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Abstract

This paper is concerned with a stochastic predator-prey system with Bed-
dington-DeAngelis functional response and time delay. Firstly, we show that
this system has a unique positive solution as this is essential in any population
dynamics model. Secondly, the validity of the stochastic system is guaranteed
by stochastic ultimate boundedness of the analyzed solution. Finally, by con-
structing suitable Lyapunov functions, the asymptotic moment estimation of
the solution was given. These properties of the solution can provide theoreti-
cal support for biological resource management.
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1. Introduction

The dynamical relationship between prey and predator has long been and will
continue to be a dominant theme in ecology due to its universal importance and
existence. One important component of the predator-prey is functional response,
Le. the rate of prey consumption by an average predator. The functional response
can be classified into two types: predator-dependent and prey-dependent. The clas-
sical Holling types I-III [1] [2] are strictly prey-dependent functional response;
The main predator-dependent functional response has Crowley-Martin type [3],
Hassell-Varley type [4], as well as Beddington-DeAngelis type by Beddington [5]
and DeAngelis et al [6]. There is much significant evidence to suggest that Bed-
dington-DeAngelis functional response occurs quite frequently in natural sys-

tems and laboratory (see e.g. [7] [8]). The classical predator-prey model with
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dy(t)= y(t){a2 —b,y(t—7,)+

Beddington-DeAngelis functional response can be expressed as follows

o)1) -ixt)

1+mx(t)+m,y(t)

(1.1)

X (t
dy(t)= y(t)[a2 —h,y(t)+ n le(t)S'?'nzy(t):Idt

where X(t) and y(t) represent the size of the prey and predator populations
at time £ respectively. The parameter & denotes the intrinsic growth rate of the
prey population and a, denotes the death date of the predator population. The
parameter b, and b, are the density-dependent coefficients of the prey and
predator populations, respectively. The parameter ¢, and C, represent the
capturing rate of the predator and the rate of conversion of nutrients into the re-
production for the predator, respectively.

However, the model is deterministic, and does not incorporate the effect of
environmental noise, which is always present. In the real world, population
models are always affected by the environmental noise, which is an important
component in an ecosystem [9] [10]. Thus, it is interesting to study how the en-
vironmental noise affects the population models. To fit the reality better, many
authors have introduced white noise into the population dynamics to reveal the
effects of the white noise [11] [12]. Inspired by the above facts, in this paper, we
assume that fluctuations in the environment mainly affect the intrinsic growth
rate  and the deathrate a,, thatis

a, > a +a\W,(t), a, >a, +a,W,(t).

Then we obtain the following stochastic system

dx(t) = x(t)[al—blx(t)—lerlX(tC;i mzy(t)}dualx(t)dwl (1),

(1.2)

)= By ) oty )

On the other hand, more realistic and interesting models of population inte-
ractions should take the effects of time delay into account [13] [14] [15] [16]. In
general, delay differential equations can exhibit much more complicated dynam-
ics than differential equations without delay. Liu [17] has investigated global
asymptotic stability of the positive equilibrium about stochastic predator-prey
system with Beddingtons-DeAngelis and time delay. However, so far as we know
a very little amount of work has been done with the stochastic predator-prey sys-
tem with Beddingtons-DeAngelis and time delay. Therefore it is interesting and
important to study the following stochastic delayed predator-prey model with

Beddington-DeAngelis functional response.

dx(t):x(t)[al—blx(t—rl) QY }dt+al(t)dwl(t),

_1+mlx(t)+m2y(t) 3
Cx(t—174) '

1+mx(t—75)+my(t—z;)

}dt+azy(t)dWZ (t).
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with the initial conditions
X (0)=¢,(0)>0, y,(6)=¢,(6)>0, 6[-7,0], r=max{z,,7,,7,}.
where 7 >0 denotes the delay;

¢:(¢1,¢2)6C([—r,0],Rf), RZ={(x,y):x=0,y>0},
I#]= max{|¢(€)| 10 e[, o]}.

and |¢| is any norm in R?. As usual, we use the notation X, (0)=x(t+6) for
0e [—r, O] .

The rest of the paper is organized as follows. In Section 2, we show that system
(1.3) has a global positive solution. In Section 3, stochastic ultimate boundedness
is studied. In Section 4, we investigate the asymptotic moment estimation. In
Section 5, we present numerical simulations to illustrate our mathematical find-

ings. We close the paper with conclusions and discussions in Section 6.

