 mm Tungsten and immediately be- 
low 1 mm Copper in order to increase the removal of the 
produced heat from the target. The BS spectrum created 
in Copper is significantly lower than that of Tungsten; it 
is most widely absorbed in the flattening filter. Since the 
multiple scatter and heat production are responsible for 
the low efficiency and for a lot of necessary shielding of 
the accelerator head, we consider at first an alternative 
way to exploit BS by a multi-target. This consists of a 
configuration of very thin Tungsten layers. There thick- 
ness should not exceed 0.04 mm. We assumed previously 
a thickness of 0.01 mm for each plate we need 100 plates 
to reach an overall thickness of 1 mm with an effective 
 

Target (Tungsten, Copper)

Bremsstrahlung (BS) 

Electron current: 
Gaussian profile 

 

Figure 2. Multiple scatter and creation of BS in the target. 
 

 

Figure 3. Small angle backscatter of electrons at a Tungsten 
wall (reflection) induces focusing of electrons. The backsca- 
tter is amplified by a cone configuration of the Tungsten 
wall. 
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depth of 10 cm [2]. This configuration requires a com- 
pletely new construction of the accelerator head. The 
present study is based on measurement data is based on 
measurement data with only a slight modification of the 
head, since the new target could have been tested by 
placing in a free position of the carousel. However, with 
regard to clinical accelerators it is possible to work with 
a smaller number of plates. Figure 3 qualitatively shows 
that a tilted wall makes the reflection angle small and 
therefore the backscatter can be increased. The left-hand 
side of this figure presents the consequence of this effect, 
namely a cone configuration of the wall, which embeds 
31 Tungsten plates. The heat production in each plate is 
negligible and no additional removal of heat is needed. 
Thus we can verify that the configuration below makes 
the primary collimator itself to a cone target consisting of 
ca. 100 plates and the created BS shows the preference 
direction of a cone. This configuration implies two ad- 
vantages: The total depth of cone is assumed to amount 
to 100 mm, and the 100 plates with 1 mm distance be- 
tween the plates can be regarded as a continuum, i.e., a 
Tungsten density ρt of the multi-target part of the cone 
can be assumed. Therefore theoretical calculations can be 
simplified much. Otherwise, we have to perform com- 
plicated numerical step-by-step calculations (this is only 
possible with regard to Monte-Carlo calculations). The 
second advantage refers to the direction of the created BS. 
If the electron energy is much higher than 0.511 MeV 
(rest energy of the electrons), then the direction of the 
created BS approximately agrees with the direction of the 
impinging electrons. Thus BS with large angles cannot 
be completely avoided, but significantly reduced to a mi- 
nimum contribution. In a second order, there exists also a 
focusing effect of BS at the Tungsten wall due to the 
small-angle part of the Compton effect. 

According to Figure 4 we can exploit and, by that, 
amplify the focusing influence obtained by wall scatter, 
namely by an additional external magnetic field, which 
must have the property that a permanent gradient of the 
field component Br perpendicular to the propagation axis 
(z-axis) is present. Thus the complete configuration re- 
presents a similarity to features of an electron micro scope. 
 

Electromagnet/Ferromagnet

Tungsten plates 

Inner boundary of the 
cone: Tungsten wall 

z 
 

Figure 4. Schematic representation of a multi-layered target 
with an additional magnetic field for focusing. 

The influences of the additional magnetic field are the 
reduction of the reflection angle at the Tungsten wall and 
the corresponding decrease of the impinging angle of the 
inner electrons at each Tungsten plate. 

The additional magnetic field makes sense, if the cone 
is rather narrow, i.e. the opening angle is small and a 
very narrow radiation beam with extremely high intensity 
is required. However, the application of an additional 
magnetic field for focusing is optional, since many con- 
ceptual designs of medical accelerators can already be 
improved by a configuration without external magnetic 
field (Figure 3). It should be pointed out that in both 
Figures 3 and 4 we have used a qualitative presentation 
based on forestalled results of succeeding sections. The 
new conceptions of designing linear accelerators can be 
justified by the following synopsis: 

For electrons with energy >> mc2 (0.511 MeV) the di- 
rection of the created γ-quanta agrees with the actual di- 
rection of motion of electrons. This implies for electrons, 
which suffered large-angle scattering, that the created BS 
has unfortunately not the preference direction of the in- 
cident beam. There is additionally a non-negligible amount 
of energy loss of electrons and heat production as a con- 
sequence of multiple electron scatter. 

A multi-layer target is suitable to reduce multiple scat- 
ter significantly by exploiting focusing effects by the 
cone wall (high Z material, e.g. Tungsten) and optionally 
by a proper magnetic field. Thus we have to split the 
conventional Tungsten target (thickness: usually 1 mm) 
in, at least, 10 sub-targets whose thickness is of the order 
0.1 mm and the distance between the layers should then 
amount to ca. 1 cm. However, a thickness of 0.012 mm 
(these layers can be purchased) and a distance of ca. 1 - 2 
mm between each appears to be much more convenient. 

