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Abstract 
In this paper, we consider the stochastic higher-order Kirchhoff-type equation 
with nonlinear strongly dissipation and white noise. We first deal with ran-
dom term by using Ornstein-Uhlenbeck process and establish the wellness of 
the solution, then the existence of global random attractor are proved. 
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1. Introduction 

In this paper, we consider the following stochastic strongly damped higher- 
order nonlinear Kirchhoff-type equation with white noise:  

( ) ( )( ) ( )

( ) ( ) ( )

2
d d

d d , , 1,

m mm
t tu u u u g u t

f x t q x W t x m

φ + −∆ + ∇ −∆ +  
= + ∈Ω >

            (1.1) 

with the Dirichlet boundary condition  

( ), 0, 0, 1, 2, , 1, ,
i

i

uu x t i m x
v
∂

= = = − ∈∂Ω
∂

              (1.2) 

and the initial value conditions  

( ) ( ) ( ) ( ) ( ) ( )2
0 1,0 , ,0 ,m

tu x u x H u x u x L= ∈ Ω = ∈ Ω  (1.3) 

where Ω  is a bounded domain of nR , with a smooth boundary ∂Ω , ∆  is 
the Laplacian with respect to the variable x∈Ω , ( ),u u x t=  is a real function 
of x∈Ω  and 0t ≥ , φ  is the damping coefficient, f is a given external force, v 
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is the outer norm vector, ( )g u  is a nonlinear forcing, their respectively satis- 
fies the following conditions: 

1) ( ) ( )0
21 ,0 , 3;

2
p ng u c u p n

n m
≤ + < ≤ ≥

−
 

2) 
( ) ( )1

2liminf 0;
t

sg s c G s
s→∞

−
≥  

3) ( ) 1
2 0 0, 0;pG s c u K K+≥ − >  

4) ( ) 0 ;s mφ ≥  
where 0 1 2 0, , ,c c c m  are positive constants. 

As well as we known, the study of stochastic dynamical is more and more 
widely the attention of scholars, and the study of random attractor has become 
an important goal. In a sense, the random attractor is popularized for classic 
determine dynamical system of the global attractor. Global attractor of Kirchhoff- 
type equations have been investigated by many authors, see, e.g., [1] [2] [3] [4], 
however, the existence random attractor has also been studied by many authors, 
in [5], Zhaojuan Wang, Shengfan Zhou and Anhui Gu, they study the asymp- 
totic dynamics for a stochastic damped wave equation with multiplicative noise 
defined on unbounded domains, and investigate the existence of a random 
attractor, they overcome the difficulty of lacking the compactness of Sobolev 
embedding in unbounded domains by the energy equation. In [6], Guigui Xu, 
Libo Wang and Guoguang Lin study the long time behavior of solution to the 
stochastic strongly damped wave equation with white noise, in this paper, they 
use the method introduced in [7], so that they needn’t divide the equation into 
two parts. In [8], Zhaojuan Wang, Shengfan Zhou and Anhui Gu study the 
asymptotic dynamics of the stochastic strongly damped wave equation with 
homogeneous Neuman boundary condition, and prove the existence of a ran- 
dom attractor. The other long time behavior of solution of evolution equations, 
we can see [9]-[19]. 

In this work, we deal with random term by using Ornstein-Uhlenbeck process, 
the key is to handle the nonlinear terms and strongly damped ( )m

tu−∆ , and 

( )2muφ ∇  is also difficult to be conducted. So far as we know, there were no 
result on random attractor for the stochastic higher-order Kirchhoff-type equ- 
ation with nonlinear strongly dissipation and white noise. It is therefore im- 
portant to investigate the existence of random attractor on (1.1)-(1.3). 

This paper is organized as follows: In Section 2, we recall many basic concepts 
related to a random attractor for genneral random dynamical system. In Section 
3, we introduce O-U process and deal with random term. In Section 4, we prove 
the existence of random attractor of the random dynamical system. 