2. Global Positive Solutions

Throughout this paper, unless otherwise specified, let (Q{]{} P) be a

complete probability space with a filtration {.7-'[}[20 satisfying the usual condi-

t=>0"’

tions (Ze. it is right continuous and F;, contains all P -null sets). Moreover, let
W, (t) , (i =1, 2) be standard Brownian motions defined on this probability space.
Alsolet R :{Xe R" 1 x >0foral|1§i£n}.

In order for a stochastic differential equation to have a global solution for any
given initial condition, it is generally necessary to data the coefficients of the eq-
uation are generally required to satisfy the liner growth condition and local Lip-
schitz condition (see e.g. [18]). However, the coefficients of (1.3) neither obey the
linear growth condition nor local Lipschitz condition. The existence of local pos-
itive solutions is given by variable substitution and Itd’s formula.

Lemma 2.1. For any initial value {(X(t), y(t)) —r<t< O} eC ([—7,0]; Rf),
there is a unique positive local solution (x(t),y(t)),te[-z,z,) of system (1.3),
where 7 =max {1'1, Ty, 2'3} and 7, isthe explosion time.

Proof. Consider the following system

of (t)=| &, ~be'(-) — T 2?0 ce’) dt + a,dW, (t)
2" 1+me’" +m,e’® e
2.1)

1 c,e')

dg(t) = l:az —b,ed2) —Eazzezg(‘) -

1+ mlef(t’”) + mzeg(lfﬁ) :|dt * OtdeZ (t)
with initial value f(0)=logx,,g(0)=1logy,. It is clear that the coefficient of
system (2.1) satisfy local Lipschitz condition, then there is an unique local solu-
tion (f (t),g(t)),t €[0,7,) of system (2.1). Therefore, by It&’s formula, it is
easy to find that (X(t) =e'0), y(t) = eg(t)) is the unique positive local solution
of the system (1.3) with the initial value x;, >0,y, >0.

Next, give the existence of the positive solution.

Theorem 2.1. For any given initial value
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{(x(1).y(t)):—r <t<0} eC([-£,0;R?),

there is a unique solution (x(t), y(t)) of system (1.3) on t>0, and the solu-
tion will remain in R’ with probability 1.

Proof. Since, Lemma 2.1 shows that there is a positive local solution
(x(t),y(t)).,te[0,z,) of system (1.3), then to show this solution is global, we
only need to show that 7, =x,as., Let m; >0 be sufficiently large so that
both X, and Yy, lie within the interval []/uo,uo]. For each integer u> U,
define the stopping time

7, =inf{te[0,7,):x(t) ¢ (Iu,u), or y(t) e (Yu,u)}.

where throughout this paper, we set inf® =c (asusual @ denotes the empty

set). Clearly, 7, isincreasingas U—o.Set 7, =lim,__ 7,, Whence

Uu—o0

7, <7,,as.. If we can show that 7, =o0,as., Then 7, =c0 and
(X(t), y(t)) e R?,as.. For if this statement is false, then there are a pair of con-
stants T >0 and ¢€ (0,1), such that

P {ru < T} > €.
Hence there is an integer U, >U, such that
P{r,<T}2¢ uxU,. (2.2)
Define a C-function V :R> - R, by

Vi (x(1), y(1)) = (VX ~1-05l0g x) +(\/y ~1-05l0g y ).
V, (x(t), y(1)) =V, (x(t), y(t))+j:7q|x(s)|2 ds +_[:712 |y(s)|2 ds.

The non-negativity of V, (x(t),y(t)) can be seen from
Ju-1-05logu >0,vu > 0.
g

Using It6’s formula, we get

t

v, =d[V, (x(1), (1) + | [x(s) ds [ [y(s) s
=0.5(x°° (t)-x* (t))x(t){[a1 ~bx(t-7,)

c,y(t)
I (01 mzy(t)]dt +a,dW, (t):l

+0.50%* (1)(~0.25x 1 (t) +0.5x % (1) )dt
+ 0.5(y‘°'5 (t)-y* (t)) y(t)Ka2 -b,y(t-17,)

t—
- Cx(t-,) dt + &, dW, (t)
T+mXx(t—z3)+my(t—7;)

+0.507y* (t)(-0.25y™° (t)+0.5y* (1)) dt

# [}OF ~[x(t=a)] |y OF -y (t=z)f Jat
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= 0.5(x°'5 (t)—l)li[a1 —bx(t-7)- 2y() ( )]dt + o, dW, (t):l

T+mx(t)+myy(t

+0.5a7 (-0.25x° (1) +0.5)dt+0.5(y** (1) —1){(% ~b,y(t-7,)