The geometrical configurations of the three cases un- 
der consideration are: 

Case 1 (magnetic field necessary)  
Diameter of the Tungsten plate at entrance: 3 mm, at 

the end of the cone with z = 3 cm: 5 mm; diameter of the 
circular field size at z = 90 cm: ca. 6 cm. 

Case 2 (magnetic field optionally possible)  
Diameter of the Tungsten plate at entrance: 3 mm, at 

the end of the cone with z = 3 cm: 7 mm; diameter of the 
circular field size at z = 90 cm: ca. 12 cm. 

Case 3 (magnetic field not required) 
Diameter of the Tungsten plate at entrance: 3 mm, at 

the end of the cone with z = 3 cm: 13 mm; diameter of 
the circular field size at z = 90 cm: ca. 30 cm.  

2.3. Theoretical Calculations and Monte-Carlo  
Calculations with GEANT4 

Monte-Carlo calculations including new boundary condi- 
tions (wall scatter by some proper materials, influence by 
magnetic fields) have been carried out by specific modi- 
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fications of the Monte-Carlo code GEANT4 [3], which 
have been described in detail in the previous study [2]. 
Therefore we intend to give here only a brief report on 
the underlying physical principles in order to provide a 
qualitative understanding. 

2.3.1. Some Physical Toolkits 
General properties and requirements 

With respect to both calculation procedures (GEANT4 
and analytical calculations) we have to use the relativistic 
energy-momentum relation: 

2 2 4 2W m c c  p2             (1) 

The relativistic energy E of a particle (without rest en- 
ergy) is given by: 

2 2 21E mc mc

v c




  


 
       (2) 

The relativistic energy-momentum relation in the pres- 
ence of a magnetic field (vector potential A) reads: 

  22 2 4 2W m c e c c    p A       (3) 

Equation (3) represents a quantum-mechanical equa- 
tion, if the transition  

h

i
 p  

is carried out. 
The geometrical configuration is shown in Figure 5. 

On the left-hand side: Small circle of the cone entrance 
(radius r0) for impinging electron beam. Right-hand side: 
Larger circle at the cone exit (radius rf). The inner circle 
symbolizes the area of the entrance. The angle θ shows 
the opening angle of the cone, which is usually small in 
those cases, where a strong magnetic field is required. 
This will be verified in the result section. 

The components of the magnetic induction B with 
div·B = 0 are given by: 

2 2 2
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y z x

z x y

r x y

B A z A y

B A x A z

B A y A x

B B B
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

      
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  

        (4) 

The field strength has to satisfy, at least, the following 
properties: 
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   

 (5) 

For the reason of symmetry the following condition 

θ

r0 

rf

 

Figure 5. Schematic representation of the geometrical pro- 
perties of the multilayer target. 
 
has to be valid: 

x yB B                (6) 

In the above equation Br(z) means the radial compo- 
nent as a function of z, r0 is the field radius at the en- 
trance of the beam (z = 0), and rf the related radius at the 
end (z = L). The possible devolution of some cases of 
interest is shown in Figure 6. However, the properties of 
this figure do not represent a rigid scheme, since it 
mainly depends on the design of the target, whether other 
lengths L of the cone (central axis) are required. We want 
also point out that the magnetic field does not disappear 
at z = L. This length has only to agree with the focusing 
part of the magnetic field, whereas a small area with a 
defocusing part cannot be avoided. It may serve to re- 
move those electrons with sufficiently low energy, where 
the production of BS is no longer desired. 

2.3.2. Fermi-Eyges Theory, Multiple Scatter Theory  
of Molière and Inclusion of Magnetic Fields 

Fick’s law of diffusion plays a key role in a lot of physi- 
cal/chemical/physiological processes; it is also used for 
the description of scatter and absorption of electrons, 
protons or neutrons in a medium such as Tungsten and is 
referred to as Fermi-Eyges age equation [4]. A more ac- 
curate theory of scatter has been given by Molière [5]. 

0
t

D 
   


             (7) 

with respect to Fick’s law D is the diffusion coefficient, ρ 
the particle (electron) density (concentration) and Δ the 
Laplace operator. In the case of the Fermi-Eyges theory, 
the particle density ρ has to be replaced by an energy- 
distribution E, which reads: 

0F
t

E D E


   


           (8) 

Since both equations formally agree, we now intro- 
duce the amplitude U in order to be independent of the 
actual meaning. The same fact is also valid with regard to 
the constant factor D, which may either be identified 
with a diffusion constant D or with a parameter DF in 
Fermi-Eyges theory. Equations (7) and (8) follow from 
the property that a gradient of the density is connected 
with a current: 
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Figure 6. Increase of the radial component Br along the 
surface of the cone. M1 = case 1: B0 = 0.4 Tesla, Bf = 1.2 
Tesla; case 2: B0 = 0.2 Tesla, Bf = 0.6 Tesla. (a) Schematic 
representation of the considered configuration; (b) Section 
of the magnet with rotational symmetry. 
 

j D U                  (9) 

In addition, a balance equation has also to hold: 

 

0
t

U div j

div j v U

    
  

          (10) 