2. Preliminaries 

In this section, we collect some basic knowledge about general random dy- 
namical system ([9] [10] [11]). 

Let ( ), . XX  be a separable Hilbert space with Borel σ-algebra ( )B X . Let 
( )( ), , , t t R

F P θ
∈

Ω  be the metric dynamical system on the probability space 
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( ), ,F PΩ . 
Definition 2.1. (see [9] [10]). A continuous random dynamical system on X 

over ( )( ), , , t t R
F P θ

∈
Ω  is a ( ) ( ) ( )( ),B R F B X B X+ × × -measurable mapping  

( ) ( ): , , , , ,R X X t u t uϕ ω ϕ ω+ ×Ω× →  . Such that the following properties 
hold (1)  

1) ( )0, ,.ϕ ω  is the identity on X; 
2) ( ) ( )( ), ,. , , , ,.st s t sϕ ω ϕ θ ω ϕ ω+ =  for all , 0s t ≥ ; 

3) ( ), ,. :t X Xϕ ω →  is continuous for all 0t ≥ . 
Definition 2.2. (see [10]) 
1) A set-valued mapping ( ) ( ): 2 ,XD Dω ω ωΩ→ → , is said to be a random 

set if the mapping ( )( ),d u Dω ω→  is measurable for any u X∈ . If ( )D ω  is 
also closed (compact) for each ω∈Ω , ( )D ω  is called a random closed (com- 
pact) set. A random set ( )D ω  is said to be bounded if there exist 0u X∈  and 
a random variable ( ) 0R ω >  such that 

( ) ( )0: XD u X u u Rω ω⊂ ∈ − ≤  for all ω∈Ω . 

2) A random set ( )D ω  is called tempered provided for . .P a e ω− ∈Ω , 

( )( )lim e 0t
tt

d Dβ θ ω−
−→∞

=  for all 0β > , 
where ( ) sup :Xd D b b D= ∈ . 

Let Y be the set of all random tempered sets in X. 
3) A random set ( )B ω  is said to be a random absorbing set if for any 

tempered random set ( )D ω , and . .P a e ω− ∈Ω , there exists ( )0t ω  such that 
( )( ) ( ), ,t tt D Bϕ θ ω θ ω ω− − ⊂  for all ( )0t t ω≥ . 

4) A random set ( )1B ω  is said to be a random attracting set if for any 
tempered random set ( )D ω , and . .P a e ω− ∈Ω , we have 

( )( ) ( )( )1lim , , , 0H t tt
d t D Bϕ θ ω θ ω ω− −→∞

= , 

where Hd  is the Hausdorff semi-distance given by  
( ), sup infH u E v F Xd E F u v∈ ∈= −  for any ,E F X⊂ . 

5) ϕ  is said to be asymptotically compact in X if for  

( )
1

. . , , ,
nn t n n

P a e t xω ϕ θ ω
∞

− =
− ∈Ω  has a convergent subsequence in X whenever 

nt → +∞ , and ( )nn tx B θ ω−∈  with ( )B Yω ∈ . 
6) A random compact set ( )A ω  is said to be a random attractor if it is a 

random attracting set and ( )( ) ( ), , tt A Aϕ ω ω θ ω=  for . .P a e ω− ∈Ω  and all 
0t ≥ . 

Theorem 2.1. ([10]) Let ϕ  be a continuous random dynamical system with 
state space X over ( )( ), , , t t R

F P θ
∈

Ω . If there is a closed random absorbing set 
( )B ω  of ϕ  and ϕ  is asymptotically compact in X, then ( )A ω  is a random 

attractor of ϕ , where  

( ) ( )( )
0

, , , .
t t

A Bτ τ
τ

ω ϕ τ θ ω θ ω ω− −
> ≥

= ∈Ω


 

Moreover, ( )A ω  is the unique random attractor of ϕ . 

