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Abstract

Convergence behaviors of solutions arising from certain system of third-order nonlinear differen-
tial equations are studied. Such convergence of solutions corresponding to extreme stability of
solutions when P =0 relates a pair of solutions of the system considered. Using suitable Lyapu-
nov functionals, we prove that the solutions of the nonlinear differential equation are convergent.
Result obtained generalizes and improves some known results in the literature. Example is in-
cluded to illustrate the result.
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1. Introduction

We shall consider here systems of real differential equations of the form

X+%(X, X)X +@(X)+H(X)=P(t,X,X,X) @)
which is equivalent to the system

X =Y

Y=2

Z=-¥(X,Y)Z-®(Y)-H(X)+P(t,X,Y,Z) )

where @ and H are continuous vector functions and ¥ is an nxn -positive definite continuous symmetric
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matrix function, for the argument displayed explicitly and the dots here as elsewhere stand for differentiation
with respect to the independent variable t, te R"; R* denote the real interval 0<t<ow. X eR" and
P:R"xR"xR"xR" - R" in Equation (1). J®(Y), JH(X) are the Jacobian matrices corresponding to
the vector functions ®(Y) and H(X) respectively exist and are symmetric, positive definite and conti-
nuous.

So far in the literature, much attention has been drawn to the boundedness of solutions of ordinary scalar and
vector nonlinear differential equations of third order. The book of Reissig et al. [1], the papers by Abou-EIl-Ela
[2], Afuwape [3] [4], Chukwu [5], Ezeilo [6], Ezeilo and Tejumola [7], Meng [8], Omeike [9], Omeike and
Afuwape [10], Tiryaki [11], Tunc [12] [13], Tunc and Ates [14], Tunc and Mohammed [15] and the references
cited therein have comprehensive treatment of the subject. Throughout the results present in the book of Reissig
et al. [1] and the papers mentioned above, Lyapunov’s second (direct) method has been used as a basic tool to
verify the results established in these works. Equations of the form (1) in which ‘P(X ,X)=A and
®(X)=G(X) have been studied by [16] [17]. They have obtained some results related to the convergence
properties of solutions as well as Afuwape in [18]. Very recently, Tunc and Gozen [19] studied the convergence
of solution of the equation

K F(X)+6(X) H(X)=P(t X X X)

by extending the result of [17] to the special case F (X ) = AX of [17]. Also recently, Olutimo [20] studied the
equation

X+¥(X, X)X +®(X)+cX =P(t,X,X,X)

a variant of (1), where c is a positive constant and obtained some results which guarantee the convergence of the
solutions. With respect to our observation in the literature, no work based on (1) was found. The result to be ob-
tained here is different from that in Olutimo [20] and the papers mentioned above. The intuitive idea of conver-
gence of solutions also known as the extreme stability of solutions occurs when the difference between two
equilibrium positions tends to zero as time increases infinitely is of practical importance. This intuitive idea is
also applicable to nonlinear differential system. The Lyapunov’s second method allows us to predict the con-
vergence property of solutions of nonlinear physical system. Result obtained generalizes and improves some
known results in the literature. Example is included to illustrate the result.

Definition
Definition 1.1. Any two solutions X, (t) X, (t) of (1) are said to converge if
[X (t)= X, ()] = 0, [ X, (t)= X, ()| >0 and |X, (t)-X,(t)] >0, ast—e.
If the relations above are true of each other (arbitrary) pair of solutions of (1), we shall describe this saying that
all solutions of (1) converge.

2. Some Preliminary Results

We shall state for completeness, some standard results needed in the proofs of our results.
Lemma 1. Let D be a real symmetric nxn matrices. Then forany X eR".

5 IXI = (X, x) <A, X]

where o, and A, are the least and greatest eigenvalues of D, respectively.
Proof of Lemma 1. See [3] [7].
Lemma 2. Let Q,D be real symmetric commuting nxn matrices. Then,
1) The eigenvalues 4 (QD),(i=1,2,---,n) of the product matrix QD are all real and satisfy

min 2;(Q)4 (D)< 4 (QD) < max 4, (Q)4 (D).