The term v  represents the scalar product of the 3D 
differential operator   with a 3D velocity v. If the par- 
ticles have the charge q (for electrons: q = e) and a mag- 
netic field, described by the vector potential A, is present, 
then an additional momentum/velocity due to the mag- 

netic field (Lorentz force) has to be accounted for: 

0

e
p A

c
e

v p m A
cm

divA A

  

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

    


           (11) 

The velocity v results from the division of the mo- 
mentum p by the particle mass M (= electron mass m) 
and c is the velocity of light. Now Equations (9) and (10) 
read: 

0
t

e
j D A U U div j

mc

          
   (12) 

  0
t

e
U D U A U

mc


     


     (12a) 

The last Equation (12a) can also be written in the form: 

 div 0
t

U D U vU


    


        (13) 

If we replace U by a probability distribution P, then 
Equation (13) turns out to be the Kolmogorov forward 
equation, and we regard v as an effect of a magnetic field. 
However, Equations (12) and (13) are not yet fully gauge 
invariant, since we have only modified the diffusion cur- 
rent j by the magnetic interaction. The magnetic effect is 
not yet included in the balance equation. In order to com- 
plete this condition. 

We have to write: 

0
t

e e
U A D A U

mcD mc

             
   (14) 

 

 2 2 2 2

2

0

t

e
U D U A U

mc

e A Dm c U


     



 
    (14a) 

Besides gauge invariance a further reason for obtain- 
ing Equation (14) is the transition to the Schrödinger 
equation with magnetic field, since the simple Fick’s law 
of diffusion can be transformed to a Schrödinger equa- 
tion without external fields. Equation (14) provides a cor- 
respondence in the presence of an external magnetic field. 
It should be noted that the Kolmogorov forward equation 
is contained as in the special case of Equation (26) by 
setting A2 = 0. According to the Fermi-Eyges/diffusion 
theory we can always put: 

2 22 or 2tD D           (15) 

The parameter   can replace the arbitrary time vari- 
able t, if scatter/diffusion only occurs in a short time in- 
terval. We consider the case, where the z-component B = 
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Bz = B0 of a constant magnetic field is responsible for the 
motion of electrons and pass to the general case thereaf- 
ter. Since the magnetic field strength B0 is given by 

rotB A xA   , we can choose A as follows: 

 
0

2 2 2 2
0

2, 2

4

x y y x

z y x

A B A B

B A x A y B

A B x y

          


  

      (16) 

By that, Equation (14) becomes (U = E): 

  
  

2 2 2 2 2 2
0

1

4

.

F FE t D E e B m c D x y E

eB cm y x x y E E

     
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 (17) 

Since in z-direction motion without magnetic interac- 
tion is allowed, the following separation of the above 
equation is possible: 

       2
1, , exp exp exp .FE x y t t ikz k D t        (18) 

This provides the following equation:  

    
    

2 2 2 2
0

2 2 2 2
0 4 1

F

F F

x y D y x x y

D x y D t

  

  

          

    
 (19) 

The following parameters are given by: 

0 0eB mc                  (20) 

1                     (20a) 

It has to be pointed out that the Larmor frequency ω0 
according to Equation (20) is identical with those ob- 
tained by a Schrödinger or Dirac equation with an exter- 
nal magnetic field. The basis solution (generating func- 
tion) from which we can construct all other solutions 
(see e.g. comparison with Schrödinger equation) is gi- 
ven by: 

     2 2, , exp 2 expx y t a x y t           (21) 

0i                  (22) 

2 2 2
0 04 2F Fa D a i D           (22a) 

The parameters a and λ' represent complex values; 
however, we can form a linear combination to get the 
real solution: Before we shall consider this property, we 
note that with respect to the z-coordinate a set of solu- 
tions of the diffusion equation are permitted [2]. They 
result from the Fourier transform of the specified z-de- 
pendent function: 
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  (23) 

Every power of k of the expansion of A(k) represents a 

solution, if the integral is carried out. We therefore de- 
note: 

     2, , exp 4n n Fz t P z t z D t       (24) 

The polynomials Pn(z, t) have been previously defined 
by evaluation of the above integral (23):  
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2

k

k

z t ikz Dk t k k

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    (25) 

The boundary parameter k0 is given by k0 = 1/z0. The 
evaluation of the integral (18) provides Equation (26):  

         2
1 2, exp 4 erf erfFz t U t z D t s s       (26) 

The parameters of this equation are given by: 

 
 
 

0

1 0

2 0

4 2

1 2

1 2

F

F F

F F

U t z D t

s z iz D t D t

s z iz D t D t


  


   

     (26a) 

With the help of Equation (26) we consider the solu- 
tion: 
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  
  

1

2 2
0 0 0

2 2
1 0 0

, , , , exp

cos 4

sin 4 F

E x y z t z t t

A x y D t

A x y D t

 

  

 

    
   

   

    (27) 

The sine and cosine function appears by forming linear 
combinations of solutions of Equation (21), since a ac- 
cording to Equation (23) is an imaginary parameter and 
the theorem for complex exponential functions can be 
applied. It has to be mentioned that the cosine as well as 
the sine are solutions, and both may form linear combi- 
nations according to Equation (26). We should account 
for that the function   in Equation (18) has not to be 
restricted to the simple sine and cosine, but we can also 
use the general solution manifold according to Equations 
(26) and (27). Before we shall study some properties of 
Equation (27), a comparison with the Schrödinger equa- 
tion is indicated. 