3. O-U Process and Stochastic Dynamical System 
Let 
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( ), du v uv x
Ω

= ∫ , ( )
1
2

0 ,u u u= , ( )2,u v L∀ ∈ Ω , 

( ) ( ) ( ) ( )
1
2

22 2, , , , , , , .r r r r r
rr ru v A u A v u A u A u u v V D A A= = ∀ ∈ = = −∆  

Let ( ) ( )2
0
mE H L= Ω × Ω , and define a weighted inner product and norm in E 

( ) ( ) ( )1 2 1 2 1 2, , ,m m
Ey y u u v v= ∇ ∇ + , 

22 2my E u v= ∇ + , 

( )T,i i iy u v∀ = , ( )T, , 1, 2.y u v E i= ∈ =  

3.1. O-U Process 

O-U process is given by Wiener process on the metric system ( )( ), , , t t R
F P θ

∈
Ω , 

we can see ([11] [12] [13]). 
Let ( ) ( )0

e dt tz ατθ ω α θ ω τ τ
−∞

= − ∫ , where t R∈ , for 0t∀ ≥ , ( )tz θ ω  meet Itô  

equation: ( )d d dz z t W tα+ = . And there is a probability measure P, tθ -in- 
variant set Ω⊂Ω0 ; so that stochastic process ( ) ( )0

e dt tz ατθ ω α θ ω τ τ
−∞

= − ∫  
meet the following properties: 

1) For 0ω∀ ∈Ω , mapping ( )ss z θ ω→  for continuous mapping; 
2) Random variable ( )z ω  is called tempered; 
3) Exist temper set ( ) 0r ω > , such that  

( ) ( ) ( ) ( )2 2e
t

t t tz z r r
α

θ ω θ ω θ ω ω+ ≤ ≤ ; 

4) ( ) 2

0

1 1lim d
2

t
tt

z
t

θ ω τ
α→+∞

=∫ ; 

5) ( )
0

1 1lim d
π

t
tt

z
t

θ ω τ
α→+∞

=∫ . 

3.2. Stochastic Dynamical System 

For convenience, we rewrite the Question (1.1)-(1.3):  

( )

( ) ( ) ( ) [ )
( ) ( ) ( ) ( )

2

2

0 1

d d ,

d d

d d , 0, ,

,0 , ,0 , .

t

m
m m

t t

t

u u t

u A u A u A u g u t

f x t q x W t t

u x u x u x u x x

φ

=


     + + +      
= + ∈ +∞


= = ∈Ω

              (3.2.1) 

Let ( )T, , tu y y u uψ µ= = + , and µ ε=  ( ε  defined in [20]), then (3.2.1) 
has the following simple matrix form 

( )
( ) ( )T

0 0 1 0

d d , ,

, .

tL t F

u u u

ψ ψ θ ω ψ

ψ ω µ

 + =


= +
                    (3.2.2) 

where 

( )( ) ( )2, ,m m

I Iu
L

A I A Iy

µ
ψ

φ µ µ µ

−  
 = =   − + −   
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( ) ( ) ( )( ) ( ) ( )
0

, .
d dtF

g u f x t q x W t
θ ω ψ

 
=  − + + 

 

Let ( )tv y qz θ ω= − , then (3.2.1) can be rewritten as the equivalent system:  

( )
( ) ( )( )T

0 0 1 0

, ,

, .

t t

t

L F

u u u qz

γ γ θ ω γ

γ ω µ θ ω

 + =


= + −
              (3.2.3) 

where 

( )( ) ( )2, ,m m

I Iu
L

A I A Iv

µ
γ

φ µ µ µ

−  
 = =   − + −   

 

( )
( )

( ) ( ) ( ) ( )
, .

1
t

t m
t

qz
F

g u f x A qz

θ ω
θ ω γ

µ θ ω

 
 =
 − + − − − 

 

In [14] [15] they have proven that the operator L of (3.2.3) is the infinitesimal 
generation operator of 0C  semigroup eLt  in Hilbert space E,  
( ) [ ), : 0,tF E Eθ ω γ +∞ × →  is continuous in t and globally Lipschitz continuous 

in γ  for each ω∈Ω . By the classical theory concerning the existence and 
uniqueness of the solutions [14] [16] [17], so we have the following theorem. 