1<j,k<n 1<jksn

2) The eigenvalues 4 (Q+D),(i=1,2,---,n) of the sum of Q and D are all real and satisfy
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{min 2,(Q)+ min AK(D)}sﬂ,l(QJrD)s{max 2,(Q)+ maxﬂk(D)}

1< k<n 1<j,k<n 1< k<n 1< k<n

where 2,(Q) and 4, (D) are respectively the eigenvalues of Q and D.
Proof of Lemma 2. See [3] [7].
Lemma 3. Subject to earlier conditions on lP(X ,Y) the following is true

d e

dt o

where &, and A, are the least and greatest eigenvalues of D, respectively.
Proof of Lemma 3. See [20].

Lemma 4. Subject to earlier conditions on @ and that @(0)=0, then
1)

(2# (zX,Y)Y,Y)dr =(¥(X,Y)Y,Z)

L@ )de = (0(1).2).
2

(@(2Y),Y) = [ (3 (0(2Y).Y))dz.

Proof of Lemma 4. See [20].
Lemma 5. Subject to earlier conditionson H(X) andthat H(0)=0, then
1)

&IXIF <2[ (H (2x). X )dz <A, | X
2)
E 1
dt-o
Proof of Lemma 5. See [3] [7] [11].

(H(zX),X)dz =(H(X),Y).

3. Statement of Results

o,

Throughout the sequel JH (X),J®(Y) are the Jacobian matrices {a—h'J[
i

J corresponding to the vector
X
functions H(X),®(Y), respectively.

Our main result which gives an estimate for the solutions of (1) is the following:

Theorem 1. Assume that W(X,Y),JH(X) and J®(Y), for all X,Y in R" are all symmetric. Jaco-
bian matrices JH (X),J(D(Y) exist, positive definite and continuous. Furthermore, there are positive con-
stants o, f,,7,.a,, B, 7, such that the following conditions are satisfied.

Suppose that ®(0)=0=H (0) and that

1) The nxn continuous matrices ¥ (X,Y), JH(X) and J®(Y) are symmetric, associative and com-
mute pairwise. Then eigenvalues A4 (¥(X.,Y)) of ¥, A4 (J®(Y)) of Jo(Y) and A4(JH (X)) of
JH(X) (i=12), satisfy

2) P satisfies

1
[P(t.X,.¥,.Z,) = P(t. X, Y,.2))| <4, {||x2 X+, Y + ]2, —zl||2}2 ©)
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forany X;,Y,,Z, (i=1,2)in R",and A, isafinite constant. Then, there exists a finite constant >0 such
that any two solutions X, (t), X, (t) of (2) necessarily converge if A, <e.
Our main tool in the proof of the result is the function V =V (X,Y,Z) defined forany X,Y,Z in R" by

N =2V, +2V, 4)
where
2V, = 2[ (H (eX), X )dz+2[ (2% (X,2Y)Y,Y )dz +25[ (@(2Y),Y )do
+8(Z,Z)+2(Y,Z)+25(Y,H(X)),

2V, =20, [ (H (tX), X )dz + 26, [ (2 (X, 2Y)Y.Y )d7 + e, 7 (X, X)
+2[ (O (Y. Y))dz +(Z,Z) + 2ualf, (XY )+ +2pa,B,(X,Z)
+ 20, (Y, Z)+2(Y, H (X)) - e, B, (Y,Y)

and & >0 isa fixed constant chosen such that

EIPY PY: 3 (5)
@, N
lu<min iﬁ (aoﬂo_y1)+(ﬁo_571) 0605—1 ’ (6)

%o ,ﬂo ,aoﬂo {ao+7/(;l(ﬂ1_:30)2}’aoﬂo7gl(al_a0)2

4 chosensuchthat O< <1,

The following result is immediate from (4).