Before we shall study some properties of Equation 
(27), a comparison with the Schrödinger equation is in- 
dicated: 

 2 2i t m             (28) 

This equation assumes the character of an irreversible 
transport equation, if the substitution t i  is carried 
out. By that, the diffusion constant is given in terms of 
the Planck’s constant: 2 .FD m   

However, the solution (27) is not the only possible one, 
and we are able to obtain a spectrum of solutions and 
their linear combinations. The complete solution spec- 
trum is given by the two different types. 
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Powers of even order: 

       
 

2 2 2 2 2 2
2 2 2 2 2 2 2

0

2 0

cos 4 sin 4

2 1, 1,2,3

n
m m

n m n F n m n F n
m

n

A D x y t B D x y t

n n n

    

 


      

    


      (29) 

Powers of odd order: 

       
   

2 1 2 2 2 1 2 2
2 1 2 1 2 1 2 1 2 1 2 1 2 1

0

2 1 0

cos 4 sin 4

2 1 0, 0,1,2,3

n
m m

n m n F n m n F n
m

n

A D x y t B D x y t

n n n

    

 

 
      





      

     


  (30) 

 
Please note that superpositions of different order and 

related eigen-frequencies are also possible solutions. 
Thus we can perform a linear combination of all solu- 
tions, e.g. a fast oscillating solution with a slow oscillat- 
ing solution can be combined to form beat oscillations. 
At first, we look at the connection between diffusion and 
the quantum mechanical Schrödinger equation with ex- 
ternal magnetic fields. The following aspects should be 
emphasized: The resonance conditions for ω0 are in both 
cases identical, this appears to be rather noteworthy. In a 
formal sense, we have only to substitute the real time t by 
an imaginary time it  , and the reversibility of the 
Schrödinger equation goes lost. This behavior is also 
known from the path integral formulation according to 
Feynman et al. [6], which represents a further possible 
way to solve the complicated task of scatter and the role 
of magnetic fields by perturbation theory.  

With respect to the eigen-frequency 0  and its de- 
pendence on the related parameters e, m and B we are 
able to make the following statements: 

The z-part of the solution has also the character of an 
oscillator due to the complex argument yielding nodes 
(see e.g. the book of Abramowitz and Stegun 1970). 
Only for sufficient large time t   a homogeneous 
charge distribution will be reached. The x-y-part does not 
allow broadening by diffusion. The behavior is compara- 
ble to that of a magnetic lense. Let us now consider an 
example of a magnetic bifurcation. Assume an oscillating 
propagation in the x-y plane with the highest frequency 

0  given by the magnetic field strength B0. Thus a sud- 
den change of the magnetic field strength from +B0 to 

0 0 0B B B     leads to a magnetic bifurcation, and, in 
particular, the antisymmetric sine functions change the 
sign, when the argument becomes negative. Such an ef- 
fect may be induced by an inhomogeneous magnetic 
field yielding changes of the field strength (amount and 
orientation). The symmetry is spontaneously broken. The 
same fact may also happen under a lot of similar external 

influences: The change of the homogeneity of the mag- 
netic field yields a change of the diffusion constant DF; a 
change of the energy distribution E may require the for- 
mation of complete different patterns and oscillation fre- 
quencies, etc. 

A principal result of the Bethe-Heitler theory is that 
the energy loss due to creation of BS is proportional to 
the actual electron energy. The differential equation for 
the radiation loss reads (in one dimension): 

1d dbre rt breE z X E           (31) 

A theory of the creation of “BS” can be formulated via 
propagator method [6]. The above mentioned phenome- 
nological description summarizes all these parameters 
resulting from the quantum theoretical treatment by the 
radiation length Xrl according to Equation (31). 

By iteration of Equation (31) we obtain a second order 
differential equation, and the extension to 3D can readily 
carried out, i.e. the Laplace operator Δ appears. This ex- 
tension has the advantage that the resulting equation can 
be added to further phenomenological equations con- 
taining the Laplace operator: 

1
bre rt breE X E              (32) 

A further advantage results from the previous Figure 3: 
If the amount of Tungsten sublayers is high, and, by that, 
the distance between them is small (e.g. 1 mm in the 
cone target), it is possible to solve equation (32) under 
continuum conditions. The total Tungsten mass can be 
divided by the cone volume to obtain the medium density 
ρt. Step-by-step calculations (we do not report them here) 
showed that for 1 mm distances between the plates and 
identical overall mass a continuum approximation can be 
justified. In a phenomenological theory, we can summa- 
rize the complete problem by including both, energy loss 
by radiation loss (Bethe-Heitler theory) and energy dis- 
sipation (Fermi-Eyges theory): 

 