Theorem 3.2.1. Consider (3.2.3). For each ω∈Ω  and initial value  
( )( )T

0 0 1 0, tu u u qz Eγ µ θ ω= + − ∈ , there exists a unique function γ  such that 
satisfies the integral equation 

( ) ( )( )0 0
, e e , d ,

tLt Lst F s sγ ω γ ω γ−= + ∫   

and 

[ ) ( )( ) [ ) ( )( )2
00, ; 0, ; , 0.mC T H C T L Tγ ∈ Ω × Ω ∀ >   

For 0, . .t a e ω∀ ≥ ∈Ω , let the solution mapping of E E→  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )T T
0 0, : 0, , , , , , , ,S t u x v x t u x t v x tω γ ω γ ω ω ω= =


  

generates a random dynamical system. 
Define two isomorphic mapping: 

( ) ( ) ( )( )TT
1 2 1 2 1: , , ,t tT y y y y y qzµ θ ω µ θ ω− +

 

( ) ( )T
1 2 1 2 1: , , .R y y y y yµ µ−   

And inverse isomorphic mapping: 

( ) ( ) ( )( )TT1
1 2 1 2 1: , , ,t tT y y y y y qzµ θ ω µ θ ω− + −

 

( ) ( )T1
1 2 1 2 1: , , .R y y y y yµ µ− +  

Then the mapping ( ) ( ) ( ) ( )1
1 , ,t tS t T S t Tµ µω θ ω ω θ ω−=   generates a random 

dynamical system associated with (1.1)-(1.3); and mapping  
( ) ( ) 1

1, ,S t R S t Rµ µω ω −=  generates a random dynamical system associated with 
(3.2.2). 

Notice that all of the above random dynamical system ( )1 ,S t ω , ( ),S t ω  are 
equivalent. Hence we only need to consider the random dynamical system 
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( ),S t ω . 

4. The Existence of Random Attractor 

First, we prove the random dynamical system ( ),S t ω  exists a bounded 
random absorb set, hence we let ( )D E  be all temper subsets in E. 

Lemma 4.1. (Lemma 3.1 of [20]) Let ( ) ( )2
0= mV H LΩ × Ω , for any  

( )T
1 2,y y y V= ∈ , we have  

( )
22 2 2

1 2 2 1 3 2 00
, .m

E E ELy y k y k y k y k y≥ + ∇ ≥ +           (4.1) 

where 1 2,k k  are determined in [20], 3 1 2
mk kλ= , 1λ  is first eigenvalues of (1.1). 

Lemma 4.2. Let ψ  is a solve of (3.2.2), then there is a bounded random com- 
pact set ( ) ( )0B D Eω ∈ , such that for arbitrarily random set ( ) ( )B D Eω ∈ , 
existence a random variable ( ) 0BT ω > , so that  

( ) ( ) ( ) ( )0, , , .t t Bt B B t Tψ θ ω θ ω ω ω ω− − ⊂ ∀ ≥ ∈Ω           (4.2) 

Proof. Let γ  is a solve of (3.2.3), applying the inner product of the equation 
(3.2.3) with ( )T,u v Eγ = ∈ , we discover that  

( ) ( )( )21 d , , , ,
2 d tEE L F

t
γ γ γ θ ω γ γ+ =              (4.3) 

where 

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ), , , 1 ,m m m
t t tF q x z u g u f x A q x z vθ ω γ γ θ ω µ θ ω= ∇ ∇ + − + − − −  

( ) ( )( ) ( ) ( )
2 2 2

0

1 1, ,
2 2

m m m m
t tq x z u u q x zθ ω θ ω∇ ∇ ≤ ∇ + ∇      (4.4) 

( ) ( ) ( )( ) ( ) ( ) ( )( )22 22 23
0 0 0

3

1, ,
2 2t t
k

f x q x z v v f x q x z
k

µ θ ω µ θ ω+ ≤ + +  (4.5) 

