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Abstract 
We show that the lateral regularizations of the generator of any uniformly bounded set-valued 
composition Nemytskij operator acting in the spaces of functions of bounded variation in the 
sense of Riesz, with nonempty bounded closed and convex values, are an affine function. 
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1. Introduction 

Let ( ),X ⋅ , ( ),Y ⋅  be real normed spaces, C be a convex cone in X and I be an arbitrary real interval. Let 

( )clb Y  denote the family of all non-empty bounded, closed and convex subsets of Y. For a given set-valued  
function ( ):h I C clb Y× →  we consider the composition (superposition) Nemytskij operator  

( )( ):
IIH C clb Y→  defined by ( ) ( )( ),H F h F= ⋅ ⋅  for IF C∈ . It is shown that if H maps the space 

( );RV I Cϕ  of function of bounded ϕ-variation in the sense of Riesz into the space ( )( );RW I clb Yϕ  of closed 
bounded convex valued functions of bounded ψ-variation in the sense of Riesz, and H is uniformly bounded, 
then the one-side regularizations h−  and h+  of h with respect to the first variable exist and are affine with re-
spect to the second variable. In particular, 

( ) ( ) ( )
*

, , , ,h t x A t x B t t I x C− = + ∈ ∈                          (1) 
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for some functions ( )( ): ,A I C clb Y→  and ( )( );B RW I clb Yϕ∈ , where ( )( ),C clb Y  stands for the space 

of all linear mappings acting from C into ( )clb Y . This considerably extends the main result of the paper [1] 
where the uniform continuity of the operator H is assumed. 

The first paper concerning composition operators in the space of bounded variation functions was written by J. 
Miś and J. Matkowski in 1984 [2]; these results shown here have been verified by varying the hypothesis, in 
other contributions (see for example, [1] [3]-[7]). 

Let us remark that the uniform boundedness of an operator (weaker than the usual boundedness) was intro-
duced and applied in [8] for the Nemytskij composition operators acting between spaces of Hölder functions in 
the single-valued case and then extended to the set-valued cases in [6] for the operator with convex and compact 
values, in [7] for the operators with convex and closed values, and also, in [4] for the Nemytskij operator in the 
spaces of functions of bounded variation in the sense of Wiener. 

Some ideas due to W. Smajdor [9] and her co-workers [10] [11], V. Chistyakov [12], as well as J. Matkoswki 
and M. Wróbel [6] [7] are applied. 

The motivation for our work is due to the results of T. Ereú et al. [3] and Głazowska et al. [4], but only that 
our research is developed for some functions of bounded ϕ-variation in the sense of Riesz. 

2. Preliminaries 
Let   be the set of all convex functions [ ) [ ): 0, 0,ϕ +∞ → +∞  such that ( )0 0ϕ =  and ( ) 0tϕ >  for 

0t > . 
Remark 2.1. If ϕ ∈ , then ϕ  is continuous and strictly increasing. An usually, IX  stands for the set of 

all functions :f I X→ .  
Definition 2.2. Let ϕ ∈  and ( ),X ⋅  be a normed space. A function If X∈  is of bounded ϕ-variation 

in the sense of Riesz in the interval I, if  

( )
( ) ( )1

1
1 1

: sup ,
n

i i
i i

i i i

f t f t
RV f t t

t tϕ
π

ϕ −
−

= −

 −
 = − < ∞
 − 

∑                      (2) 

where the supremum is taken over all finite and increasing sequences { } 0i i
tπ ∞

=
= , it I∈ , n∈ .  

For ( ) pt tϕ =  ( )0, 1t p≥ ≥  condition 2 coincide with the classical concept of variation in the sense of Jor-
dan [13] when 1p = , and in the sense of Riesz [14] if 1p > . The general Definition 2.2 was introduced by 
Medvedev [15]. 