CzX(t—Tg) \Jdt-i-O!Zsz (t):|

1+ mx(t—z;)+m,y(t—7;)
+0.50} (~0.25y°° () +0.5)dt

IO =+ y(of [y Jo

0.5
_ o ay(®)x() _a+ cy(t) —0.25a/x"® (t)+0.50
1T+ mx(t)+m,y(t) 1+myx(t)+m,y(t)

+0.5b1x(t—rl)}dt+{|y(t)|2 -|y(t-=,)
Cx(t-75) y** (t)

I+mx(t—75)+myy(t—z;)

2

+O.5{a2y°'5 (t)-by(t—7,)y**(t)+

CX(t=75) y*° (1)
t-

t
1+mx(t 73)+my(t—7;)

+O.5( *(t)- ) W, (t)+0.5 ( 05 (t)—l)dW2 (1)
S{|X(t)|2—|x(t_ﬁ)|2+O.5|:81X0‘5 (t)+ Cly(t)

1T+mx(t)+m,y(t)

-0.2505y°° (t)+0.5c; } +0.5b,y(t-7, )}dt

~0.25a2x° (t)+ O.5ozf}+(0.25b1 )’ +|x(t- rl)|2}dt

C,X(t—73) y*° (t)

1+mx(t—75)+myy(t—7,)

0 e 08| o)

~0.25a2y% (t)+ o.w;}(o.zsb2 ) +y(t-z, )|2}dt

+0.5(x® (1) ~1) ey dW, (1) +0.5(y°* (t)~1) o, dW, (1)

<{JX(0)f +0:5[ax*® (t)+ &, /m, +0.5a7 +0.1250f ~0.25ex"* (t) ]|t

{|y( ) +0.5[ 2,y (t)+¢,y°* (t)/m, + 0.5 +0.125b7 ~0.25a2y"* ¢ )]}dt

0.
+0.5(X°° (1) ~1) oy dW, (t) + 0.5(y** (t) =1) a, AW, (t)
=M (x(t), y(t))dt+0.5(x"® (t)-1) a;dW, (1) +0.5(y°** (t) 1) c,dW, (t).

(2.3)

= {|x('[)|2 +0.5[ a,x°* (t)+c, /m, +0.50, +0.125b —0.25¢/x"* (t)}}

+

(¥ (OF +05[8,y" (1) +c,y"* (t)/m, +0.5af +0.125b% ~0.25a2y™ (1) .
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which implies that
M (x(t),y(t)) <M,

Because next inequality exists, we can get (2.3)
2
1 1 2
Eblx(t -7,)< (Zle +|x(t —T1)| ,

%bzy(t_rz)g&szz Hy(t-z)f.
To sum up, we can get
av; (x(t), y(1))
=V (x(0), y(V) + y(s)f os] (2.4)
<M (x(t), y(t))+0.5(x°* (t) =1) AW, () + 0.5(y** (t) —1) ar, W, ().

Integrating both sides of the above inequality from 0 to 7, AT and then

x(s)|2 ds + ftt_TZ

taking the expectations leads to

el a[ v (x(0).y )+ ],

So

x(s)|2 ds + J':irz

y(s)|2ds}}sM*E(ru/\T),

x(s)|2 ds +.[T”AT

Ty AT =77

Ty AT
2
Ty AT-11

< Ejlor1 x(s)|2 ds+ Eﬁz

y(s)|2 ds]+ E[x(7, AT), ¥ (2, AT)]

y(s)| ds+V, (x(0),y(0))+ M E(z, AT),

Hence
E[X(z’u AT),y(z, /\T)]
<E[ x(s)f ds+E[" |y(s) ds+V,(x(0),y(0))+MT <+

n

(2.5)

Set Q, ={r, <T} for u>U,, then by (2.2), we know P(€,)>¢. Note that
for every weQ,, there is at last one of X(ru,a)),y(ru,a)) equal either u or

1/u, then V,(x(7,),y(7,)) isnolessthen min {(u -1-log u),(%—1+ log uj} .
It then follows from (2.2) and (2.5) that
Ef

> E[lﬂu(w) (x(z, @), y(ru,w))J > gmin{(u —1—Iogu),(%—l+log UJ}

x(s)[ ds+E [ |y(s) ds+V;(x(0),y(0))+M" E(z, AT)

where 1, is the indicator function of €, . Letting U—> oo leads to the
u(@) u

contradiction that
0 2 0 2 .
+o0 > EL1|X(S)| ds+ ELz|y(s)| ds+V, (x(0),y(0))+M E(z, AT) =+,
So we must have 7, =x,as..