( ) ( ) ( )( ) ( ) ( ) ( )( )2 2223
0 0 0

3

11 , ,
2 2

m m
t t

k
A q x z v v A q x q x z

k
θ ω θ ω− − ≤ + +  (4.6) 

( )( ) ( ) ( ) ( )( ), , ,t tg u v g u u u q x zµ θ ω− = − + −           (4.7) 

( )( ) ( ) ( )d, d d ,
dt tg u u g u u x G u x
tΩ Ω

= =∫ ∫             (4.8) 

( )( ) ( ) ( )1 0 0, d d , 0,g u u g u u x c G u x k kµ µ µ
Ω Ω

= ≥ − ≥∫ ∫        (4.9) 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

0 0

11
0 00 0 00

122
1 2 30 0 00

2 12 11
1 2 40 0 00

, d

d

d

d

d .
2

p

p

t t

p
t t

p
pp

t tL

p
p

t tL

pp
t t

g u q x z g u q x z x

c q x z x c u q x z

c q x z c u x q x z

C C q x z C G u x q x z

cC C q x z G u x C q x z

θ ω θ ω

θ ω θ ω

θ ω θ ω

θ ω θ ω

µ
θ ω θ ω

+

+

Ω

Ω Ω

++

Ω
Ω

+

Ω
Ω

++

Ω

=

≤ +

 
≤ Ω +  

 

 
≤ + +  

 

≤ + + +

∫

∫ ∫

∫

∫

∫

  (4.10) 
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According to (4.1) and (4.4)-(4.10), we have  

( ) ( )

( ) ( )

2 2

2 1
5 0 0

d 2 d 2 d
d

,

E E

p
t t

G u x G u x
t

C M z N z

γ η γ

θ ω θ ω

Ω Ω

+

   
+ + +   

   

≤ + +

∫ ∫
           (4.11) 

where 

1
1min 2 , ,

2
ck µ

η  =  
 

 

( ) ( )
2 22

2 0
3 3

4 4 42 ,mM C q x A q x
k k

µ +
= + + 
 

 

( ) 1
4 0

2 .
p

N C q x
+

=  

According to Gronwall inequation, . .Pa eω∈Ω , we have  

( ) ( )

( ) ( )

( ) ( ) ( )( )

2

2
0

2 1
5 0 00

, 2 d

e 0, 2 d

e d .

E

t
E

t pt r
r r

t G u x

G u x

C M z N z r

η

η

γ ω

γ ω

θ ω θ ω

Ω

−

Ω

+− −

+

 
≤ + 

 

+ + +

∫

∫

∫

       (4.12) 

Because ( )tz θ ω  is tempered, and ( )tz θ ω  is continuous about t, according 
to [21], we can get a temper random variables 1 :r R+Ω → , such that  

,t R ω∀ ∈ ∈Ω , we have  

( ) ( ) ( )2 2
1 1e .

t

t t tz r r
η

θ ω θ ω θ ω≤ ≤               (4.13) 

Substituting ω  by tθ ω−  in (4.12), we know  

( ) ( )

( ) ( )

( ) ( ) ( )( )

2

2
0

2 1
5 0 00

, 2 d

e 0, 2 d

e d ,

t E

t
t E

t pt r
r t r t

t G u x

G u x

C M z N z r

η

η

γ θ ω

γ θ ω

θ ω θ ω

−
Ω

−
−

Ω

+− −
− −

+

 
≤ + 

 

+ + +

∫

∫

∫

       (4.14) 

where  

( ) ( ) ( )( )
( ) ( )( )

( ) ( )

2 1
5 0 00

0 2 1
5 0 0

1
5 2

1 1

e d

e d

2 2 .

t pt r
r t r t

pt
t

p

C M z N z r

C M z N z

C
Mr Nr

η

η
τ τ

θ ω θ ω

θ ω θ ω τ

ω ω
η η η

+− −
− −

+

−

+

+ +

= + +

≤ + +

∫

∫            (4.15) 