Lemma 6. Assume that, all the hypotheses on matrix W¥(X,Y) and vectors ®(Y) and H(X) in Theo-
rem 1 are satisfied. Then there exist positive constants D, and D, such that

O, (IXIF +IVIF +12)" ) < 2v <, (|X|F +] [ +[2[F ). ()

Proof of Lemma 6. In the proof of the lemma, the main tool is the function V =V (X,Y,Z) in (4).
This function, after re-arrangement, can be re-written as

2, =2 (H (zX), X )dr + 6z + 57
+2{j:(ﬂ(x,rY)Y,Y>dr—5-1(Y,Y>}
+6[{®(2Y).Y)dr +25 (Y, H(X)).
Since
[{@(2),Y)dr=[ [ (30(5,z,Y)Y.Y )drdr,.
And
2(Y,H(X))= [ [r (Y. H(X))drdz,
we have that
[{@(2Y).Y)dz+2(Y, H (X)) = [ [7 {(30(5,0,Y )Y, Y )+ 2(Y, H (X))} dzdr,. 1

Since matrix J® is assumed symmetric and strictly positive definite. Consequently the square root Jd?
exists which itself is symmetric and non-singular for all Y e R". Therefore, we have

O,
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1 1 2 1 2
(JOY,Y)+2(Y,H (X)) =3 2Y + I 2H (X)| —[I® 2H(X) ()
where J@ stands for J®(7,7,Y).
Thus,
1 2
2, =2[(H(cX), X )dz-5[I02H (X)| +8]z+57Y
1 ) ) ©
TP O ) =Y Y )z + [ o7 902 + 30 72H (X)) day,,
From (9), the term
2[ (H(rX), X )dz-8{30H (X),H(X)). (10)

Since

(30 H (%), H (X)) = 230 13H (2 X) X, H (7))

&
by integrating both sides from 7, =0 to 7, =1 and because H (0)=0, then we obtain
<J<D-1H(r3 > 2j< z’lz'z ( 3X)X,H(r3X)>
- ZIOJ.oIoTl< 75X '{ -Jo™ (Tlfz )JH (Tg )} dr,dz,dz,.
But from

= (291 (X7, X) X, {1 =307 (57,Y ) IH (7, )} X )
integrating both sides from 7, =0 to z, =1 and because H(0)=0, we find
<H (Xz,X). {1 =307 (5,7,Y ) H (rgx)}x>
= 17 (IH (X2, X) X, {1 =307 (7,2,Y ) IH (:X)} X ) dz,.
Hence, (10) becomes
ZJ.:I:I:I31113<JH (X232, X) {1 =637 (1,2,Y ) IH (7,X)} X,X>drldrzdz'3dz'4
combining the estimate for V, in (9), we have
2, =2[ [ [.[ns <JH (Xzaz, X ) {1 = 8307 (2,7,Y ) IH (X))} X, X>dz’1dz'2dr3dz'4
w2 (e{w(x, )-8}y Y )dr+ |z 57|
By hypothesis (1) of Theorem 1 and lemmas 1 and 2, we have

2,2 27, (16" JIX I +2( e, ~6 )V +5]z + 7Y

®
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where 1-87,4,'>0 and a,-5">0 by (5).
Similarly, V, after re-arrangement becomes

2, =||Z+aY+,ua BX| +2a, [ (29 (X, 2Y)Y.Y )dr - 202 (YY)

+2[(@(2Y),Y)dr = B, (Y Y )+ per, B2 (1- paat, ) (X, X )

(11)
+2a, [ (H (eX), X )de = A, [H (X +a (@, ~ 5,1 ¥)
H ()]
It is obvious that
205, [ (2% (X,2Y)Y,Y )dz - 202 (Y,Y)
= 2a, [T ({¥ (X, 1Y) -, }Y,Y )dz 20,
also,
2[,(@(¥).¥)dr=4,(1.Y)
=2aojojorl< JO(5,z,Y )= A 1}Y,Y )drdr, 20
and
2, ({1 () Xe 2 JH ()
= 2a, [}(H (tX), X )dz =2, [ (H (zX )H (rX), X )dz
_2”{ — B;"H (,X)} H (7,7, ) dz,dr,
>2(ay = 5,'n) 7 X[
Combining all the estimates of V, and (11), we have
N, 2|2 +a,Y + pa, B X[+ 2(a = By ) 7 X[
+ pto (1= ety )| X[+t (e = 8, )V
Now, combining V, and V, we must have
V=V, +V,,
that is,
V 2y, (1-0nB,")+ 2( @ — B ) 1o + et B2 (1= ety )X 12

+{2(ay~67) e, (@, - u, )| IV [ + 6]z + 57 .