3. Stochastic Ultimate Boundedness

Define 3.1. The solution of system (1.3) is random and ultimately bounded, if
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there exists an any positive constant H =H (8) so that for any initial value

{(x(t),y(t)):—z <t <0} eC([-7,0];R?), it satisfies
IirtrLs;upP{|x(t), y(t)>H}<e
Lemma 3.1. For any initial value {(X(t), y(t)):—rStSO} eC([—r,O]; Rf),

(x(t),y(t)) is a solution of the system (1.3), there exists positive constants
H(p),0<p<1 satisfies

limsup E[(x(t), y (1)) = H ().
Proof. Define V,(x)=x”(t)+y”(t),If (x(t),y(t))eR?, we have
dV; (x(t), y(t)) =LV (x(t), y(t))dt + peyx” (t)dW, (t)+ pa,y* (t)dW, (t). (3.1)
where
LV, (x(1). y(1))

- {al “ox(tn) g mlxc(lt);(j)rnﬁ/(t)}Jr ooy o' x” (t)

+py” {az -b,y(t-7,)+

ST,

1+mx(t—75)+myy(t—7y)

<apx’ (t)—p(l_Tp)alzx" (t)+a,py” (1)
CPx(t-z3)y’ ()  p(-pla;

- y” (t).

T+mx(t—z,)+myy(t—z;) 2

Because of 0< p<1, p(1-p)>0,s0

LV, (x(t), y(1))
<apx (O)-LEZ2)%E o 01y (1) a,pye () - 2022 o

2
+y7 (1) =Va (x(1). y (1))

C,px(t—75)y” (1)
T+mx(t—75)+myy(t—7;)

<H =V, (x(t), y(t)).
where His a positive number, substitute it into Equation (3.2) to get
av; (x(1),¥(1))
<[H=V5(x(1), y(1)) ]dt+ pox” (t)dW, (t)+ par,y* (1) dW, (1).
Applying It&'s formula again, get
d [etV3 (x(t), y(t))}
=& [V, (x(1) (1)) + v (x(1), ¥ (1) (.2)

<e'Hdt + paye'x” (t)dW, (t)+ paye'y” (t)dW, (t).

Taking the expectation of both sides of above inequality (3.2)
e EV, (x(1), y(t)) <V;(x(0),y(0))+H (e —1).
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Namely
limsup EV; (x(t),y(t)) < H.

t—w

And because

[(x(1), y(0) <27 max {x” (1), y* (t)} < 272V, (x(t). y (1)),
So

limsup E|(x(t), y(t))|p <2°2limsupEV, (x(t), y(t)) < 2”H.

t—oo t—o

Therefore

IimsupE|(x(t), y(t))|p <H,

t—o0
Among them
H, =2"7H.
Further considering the stochastic ultimate boundedness of the solution, the fol-
lowing propreties hold true.

Theorem 3.1. The solution of system (1.3) is finally bounded by randomness.

Proof. Applying Lemma 3.1, set p =1/2, then there exists K >0, so that
1
limsup E|(x(t), y(t))|E <K.
t—oo

1
For any &>0, setting H, = [K/ 5]; , an application of Chebyshev’s inequality,

there is
E||(x(0).y())
P{|(X(t),y(t))|> H1}< |:| - | ilsg,
So
limsup P{|(x(t), y(t)|> Hl} <K .%: c
Namely

limsup P{|(x(t), y(t))| < Hl} >1-e¢.

too

which is the desired assertion.

4. Asymptotic Moment Estimation

Theorem 2.1 and Theorem 3.1 show that, for any given initial condition, system

(1.3) has a unique global positive solution and the solution is random and finally

has upper bounded. The asymptotic moment of the solution is estimated below.
Theorem 4.1. For any given 6 €(0,1), there is positive constant K =K ()

such that the solutions of system (1.3) with the initial condition

{(X(t), y(t)) —r<t< O} eC ([—T,O]; Rf ) , have the following property
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Iimsup%joTE[xg(s)+ y"(s)]dss K. (4.1)

t—>o

where K (9) is in dependent of the initial value.
Proof. Define a C*-function
Ve (x(t), y (1) =x" (1) +y" (1), (x(1),¥(1)) e RZ.
By It&’s formula, one can see that

dV, (x(t), y(t)) = LV, (x(t), y(t))dt + 6a,x’ (t)dW, (t)+ O, ¥’ (t)dW, (t). (4.2)

where

LV, (x(1). y(t))
=0x’ (t){ai by (t-n)-— mlxc(lt);(j)mzy(t)}r A e (1)
B e e =t

< a,0x" (t)—e(l_—f)alzx" (t)+a,0v° (1)