Denote by ( ),RV I Xϕ  the set of all functions If X∈  such that ( )RV fϕ λ < ∞  for some 0λ > . 
( ),RV I Xϕ  is a normed space endowed with the norm  

( ) ( ) ( ): , , ,f f a p f f RV I Xϕ ϕϕ
= + ∈                         (3) 

where [ ],I a b=  and ( ) ( ){ }inf 0 : 1p f RV fϕ ϕ= > ≤  . 

For X =   the linear normed space ( )( ); ,RV Iϕ ϕ
⋅  was studied by Ciemnoczołowski and Orlicz [16] 

and Merentes et al. [5]. The functional pϕ  is called Luxemburg-Nakano-Orlicz seminorm (see [17]-[19]). 
Let ( ), YY ⋅  be a normed real vector space. Denote by ( )clb Y  the family of all nonempty closed bounded 

convex subset of Y equipped with the Hausdorff metric D generated by the norm in Y:  

( ) { } ( ), : max inf , inf , , .sup supY Yb B a Aa A b B
D A B a b a b A B clb Y

∈ ∈∈ ∈
= − − ∈             (4) 

Given ( ),A B clb Y∈ , we put { }: : ,A B a b a A b B+ = + ∈ ∈  and we introduce the operation +  in ( )clb Y  
defined as follows:  

( )
*

,A B cl A B+ = +                                (5) 

where cl  stands for the closure in Y. The class ( )clb Y  with the operation +  is an Abelian semigroup, with 
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{0} as the zero element, which satisfies the cancelation law. Moreover, we can multiply elements of ( )clb Y  by 
nonnegative number and, for all ( ),A B clb Y∈  and , 0µ λ ≥ , the following conditions hold:  

( ) ( ) ( )
* * *

1 , , , .A A A A A B A B A A Aλ µ λµ λ λ λ λ µ λ µ ⋅ = = + = + + = + 
 

            (6) 

Since, 

( ) ( ) ( )
* *

, , , ; , , ,D A B A C D A B A C D B C A B C clb Y + + = + + = ∈ 
 

              (7) 

( )
*

, , ,clb Y D + ⋅ 
 

 is an abstract convex cone, and this cone is complete provided Y is a Banach space (cf. [9] 

[12] [20]). 
Definition 2.3. Let ϕ ∈  and ( ):F I clb Y→ . We say that F has bounded ϕ variation in the sense of 

Riesz, if  

( )
( ) ( )( )1

1
1 1

,
: ,sup

n
i i

i i
i i i

D F t F t
RW F t t

t tϕ
π

ϕ −
−

= −

 
 = − < ∞
 − 

∑                      (8) 

where the supremum is taken over all finite and increasing sequences { } 0

m
i i

tπ
=

= , it I∈ , n∈ .  

Let  

( )( ) ( )( ) ( ){ }; : : , for some 0 .
I

I clb Y F clb Y RW Fφ ϕ λ λ= ∈ < ∞ >               (9) 

For ( )( )1 2, ;F F RW I clb Yϕ∈  put  

( ) ( ) ( )( ) ( )1 2 1 2 1 2, : , ,D F F D F a F a p F Fϕ ϕ= +                          (10) 

where  

( ) ( ){ }1 2 1 2, : inf 0 : , 1p F F W F Fϕ ρρ= > ≤                           (11) 

and  

( )
( ) ( ) ( ) ( )

( ) ( )

* *

1 2 1 2 1 1

1 2 1
1 1

;
, : ,sup

i i i im

i i
i i i

D F t F t F t F t
W F F t t

t tρ
π

ϕ
ρ

− −

−
= −

  + +    = −
− 

 
 

∑            (12) 

where the supremum is taken over all finite and increasing sequences ( ) 0
, , m

i ii
t t I mπ

=
= ∈ ∈ . 