Thus, it is evident from the terms contained in (12) that there exists sufficiently small positive constants D,
such that

V2D, (IX P+ +12]F),
where
D, = min{y, (L-n8,") + 2(@, = ;%) 70 + et B2 (1 pias, );
Z(ao —5’1)+ao (o — up, )}

©,
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The right half inequality in lemma 6 follows from lemma 1 and 2.

Thus,
V<D, (X + ¥ +2[7).
where
D, = Max {2y, + 8y, + pal B, + 20,7, + el B, + et B, + 14;
o, + 20, + 28y, + a0 + 2B, + ual B, + o, + y, — uat, f;
5+2+ pa,fy+a,}.
Hence,

Dy (IXF + V[ +l12IF ) <v < O (x| +[¥ [ +z[ ) (13)

4. Proof of Theorem 1
Let X,(t), X,(t) beany two solutions of (2), we define
W =W (t).
By
W(t)=V (Xz (1) =X, (1), Y, (1)-Yi(1). Z, (1) -2, (t))

where V is the function defined in (4) with X,Y,Z replaced by (X, -X,),(Y,-Y,).(Z,—Z,) respectively.
By lemma 6, (13) becomes

Dy ([Xz =Xl +]Y, il +]2Z; =2 ) <W <Oy (I, =X, +]Y, - +]2. -2 ) (14)

for D,>0 and D, >0.
The derivative of W (t) with respect to t along the solution path and using Lemma 3, 4 and 5, after simplifi-
cation yields

W :—%yaoﬂojol((xz = X,), HT (X, = X, ) (X, — X, ))dz
~({(1+ @) 30— (1+8) IH - e A1} (Y, =Y, ), (Y, -Y,)
—<{(1+5)\11—(1+o¢0)|}(z2 -7,).(2, —zl)>

—%ﬂaoﬂoﬂ{@H (X=X (X, = X))+ 4([¥ — a1 ](X, = X,).(Z, - 2,))}d7

—%yaoﬂoﬁ{@H(X2—Xl),(Xz—Xl)>+4<[J<I)—[)’OI](X2—Xl),(Yz—Y1)>}dr
+(ua B, (X, =Xy )+(L+a, ) (Y, -Y,) +(1+5)(Z, - Z,),0)
where 9=P(t,X,,Y,,Z,)=P(t,X,,¥;,Z,), JH=JIHz(X,-X,), J®=Jd(Y,-Y,) and

W =w[(X,-X,).(Y,-Y,)].
Using the fact that

(Y,) = (Y,) = [ I (n)(Y, ~Y,)du
and
H(X,)-H(X,)= j;JH (£)(X, =X, )dv

where
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n=uY,+(1-u)Y, O<u<il
and &=vX,+(1-v)X;, 0<v<l

Following (8),

(IH (X, = X,), (X, = X))+ 4([¥ =1 (X, = X,),(Z, - Z,))

2 2

1 1

1
=M 2 (X X,)+ 20H 2 [# -1 ](2, - 2,)] - |2[% - a1 ]9H 2 (2,-2)

and
(IH (X, = X,), (X, = X))+ 4([ 3@ = BI](X, = X)(Y, = Yy))
= JH%(XZ—X1)+2JH%[J(D—/)’OI](Y2—Yl)2— 2[J<D—,BOI]JH%(Y2—Y1)2.
Thus,
W :—%yaﬂ j (X, = X), IHT (X, = X;) (X, = X, ))dr
—<{(1+ao)Jd>—(1+5)JH —yaoﬂol}(Yz—Yl),(Yz—Yl)>
~({@+0) ¥ - (1+ 2, )1}(Z, - 2)).(Z, -2,
—%yaoﬂoj: 2[\1/—050|]JH’%(22—21)2 dr
-iyaﬁj 2[J0 - ﬂl]JH’%( 1)Zdwlr
+(ua B, (X, = X, ) +(1+a,) (Y, -Y,) +(1+5)(Z, - Z,).0).
Note that
[0 2[\P—a0|]JH’%(zz—zl)2dr
=4j:<JH‘1[‘P—a0I](ZZ—Zl),[‘P—aOI](ZZ—Zl)>dr
and
[ 2[J<D—ﬂOI]JH_%(Y2—Yl)2dr
=4j:<JH‘1[Jd>—ﬁOI](Y2—Yl),[J<D—,BOI](Y2—Y1)>dr.
We have;

W <_%ﬂa B, j1< 2= X), IHT (X, = X,) (X, = X, ))de
({0 @) 90— (14 8)IH + a1 + ualpLIH 2 [30 - 41T (Y =Y, (Y, -] o
j<{ (1+5)¥ —(1+a,)1 - uaoﬂoJ#[‘I’—ao']z(zz‘Zl)'(ZZ‘Zl)}>d’
+{ual B, (X, = X, ) + 1+, ) (Y, -Y,) +(1+6)(Z, - Z,),6).