     2 2 2 2 2 22F F bre col rl bre col colE t D E e mc E e D m c E E E X E X E                 A A        (33) 
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In Equation (33) the parameter Xrl is referred to as the 

radiation length, which is proportional to Z2, NA and AN, 
whereas Xcol refers to the energy absorption by the cone 
wall (collimator), which is proportional to Z, NA and AN. 
The nuclear charge is denoted by Z, the nuclear mass 
number by AN, and NA is the Avogadro number. The in- 
fluence of the magnetic field can be accounted by the 
following solution expansion: 

     
   

  
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0
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2 1 2 1 2 1

0 0
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n n F n
n

n n F n

n

E x y A D r

B D r

neB mc ne B B

  

  





  

   

   


    




 

(34) 

B' refers to as a correction of B0 by ΔB0, since the 
magnetic induction must not be constant in the volume 
under consideration. In principle, we have to account for 
N → ∞, which is impossible in numerical calculations.  

There are two possible procedures, which we have 
worked out: 

Solution of the scatter problem by a proper magnetic 
field acting between the subtargets and determination of 
the corresponding phase space for Monte-Carlo calcula- 
tions (GEANT4) with respect to collision interaction (Be- 
the-Bloch) and BS (Bethe-Heitler theory, see e.g. [6]). 

Complete solution of the above differential equation 
containing all 3 components using the tools given by 
deconvolution and inclusion of magnetic fields. In such a 
situation we have to put: Ebre = Ecol = E. 

The mathematical problem of scatter removal by de- 
convolution operators has been presented [7-9]; the ap- 
plication with inclusion of magnetic fields for scatter re- 
moval has been analyzed previously [2]. 

2.3.3. Monte-Carlo Calculations with GEANT4 
GEANT4 [3] represents an open system of a Monte- 
Carlo code. Significant features with regard to our prob-
lem are creation of BS, multiple scatter according to Mo- 
lière, heat production (Bethe-Bloch equation), energy 
straggling (Gaussian-Landau-Vavilov), Compton scatter 
of γ-radiation, and the actual energy/momentum of the 
electron after interactions leading to energy loss and 
change of the momentum. More sophisticated applica-
tions with regard to the focusing of a multi-layered Tung- 
sten target and back scatter of the cone walls (Tungsten, 
Tantalum, Lead) under boundary conditions require the 
explicit use of the differential cross-section formula q(θ) 
with the form-factor function F(θ). A further feature is 
the implementation of the magnetic field B (i.e. vector 
potential A) to account for the Lorentz force along the 
track of the electrons according to Equation (3). In order 
to obtain a reliable statistical foundation, each Monte- 

Carlo run has been performed with 500×106 histories. 
Figure 7 presents the back scatter properties (wall re- 
flectance) of 9 MeV electrons at a high Z wall (W, Ta, 
Pb); the corresponding properties of 6, 18 or 20 MeV are 
rather similar. 

Since the Figures 7 and 8 have methodical character, 
we should like to show them already in this section. In 
particular, Figure 7 has a fundamental meaning in this 
study, namely angle-dependence of the reflectance (back 
scatter) of fast electrons at wall consisting of high Z ma- 
terial (Tungsten, Tantalum, and Lead). Although Pb 
shows the high Z value, the density is much smaller than 
that of W or Ta, and therefore according to Figure 7 we 
prefer Tungsten as the wall material for focusing. In par- 
ticular, Figure 7 represents the essential properties used 
in Figure 3. 

Figure 8 shows the scatter behavior of fast electrons in 
air. In contrast to γ-radiation the scatter of electrons in air 
is not negligible. The initial condition in all 3 figures is 
an infinitesimally thin pencil ray of electrons. A conse- 
quence of these figures is that the multi-target has to be 
located in a vacuum in order to keep the lateral scatter 
 

 

Figure 7. Backscatter (reflection) of fast electrons in depen- 
dence of the impinging angle θ. 
 

 

Figure 8. Comparison of air scatter: 6 MeV and 20 MeV 
electrons. 
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of electrons as small as possible.  
We should also point out that cross-section formulas 

used in the theoretical part of the foregoing publication 
[2] would lead to a wrong behavior of reflection of elec- 
trons (e.g. for angles smaller than 20˚), if the form factor 
function F(θ) would have been omitted, since q(θ) would 
then be highly diverging. On the other side, it is our par- 
ticular interest to exploit small angle back scatter at the 
Tungsten wall. At this place it should also be mentioned 
that a smaller focusing effect in the multilayer cone is 
obtained by the Compton scatter of the γ-radiation, if the 
γ-quanta are scattered inside the cone. However, the fo- 
cusing of fast electrons is much more significant. Since 
the focusing via wall scatter works best with Tungsten, 
we do, in general, not present calculations with other 
material such as Tantalum or Lead. The only exception 
with a Ta/Pb combination of the cone wall is restricted to 
one case in order to verify the preference of a Tungsten 
wall. In all figures of the section results we have adjusted 
the impinging electron beam to real conditions: The ra- 
dial distribution at target surface is assumed to be a 
Gaussian with σ = 1 mm:  

   2 2
0 exp 2I r I r            (35) 

2.3.4. Remarks to the Measurement Configuration 
The measurements have been carried out at a Varian 
Clinac, which has been subjected to demounting at the 
hospitals ‘Rhön-Klinikum’ in Frankfurt/München-Pasing, 
Germany. A free place in the carousel served as the 
source for positioning and testing the multi-target. The 
preparation of the Tungsten plates and wall with/without 
surrounding magnet has been handled in the machine 
shop Feuchter (Backnang, Germany) equipped with high 
technology facilities necessary for preparing of the mea- 
surements. The expenses have been paid by the author 
without any further support. 