Lemma 2.4. ([12], Lemma 4.1 (c)) The ( )( )1 2, ;F F RW I clb Yϕ∈  and ϕ ∈ . Then for 0ρ >   

( ) ( )1 2 1 2, 1 if and only if , .W F F p F Fρ ϕ ρ≤ ≤                        (13) 

Let ( ),X ⋅ , ( ),Y ⋅  be two real normed spaces. A subset C Y⊂  is said to be a convex cone if C Cλ ⊂  

for all 0λ ≥  and C C C+ ⊂ . It is obvious that 0 C∈ . Given a set-valued function ( ):h I C clb Y× →  we 

consider the composition operator ( )( ):
IIH C clb Y→  generated by h, i.e., 

( )( ) ( )( ), , , .IHf t h t f t f C t I= ∈ ∈                              (14) 

A set-valued function ( ):F C clb Y→  is said to be ∗additive, if  

( ) ( ) ( )
*

,F x y F x F y+ = +                                    (15) 

and ∗Jensen if  
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( ) ( )
*

2 , for all , .
2

x yF F x F y x y C+  = + ∈ 
 

                           (16) 

The following lemma was established for operators C with compact convex values in Y by Fifer ([21], Theo-
rem 2) (if K +=  ) and Nikodem ([22], Theorem 5.6) (if K is a cone). An abstract version of this lemma is due 
to W. Smajdor ([9], Theorem 1). We will need the following result: 

Lemma 2.5. ([12], Lemma 12.2) Let C be a convex cone be in a real linear space and let ( ), YY ⋅  be a Ba-
nach space. A set-valued function ( ):F C clb Y→  is ∗Jensen, if and only if, there exists an ∗additive set-valued 
function ( ):A C clb Y→  and a set ( )B clb Y∈  such that  

( ) ( )
*

,F x A x B= +                                      (17) 

for all x C∈ .  
For the normed spaces ( ), XX ⋅ , ( ), YY ⋅  by ( ) ( )( ),, , X YX Y ⋅


 , briefly ( ),X Y , we denote the 

normed space of all additive and continuous mappings XA Y∈ . 
Let C be a convex cone in a real normed space ( ), XX ⋅ . From now on, let the set ( )( ),C clb Y  consists of 

all set-valued function ( ):A C clb Y→  which are ∗additive and continuous (so positively homogeneous), i.e.,  

( )( ) ( )( ){ }*, : is additive and continuous .
C

C clb Y A clb Y A= ∈                  (18) 

The set ( )( ),C clb Y  can be equipped with the metric defined by  

( )( ) ( )
{ }

( ) ( )( )
,

\ 0

,
, : .supC clb Y

y C Y

d A y B y
d A B

y∈
=                         (19) 

3. Some Results and Its Consequences 
For a set C X⊂ , we put  

( ) ( ) ( ){ }, : , | .RV I C f RV I X f I Cϕ ϕ= ∈ ∈                               (20) 

Theorem 3.1. Let ( ),X ⋅  be a real normed space, ( ),Y ⋅  a real Banach space, C X⊂  a convex cone, 
I ⊂   an arbitrary interval and let ,ϕ ψ ∈ . Suppose that set-valued function ( ):h I C clb Y× →  is such 
that, for any t I∈  the function ( ) ( ), :h t C clb Y⋅ →  is continuous with respect to the second variable. If the 
composition operator H generated by the set-valued function h maps ( ),RW I Cϕ  into ( )( ),RW I clb Yψ , and 
satisfies the inequality  

( ) ( )( ) ( ) ( )1 2 1 2 1 2, , , ,D H f H f f f f f RV Iψ ϕϕ
γ≤ − ∈                         (21) 

for some function [ ) [ ): 0, 0,γ +∞ → +∞ , then the left and right regularizations of h, i.e., the functions 

( ):h I C clb Y− − × →  and ( ):h I C clb Y+ + × →  defined by  

( ) ( )

( ) ( )

, : lim , , , and

, : lim , ,
s t

s t

h t x h s x t I x C

h t x h s x t I x C

− −

↑

+ +

↓

= ∈ ∈

= ∈ ∈
 

exist and  

( ) ( ) ( )

( ) ( ) ( )