®
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On applying Lemma 1 and 2, we have
R A L
@ a) - (140) 7 - el B, - o o7i [ = BT Y,
—{(l+5)a0 ~(1+a, ) - e, By [ —ao]z}”Zz -z
e, | X, = X[+ (L+a, )|V, =Y, |+ (1+6) |2, - Z,[ o] -
If we choose p , such that it satisfies (6), and using (3), we obtain
W <-6||X, =X, =6, |V, Y[ +6Z, -z,
o e A A A

1

T PR R AR (R A A

where
1
51 :E/uaoﬁoyo'
8, =y =1+ By~ 0 - ko, {4 15 [ A= BT,

_ 2

53 = aoé_l_ﬂaoﬂoyol[al _ao] '
8, = max{ pa, f,;1+ ay;1+ 61
Thus,

1
W (t) < _(55 _32 54A0J{||x2 ~ X+ Y, =Y +]z, - z1||2}
with & =min{6,,5,,5;} .
There exists a constants J; such that
Wi (£) <=5, {IX, = X, +[Y, %I +)z, -2 [}
In view of (14), the above inequality implies
W (t) < -5 (t). (15)

1
Let ¢ be now fixed as e =3 25,%,. Thus, last part of the theorem is immediate, provided A, <e and on
integrating (15) between t, and t, we have

W (t) W (t,)exp{-d, (t—t,)}, t=t,,
which implies that
W(t)>0 ast— .
Thus, by (14), it shows that
%, ()= X, ()] =0, [V, (1) =Y, (t)] > 0 and ||Z,(t)- X, (t)] >0, as t >
From system (1) this implies that

[X, ()= X, ()] = 0, |X, (1) = X, ()] >0 and | X, (t)- X, (t)| >0, as t >,
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This completes the proof of Theorem 1.

5. Conclusions

Analysis of nonlinear systems literary shows that Lyapunov’s theory in convergence of solutions is rarely scarce.
The second Lyapunov’s method allows predicting the convergence behavior of solutions of sufficiently compli-

cated nonlinear physical system.

Example 4.0.1. As a special case of system (2), let us take for n=2 suchthat P =0 isa function of t only
and
x> +y?+8 0
0 x* +y? +10

‘P(X,Y):(

-1 -1
@(Y):[tan y1+0.004} H(X):(tanlx1+2x1j
Y, tan™ x, + 3x,

1

1 2

X:(le, and P(t)= 1+1t )

1+12
Thus,

2+
0.004 0 1+ X7
J0(Y)=| Try? and JH(X)=| 0

0 1 0 3+

Clearly, ¥,J® and JH are symmetric and commute pairwise. That is,
(X, Y)ID(Y)=dD(Y)¥(X,Y),
Y(X,Y)IH(X)=IH(X)¥(X,Y)
and
JO(Y)IH (X)=IH(X)ID(Y).
Then, by easy calculation, we obtain eigenvalues of the matrices ¥,J® and JH as follows

A(W(X.Y))=8+x2+y% 2, (¥(X,Y))=10+x+y?

_1004 oy

A(30(Y))=1 4 (I (V))=17 ¥i 250(L+y7)

1

1
2z AQ(JH(X))=3+R.

A(H (X)) =242

Itis obvious that o, =8, o, =10, g, =1, £, =1.004, y,=2 and y, =4.

1
If we choose o = 5 we must have that

1 1

y<min{1,8 9 —} and ||P(t)|= <2.

8' '64'48 T14t2 T

Thus, all the conditions of Theorem 1 are satisfied. Therefore, all solutions of (1) converge since (5) and (6)

hold.
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