3. Results 

The succeeding Figure 9 serves as a reference standard 
for all other figures; this figure has been taken from the 
previous study [2] and serves as a comparison standard. 
The BS production according to Figure 1 (blue curve, 
standard target) is scored along the plane immediately 
below the Tungsten target. The height at the central axis 
(x = y = 0) is normalized to “1”, and the whole behavior 
of the intensity distribution shows all disadvantages of 
the conventional target, since it decreases slowly, and 
even at a radius of 7 cm a noteworthy intensity has been 
scored. Thus the domain with r > 1 cm results from mul- 
tiple electron scatter in the target with no benefit for any 
application and requires a lot of shielding material. The 
behavior in the domain r < 1 cm gives raise to study a 
multitarget cone with a radius of 1 cm at the end of the  

 

Figure 9. Comparison between standard target (Figure 1) 
and multi-layer target, electron energy E = 6 MeV. 
 
cone. The cone consists of 20 layers (distance 5 mm per 
layer), total depth: 10 cm, the thickness of the wall 
amounts to 0.02 mm Tantalum (inside) and 10 mm Lead 
(outside) in contrast to all other cases, where 2 mm Tung- 
sten have been used. 

It should be pointed out that the application of E = 18 
MeV electron energy instead of E = 6 MeV leads to 
rather similar properties as shown in Figure 9. Therefore 
we do not report them. With regard to all forthcoming 
Figures we use standard conditions of the cone wall, 
which consists of 2 mm Tungsten (with and without ex- 
ternal magnetic field). It should be noted that in all re- 
sults we had to assume air between the plates, the cones 
were not positioned in vacuum. 

Now we want to turn the interest to the three cases ac- 
cording to Section 2. We should add that for comparison 
we have also considered the case, where the Tungsten 
wall has been replaced by Lucite. Figure 10 presents the 
difference in the energy spectrum between one single 
target (standard case) and the multi-target (case 1 with 
1.2 T according to Figure 11). The shift to a higher en- 
ergy spectrum in the non-standard case is obvious. Fig- 
ures 11-13 show calculated results immediately below 
the exit of the photon beam at the cone end, where meas- 
urements were impossible. 

Figures 11-13 clearly show the role of wall reflec- 
tance of scattered electrons, if we consider Tungsten in- 
stead of Lucite, i.e. the focusing effect of Tungsten (high 
Z material) is significantly improved.  

Figures 14-16 present the situation at a distance of 90 
cm from the end of the cone (calculations and measure- 
ments). 

The normalization of the fluence has been taken such 
that the maximum case according to Figure 14 is “1”, 
which is also valid with regard to the following Figures 
17-19 related to measurement data. 

The rather small opening and the focusation by the 
magnetic fields can obviously compensate the (small) 
asymmetry of the incoming electron beam, which ap- 
pears to be a consequence of the measurement condi- 
tions. With regard to the larger field sizes the compa- 
rison between measurement and calculation appears to 



W. ULMER 

Open Access                                                                                      IJMPCERO 

156 

 

Figure 10. Relative energy fluence spectrum of the BS of 6 
MeV electrons: The standard target refers to the condition 
presented in [7], i.e. below the flattening filter. In contrast 
to this condition the multi-target spectrum is scored at the 
end of the cone. The flattening filter is superfluous. 
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Figure 11. Fluence distribution at the end plate of the cone. 
The cone diameter at this position amounts to 0.5 cm. 
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Figure 12. The diameter of the cone at the end plate now 
amounts to 0.7 cm, the case with the magnetic field strength 
1.2 T has been omitted, since it is not necessary for in- 
creased field sizes. 
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Figure 13. The diameter of the cone at the end plate now 
amounts to 1.3 cm (magnetic fields have been omitted). 
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Figure 14. Case 1 at z = 90 cm (diameter: 6 cm). 
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Figure 15. Case 2 at z = 90 cm (diameter: 12 cm). 
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Figure 16. Case 3 at z = 90 cm (diameter: 30 cm). 
 

 

Figure 17. Measurement data for the case 1 with 6 cm di- 
ameter. 
 
be more important (Figures 18 and 19). 

In particular, the last case shows best the asymmetry in 
measurements. However, in spit of this fact the agree- 
ment between theory noteworthy. 
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Figure 18. Calculations and measurements for the case with 
a field size diameter of 12 cm. 
 

 

Figure 19. Calculations and measurements for the case with 
a field size diameter of 30 cm. 