Because ( ) ( )0 t tBψ θ ω θ ω− −∈  is tempered, and ( )tz θ ω−  is also tempered, 
hence we let  

( ) ( ) ( )
1

2 5 2
0 1 1

2 2 ,
pC

R Mr Nrω ω ω
η η η

+

= + +                (4.16) 

then ( )2
0R ω  is also tempered, ( ){ }0 2

ˆ : EB E Rγ γ ω= ∈ ≤  is called a random 
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absorb set, and because of 

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( )T T
0 0, , 0, 0, ,t t t t t tS t t q x z q x zθ ω γ θ ω ψ θ ω γ θ ω θ ω θ ω− − − − −= + −  

so let 
( ) ( ) ( ) ( ){ }0 0 0: ( ) ,tEB E R q x z Rω ψ ψ ω θ ω ω= ∈ ≤ + =  then ( )0B ω  is a  

random absorb set of ( ),tψ ω , and ( ) ( )0B D Eω ∈ .  
Next, we will prove the random dynamical system ( ),S t ω  has a compact 

absorb set 
Lemma 4.3. For ( ) ( )B D Eω∀ ∈ , let ( )tψ  be a solve of (3.2.2), initial value 

( )T
0 0 1 0,u u u Bψ µ= + ∈ , we decompose 1 2ψ ψ ψ= + , where 1 2,ψ ψ  satisfy  

( ) ( )

1 1

T1
0 0 1 0

d d 0,

, ,

L t

u u u

ψ ψ

ψ ω µ

 + =


= +
                     (4.17) 

( )

2 2

2
0

d d 0,

0.

L tψ ψ

ψ ω

 + =


=
                       (4.18) 

Then 

( ) ( ) ( ) ( )
21

0, 0 , ,t t tE
t t Bψ θ ω ψ θ ω θ ω− − −→ →∞ ∀ ∈         (4.19) 

and exist a temper random radius ( )1R ω , such that ω∀ ∈Ω , satisfy  

( ) ( )24
1, .

m

t
E

A t Rψ θ ω ω− ≤                    (4.20) 

Proof. Let ( ) ( )( )T T1 2 1 1 1 2 2 2, ,t t tu u u u u u qzγ γ γ µ µ θ ω= + = + + + −  be a solve 
of (3.2.3), according to (4.17) and (4.18), we know 1 2,γ γ  meet separately  

( ) ( )( )

1 1

T1
0 0 1 0

d d 0,

, ,

t

t

L t

u u u qz

γ γ

γ ω µ θ ω

 + =


= + −
              (4.21) 

( )
( )

2 2

2
0

d d , ,

0.
t tL t Fγ γ θ ω γ

γ ω

 + =


=
                  (4.22) 

Taking inner product (4.21) with ( )T1 1 1 1, tu u uγ µ= + , we have  

( )21 1 11 d , 0,
2 d E

L
t
γ γ γ+ =  

according to Lemma 4.1 and Gronwall inequality, we have  

( ) ( )
2 21 2 1, e 0, ,t
E E

t ξγ ω γ ω−≤                    (4.23) 

substituting ω  by tθ ω− , and ( )tz Bθ ω− ∈  is tempered, then  

( ) ( ) ( ) ( )
2 21 2 1, e 0, 0 , 0, .t

t t tE E
t t Bξγ θ ω γ θ ω γ θ ω−

− − −≤ → →∞ ∀ ∈  

So, (4.19) is hold. Taking inner product (4.22) with  

( ) ( )( )T2 2 2 2,
2 2 t t
m mA A u u u q x zγ µ θ ω= + − , we have  

( )
2

2 2 2 241 d , , , ,
2 d 2 2

m

t
E

m mA L A F A
t

γ γ γ γ θ ω γ   + =   
   

        (4.24) 
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according to Lemma 4.1, Lemma 4.2, (4.24) and Young inequality, we have  

( ) ( )

( ) ( ) ( ) ( )