COX(t-n)y' () 00-0)a )

1+mx(t—75)+my(t—z;) 2

Therefore

2
<a,6x’ (t)—wxg (t)+a,0y°(t) (4.3)

C,0x(t—73) Y’ (t) 0(1-0)a; (1)
T+mx(t—75)+myy(t—-z;) 4 y
<M.

where M s a positive number, if we take @® = min {af , azz} , from (4.1), we can get

v, (:(0),y(0) « 2D e 1) 1)
£LV4(x(t),y(t))+9(l_40)a12 ¢+ D%y 1) <m

(4.4)

Substituting Equation (4.4) into (4.2)
av, (x(t), y(t))S{M _@(xg (t)+y’ (t)):ldt
+0a,x” (1) dW, (t)+ 0, Y’ (t)dW, (t),
So

4
< Mdt + G 7 (t) dW, (t) + e,y (1) dW, (t).

o, (x| L e 10 0) o
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Integrating both sides of the above inequality from 0 to 7, AT and then taking
the expectations leads to

0(1-6)a? IT

EV, (x(t), y(t))+ 7 E[xe(s)+y‘9(s)st <V,(x(0),y(0))+MT.

0

Namely

__4
0(1-6)a?

[TE[X"(s)+y"(s)]ds < (V(x(0), y(0))+MT).

Dividing both sides by 7"

Ti.[OT E[xe (s)+y’ (s)]ds <

: [v<x<o>,y<o>)+M],

0(1-6)a’? T

If we set

__iM
0(1-0)a*

We get Equation (4.1), which is the desired assertion.

5. Numerical Simulations

Utilize the Milstein method (see e.g., [19]) to verify the theoretical results.

Considering the following discretization equations:

C.Y;
dx., =% +X|a -bx.  ———20  |dt+ax Aty .,
i+1 i ||:a1 bl ("31) 1+lei +m2yi:| al i 771,|
5.1
o (5.1

) ]dt+a2yix/ﬂnzyi.

dy.+1 =Y. +V: az _b2y i— +
i i i (i-s2) 1+ mlx(i_53) +m, y(i—53)

where 7,; and 7,; are Gaussian random variables that are independent of
each other and follow the standard normal distribution N (0,1) .Set At=0.01,
step length is 300, select

a,=08 b =05 ¢=02 m=02 r=max{s,7, 7}, =1
a,=03 b,=02 ¢,=01 m,=0.1.

And assume that the parameters below are the same as above.

Suppose initial data
¢(9) = (0.6, 0.6),

Select o =, =0.1, it can be seen from Theorem 3.1 that system (5.1) is sto-
chastic ultimate boundedness (See green line in Figure 1(a) and Figure 2(a)). In
order to discuss the influence of random white noise, o, =a, =0 is selected to
obtain the deterministic system corresponding to system (5.1), which is ulti-
mately bounded (See red line in Figure 1(a) and Figure 2(a)). The blue lines
represent the probability density functions of xand yat time 300 (in Figure 1(b)
and Figure 2(b)).
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X(t) deterministic

xX(t) stochastic

12 L
| J J

0.8

state-axis

0.6

0.4

0.2

{

|

[
[N

N

M
i
H\\ I\

1 \
‘\‘M\ il
i

t-axis

(a)

Figure 1. System (5.1) take the initial data ¢(6’) = (0.6,0.6), (a) Green line: o, =, =0.1, red line:

line represents the probability functions of X.

250

300

y(t) deterministic

y(t) stochastic

state-axis

0 L L L I

Density of y

0 50 100 150 200

t-axis

(a)

Figure 2. System (5.1) take the initial data ¢(9) = (0.6,0.6), (a) Green line: a,

line represents the probability functions of y.
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The research of predator-prey system has certainly theory and application value.

In this paper, we study a stochastic delayed predator-prey system with Bedding-

ton-DeAngelis functional response and discuss some properties of the system

solution, which include existence and uniqueness of the global positive solution,

stochastic ultimate boundedness of the solution, and asymptotic moment esti-

mate. These properties provide a theoretical basis for the management of popu-

lation dynamic system. Based on this work, we can also study population dy-

namics system with time delay and other types of functional responses.
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