4. Discussion and Conclusion 

It could be shown that in conventional linear accelerators 
used in medicine a multi-target consisting of a Tungsten 
wall (thickness of the wall at least 2 mm) and 31 very 
thin plates (thickness of a plate: ca. 0.01 mm) is superior 
to the standard accelerator. The BS beam (inclusive di- 
vergence) can be formed according to the desired proper- 
ties. The energy spectrum is significantly increasing even 
in the absence of a focusing magnetic field and is even 
better than a conventional beam, which has passed a flat- 
tening filter. Thus the omission of such a filter provides a 
further yield of the factor 3 - 4. The optional amplifica- 
tion of the focusing effect by suitable external magnetic 
fields (with regard to the required properties, see e.g. 
Figure 6) can be taken into account, in particular, if the 
outcoming γ-beam should be very efficient by restricting 
rather small fields. These properties are important for 
scanning methods, stereotaxy, IMRT or tomography. It is 
possible to reach some essential progress in the domain 
of linear accelerators in radiotherapy, since the modern 
irradiation techniques such as IMRT, stereotaxy, etc. do 
not require large field sizes, e.g. a 40 × 40 cm2 at a dis- 
tance of 100 cm from the focus. This progress can be 
achieved by exploiting small angle reflectance of fast 
electrons at a Tungsten wall. The wall has to map the 

desired divergent properties of the beam. A further aspect 
of this study is that we are able to save heavy high 
Z-material for the shielding of the accelerator head. The 
attached appendix deals with stopping power and heat 
production of high energy electrons. By that, we have 
been able to estimate the heat production in each thin 
plate, which turned out to be lower 20˚C per 600 MUs. 
Thus the systems even works without further cooling of 
plates, if the rate of MUs will be increased to 1000 or more. 

REFERENCES 
[1] R. Svensson and A. Brahme, “Effective Source Size, 

Yield and Beam Profile from Multi-Layered Bremss- 
trahlung Targets,” Physics in Medicine and Biology, Vol. 
41, No. 8, 1996, pp. 1353-1379. 
http://dx.doi.org/10.1088/0031-9155/41/8/008 

[2] W. Ulmer, “On the Creation of High Energy Bremss- 
trahlung and Intensity by a Multi-Target and Repeated 
Focusing of the Scattered Electrons by Small-Angle Back- 
scatter at the Wall of a Cone and Magnetic Fields—A 
Possible Way to Improve Linear Accelerators in Radio- 
therapy and to Verify Heisenberg-Euler Scatter,” Radia- 
tion Physics and Chemistry, Vol. 81, No. 4, 2012, pp. 
387-402. 
http://dx.doi.org/10.1016/j.radphyschem.2011.12.033 

[3] “GEANT4 Documents,” 2005. 

[4] L. Eyges, “Energy Loss and Scatter of Neutrons and 
Charged Particles,” Physical Review, Vol. 74, 1948, pp. 
1434-1439. 

[5] G. Molière, “Multiple Scatter of Charged Particles Pass- 
ing through Matter,” Zeitschrift für Naturforschung, Vol. 
10a, 1955, pp. 177-187. 

[6] R. P. Feynman and A. R. Hibbs, “Quantum Mechanics 
and Path Integrals,” Mac Graw Hill, New York, 1965. 

[7] W. Ulmer, J. Pyyry and W. Kaissl, “A 3D Photon Super- 
position/Convolution Algorithm and Its Foundation on 
Results of Monte-Carlo Calculations,” Physics in Medi- 
cine and Biology, Vol. 50, No. 8, 2005, pp. 1767-1781. 
http://dx.doi.org/10.1088/0031-9155/50/8/010 

[8] W. Ulmer, “Inverse Problem of Linear Combinations of 
Gaussian Convolution Kernels (Deconvolution) and Some 
Applications to Proton/Photon Dosimetry and Image 
Processing,” Inverse Problems, Vol. 26, No. 8, 2010, Ar- 
ticle ID: 085002. 
http://dx.doi.org/10.1088/0266-5611/26/8/085002 

[9] W. Ulmer, “Deconvolution of a Linear Combination of 
Gaussian Kernels by Liouville-Neumann Series Applied 
to an Integral Equation of Second Kind with Applications 
to Radiation Physics/Image Processing,” In: A. Mishra, 
Ed., An Introductory Guide to Digital Image Processing, 
iConcept Press, 2013. 

[10] W. Ulmer and E. Matsinos, “Theoretical Methods for the 
Calculation of Bragg Curves and 3D Distributions of Pro- 
ton beams,” European Physics Journal (ST), Vol. 190, 
2011, pp. 1-81. 

[11] M. J. Berger, J. S. Coursey and M. A. Zucker, “ESTAR, 
PSTAR and ASTAR: Computer Programs for Calculating 

http://dx.doi.org/10.1088/0031-9155/41/8/008�
http://dx.doi.org/10.1016/j.radphyschem.2011.12.033�
http://dx.doi.org/10.1088/0031-9155/50/8/010�
http://dx.doi.org/10.1088/0266-5611/26/8/085002�


W. ULMER 

Open Access                                                                                      IJMPCERO 

158 

Stopping-Power and Range Tables for Electrons, Protons 
and -Particles (Version 1.2.2),” National Institute of 
Standards and Technology, Gaithersburg, 2000. 