2 2
2 2 2 24 2 4 2

2 12
5 0 1 20 0

d 2 d 2 d
d

, ,

m m m m

E E

p
t t t B

A A G u x A A G u x
t

C R M z N z t T ω

γ η γ

θ ω θ ω θ ω

Ω Ω

+

   
   + + +
   
   

≤ + + ∀ ≥

∫ ∫
 

where ( ) ( )0,BT Rω ω  are given by Lemma 4.2, and 

( ) ( )
22 2

4
1 2

3 3

4 4 42 ,
m

mM C A q x A q x
k k

µ +
= + + 
 

 

( )
1

4
1 4 .

pm

N C A q x
+

=  Due to Gronwall inequality, and substituting ω  by  

tθ ω− , we have 

( ) ( )
( ) ( ) ( ) ( )( ) ( )

2
2 24 2

2 12
5 0 1 20 00

, 2 d

e d , .

m m

t
E

t pt r
r t r t r t B

A t A G u x

C R M z N z r t Tη
ω

γ θ ω

θ ω θ ω θ ω

−
Ω

+− −
− − −

+

≤ + + ∀ ≥

∫

∫

 

According to (4.14) and (4.16), then  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

2 12
5 0 1 20 00

0 2 12
5 0 1 20 0

12
5 5 2

1 1 1 12 2

e d

d

42 2 8 .
1

t pt r
r t r t r t

p

t

p

C R M z N z r

C R M z N z r

C C
M M r N N r

p

η

τ τ τ

θ ω θ ω θ ω

θ ω θ ω θ ω

ω ω
η η ηη η

+− −
− − −

+

−

+

+ +

= + +

  
= + + + +    +   

∫

∫  

Let 

( ) ( ) ( ) ( )
12

2 5 5 2
1 1 1 1 12 2

42 2 8 .
1

pC C
R M M r N N r

p
ω ω ω

η η ηη η

+  
= + + + +    +   

 

Then ( )2
1R ω  is tempered, and because 

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( )T T
0 0, , 0, 0, ,t t t t t tS t t q x z q x zθ ω γ θ ω ψ θ ω γ θ ω θ ω θ ω− − − − −= + −  

hence, we set 

( ) ( ) ( ) ( )4
1 1 ,

m

tR R A q x zω ω θ ω= +  then, for ω∀ ∈Ω , we have 

( ) ( )24
1, ,

m

t
E

A t Rψ θ ω ω− ≤  and ( )1R ω  is tempered.  

Lemma 4.4. (3.2.2) the identified stochastic dynamical system ( ), , 0S t tω ≥ , 
while 0, . .t Pa eω= ∈Ω  exist a compact attracting set ( )K Eω ⊂ .  

Proof. Let ( )K ω  be a closed ball, radius ( )1R ω  in space  
3
4 4

mm
D A D A
   

×      
   

, because 
3
4 4

mm
D A D A E
   

×      
   

 , so ( )K ω  is a compact  

set in E, for arbitrarily temper random set ( )B ω , for ( ), tt Bψ θ ω−∀ ∈ , ac- 
cording to Lemma 4.3, ( )2 1 Kψ ψ ψ ω= − ∈ , so for ( ) 0Bt T ω∀ ≥ > , we have 
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( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )

( ) ( )

22 1

22 1
0

, ,

inf , ,

e , 0, .

E t t

t tE Et K

t
t E

d S t B K

t t t

t t

β ω

η

θ ω θ ω ω

ψ θ ω β ψ θ ω

ψ θ ω

− −

− −∈

−
−

= − ≤

≤ → →∞

 

 

Theorem 4.1. The random dynamical system ( ), , 0S t tω ≥  has a unique 
random attractor ( )A ω  in E, where  

( ) ( )( )
0

, , , ,
t t

A S t Kτ τ
τ

ω θ ω θ ω ω− −
> ≥

= ∈Ω


 

in which ( )K ω  is a tempered random compact attracting for ( ),S t ω . 
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