*

*

, : , , and

, : , ,

h t x A t x B t t I x C

h t x A t x B t t I x C

− − − −

+ + + +

= + ∈ ∈

= + ∈ ∈
 

for some functions ( )( ): ,A I X clb Y− − →  , ( )( ): ,A I X clb Y+ + →  , ( ):B I clb Y− − →  and  
( ):B I clb Y+ + → , where infI I I− =  , supI I I+ =  , and ( )( ), ,B B RW I clb Yψ

− + ∈ .  
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Proof. For every x C∈ , the constant function ( )f t x= , t I∈  belongs to ( ),RV I Cϕ . Since H maps 

( ),RV I Cϕ  into ( )( );RW I clb Yψ , the function ( )( ) ( ),Hf t h t x=  ( )t I∈  belongs to ( )( );RW I clb Yψ . By  

([12], Theorem 4.2), the completeness of ( )clb Y  with respect to the Hausdorff metric implies the existence of 
the left regularization h−  of h. Since H satisfies the inequality (21), by definition of the metric Dψ , we obtain  

( ) ( )( ) ( ) ( )1 2 1 2 1 2, , for , , .p H f H f f f f f RV I Cψ ϕϕ
γ≤ − ∈                   (22) 

According to Lemma 2.4, if ( )1 2 0f f
ϕ

γ − > , the inequality (22) is equivalent to  

( ) ( ) ( )( ) ( )
1 2

1 2 1 2, 1, , , .
f f

W H f H f f f RV I C
ϕ

ϕγ −
≤ ∈                    (23) 

Therefore, if 1 1 2 2inf supm mI s t s t s t I< < < < < < < < , ,i is t I∈ , { }1,2, ,i m∈  , m∈ , the defini-
tions of the operator H and the functional Wρ , imply   

( )( ) ( )( ) ( )( ) ( )( )

( )( )
( )

* *

1 2 2 1

1 1 2

, , , , ,
1.

i i i i i i i im

i i
i i i

D h t f t h s f s h t f t h s f s
t s

f f t s
ϕ

ψ
γ=

  + +     − ≤
 − −
 
 

∑          (24) 

For , , inf sups t I s t I′ ′ ′ ′∈ ≤ < ≤ , we define the function [ ], : 0,1s tη ′ ′ →  by 

( ),

0 if

: if

1 if .

s t

t s
t st s t t
t s

t t

η ′ ′

′≤
 ′− ′ ′= ≤ ≤ ′ ′−

′ ≤

                             (25) 

Let us fix t I −∈ . For an arbitrary finite sequence 1 1 2 2inf m mI s t s t s t t< < < < < < < <  and  
1 2 1 2, , x x C x x∈ ≠ , the functions :jf I X→  defined by  

( ) ( )( ), 1 2 2
1: , , 1, 2,
2 i ij s t jf x x x x I jτ η τ τ = − + + ∈ =                    (26) 

belongs to the space ( ),RV I Cϕ . It is easy to verify that  

( ) ( ) 1 2
1 2 , ,

2
x xf f Iτ τ τ
−

− = ∈  

whence  

1 2
1 2 2

x x
f f

ϕ

−
− =  

and, moreover  

( ) ( ) ( ) ( )1 2 1 2
1 1 2 1 2 2; ; ; .

2 2i i i i
x x x xf t x f t f s f s x+ +

= = = =  

Applying (24) for the functions 1f  and 2f  we get:   

( ) ( )

( )( )
( )

* *
1 2 1 2

1 2

1 1 2

, , , , ,
2 2

1.
i i i im

i i
i i i

x x x xD h t x h s x h t h s
t s

f f t s
ϕ

ψ
γ=

  + +    + +     
      − ≤

 − −  
 

∑           (27) 

All this technique is based on [12]. From the continuity of ψ  and the definition of h− , passing to the limit 
in (27) when is t↑ , we obtain that  
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( ) ( )

( )( )
( )

*
1 2

1 2

1 1 2

, , , 2 ,
2

1,
i im

i i
i i i

x xD h t x h s x h t
t s

f f t s
ϕ

ψ
γ

− − −

=

  +  +   
    − ≤

 − −  
 

∑                    (28) 

that is  

( ) ( )

( )
( )

*
1 2

1 2

1 2

, , , 2 ,
2 1 .