[12] I. Kawrakow and D. O. Rogers, “The EGSnrc Code Sys- 
tem: Monte Carlo Simulation of Electron and Photon 
Transport,” NRCC Report PIRS-701 NRC Canada, 2000. 



W. ULMER 

Open Access                                                                                      IJMPCERO 

159

Appendix: Collision Interaction of Electrons  
with Matter 

The purpose of this appendix is to provide tools for the 
determination of the heat production of electrons in 
Tungsten and to circumvent Bethe-Bloch equation at 
analytical calculations. In a previous publication [10] we 
have applied the generalized Bragg-Kleeman rule to 
proton dosimetry. Therapeutic electrons always satisfy 
E0 >> mc2 = 0.511 MeV. An optimum adaptation of rela- 
tion (A1) to RCSDA of electrons [11]) shows (Figure A1) 
that, for E0 ≤ mc2, p(E0) ≥ 1; for energies above mc2, p(E0) 
< 1. For electrons, the factor A(water) = 0.238552 cm/ 
MeVp is also rather different to that for protons. The pa- 
rameters for the calculation of p(E0) with Formula (1) are 
given in Table A1. 

Please note that the abscissa of Figure A1 refers to cm, 
whereas the normalized ordinate is either stopping power 
or dose absorption. According to [10], the Bethe-Bloch 
equation describing the collision interaction of charged 
particles can be summarized for electrons by the equa- 
tion:  

   
 

 

2 2
0 0

2 2
0 0 1 1 0

2
2 2 0
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

  


  (A1) 

A graphical representation of p(E) as a function of the 
energy E is given in Figure A2. This equation is only 
valid for water. Since the factor A according to equation 
(A1) is proportional to  w w wA Z  , we are able to mo- 
dify it by the substitution: 
 

 

Figure A1. Stopping-power function of 20 MeV electrons 
according to Formula (A3) and determination of the stop- 
ping-power, obtained in the CSDA framework (red solid). 
Measurement data have been obtained for a standard Var- 
ian Clinac (“Golden Beam Data”). 
 
Table A1. The table values of the dimensionless parameters 
of Formula (A1). 

p0 p1 p2 cl q1 q2 

0.655 0.6344 0.2616 0.0023494 3.060 0.311 

 

Figure A2. Function p(E0) determined by Formula (A1) and 
ESTAR [11]. 
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(A1a) 
The meaning of the parameters (water: reference val- 

ues) of the substitution (A1a) Aw = 18, Zw = 10, ρw = 1 
g/cm3, and for other media we have to substitute the cor- 
responding parameters Am, Zm, ρm (e.g. Tungsten: Zm = 74, 
ρm = 19.25 g/cm3, Am = 183.84). 

The inversion of Formula (A1) provides the stopping 
power S in dependence of the residual energy: 

       1
1 2

1 1 1 2
01

pp p
S u R u R u m c A

        
(A2) 

We denote IB(z) the decreasing contribution of the im- 
pinging BS produced in the double scatter layer of the 
accelerator. The depth dose curve of an electron beam is 
then given by the formula: 
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   (A3) 

The stopping-power formulas (A1-A3) have to be used 
for therapeutic electrons; in this case, the length contrac- 
tion is not a negligible effect. It is also noteworthy that, 
for p(E0) ≤ 1, the singularity of E(s) at s = RCSDA is re- 
moved. We have used Formula (A3) for the depth-dose 
calculation of 20-MeV electrons and subjected it to con- 
volutions. The measured and calculated (including the 
BS effects) curves are shown in Figure A1; the kernel, 
used in the convolution, and related parameters are dis- 
played in Table A1. The stopping-power formulas (A1- 
A3) have to be used for therapeutic electrons; in this case, 
the length contraction is not a negligible effect. It is also 
noteworthy that, for p(E0) ≤ 1, the singularity of E(s) at s 
= RCSDA is removed. We have used Formula (A3) for the 
depth-dose calculation of 20-MeV electrons and subject- 
ed it to convolutions. The measured and calculated (in- 
cluding the BS effects) curves are shown in Figure A1; 
the kernel, used in the convolution, and related parame- 
ters are displayed in Table A1. 

The CSDA stopping-power is shown in Figure A1. 
With regard to accounting for BS, we have only consid- 
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ered the contribution resulting basically from the dou- 
ble-scatter foil. This contribution is determined by the 
software EGSnrc, see [12]. The low-energy BS (produc- 
ed by the electrons in water), its multiple scatter and ab- 
sorption can be easily explained by the energy-range/ 
straggling (this is basically relativistic and a single Gaus- 
sian is not sufficient). In order to include lateral scatter of 

the electron beam, we have to add a further scatter kernel 
in Equation (A3), which may based on the principles 
developed in Section 2.3.2. By using the methods work- 
ed out in a previous publication with regard to photon 
scatter [7], an efficient and fast superposition/convol- 
ution calculation model can readily be developed. 
 

 
 
 
 
 
 
 
 
 