2

i i

i i

i i

x xD h t x h s x h t
t s

mx x
t s

ψ
γ

− − −
  +  +   

    − ≤  −  −    

                   (29) 

Hence, since m∈  is arbitrary, we get,  

( ) ( )

( )

*
1 2

1 2

1 2

, , , 2 ,
2

0,

2 i i

x xD h t x h t x h t

x x
t s

ψ
γ

− − −
  +  +   

    =  −  −    

 

and, as ( ) 0zψ =  only if 0z = , we obtain  

( ) ( )
*

1 2
1 2, , ;2 , 0.

2
x xD h t x h t x h t− − − +  + =  

  
 

Therefore  

( ) ( )
*

1 2
1 22 , , ,

2
x xh t h t x h t x− − −+  = + 

 
                           (30) 

for all t I −∈  and all 1 2,x x C∈ . 
Thus, for each t I −∈ , the set-valued function ( ) ( ), :h t C clb Y− ⋅ →  satisfies the ∗Jensen functional equa-

tion. 
Consequently, by Lemma 2.5, for every t I −∈  there exist an ∗additive set--valued function ( ) ( ):A t C clb Y− →  

and a set ( ) ( )B t clb Y− ∈  such that  

( ) ( ) ( )
*

, for , ,h t x A t x B t x C t I− − − −= + ∈ ∈                           (31) 

which proves the first part of our result. 
To show that ( )A t−  is continuous for any t I −∈ , let us fix ,x x C∈ . By (7) and (31) we have  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
* *

, , , , , .D A t x A t x D A t x B t A t x B t D h t x h t x− − − − − − = + + = 
 

      (32) 

Hence, the continuity of h with respect to the second variable implies the continuity of ( )A t−  and, conse-
quently, being ∗additive, ( ) ( )( ),A t C clb Y∈  for every t I −∈ . To prove that ( )( ),B RW I clb Yψ

− ∈  let us 
note that the ∗additivity of ( )A t−  implies ( ) { }0 0A t− = . Therefore, putting 0x =  in (31) we get  

( ) ( ),0 , ,h t B t t I− − −= ∈                                      (33) 

which gives the required claim. 
The representation of the right regularization h+  can be obtained in a similar way.  
Remark 3.2. If the function [ ) [ ): 0, 0,γ +∞ → +∞  is right continuous at 0 and ( )0 0γ = , then the assump-

tion of the continuity of h with respect to the second variable can be omitted, as it follows from (2).  
Note that in the first part of the Theorem 3.1 the function [ ) [ ): 0, 0,γ +∞ → +∞  is completely arbitrary. 
As in immediate consequence of Theorem 3.1 we obtain the following corollary Lemma 3.3. 
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Lemma 3.3. Let ( ),X ⋅  be a real normed space, ( ),Y ⋅  a real Banach space, C a convex cone in X and 
suppose that ,ϕ ψ ∈ . If the composition operator H generated by a set-valued function ( ):h I C clb Y× →  
maps ( ),RV I Cϕ  into ( )( ),RW I clb Yψ , and there exists a function [ ) [ ): 0, 0,γ +∞ → +∞  right continuous at 
0 with ( )0 0γ = , such that  

( ) ( )( ) ( ) ( )1 2 1 2 1 2, , , ,D H f H f f f f f RV Iψ ϕϕ
γ≤ − ∈                    (34) 

then  

( ) ( ) ( )

( ) ( ) ( )

*

0 1

*

0 1

, : , , and

, : , ,

h t x h t x h t t I x C

h t x h t x h t t I x C

− − − −

+ + + +

= + ∈ ∈

= + ∈ ∈
 

for some ( )( )0 : ,h I X clb Y− − →  , ( )( )0 : ,h I X clb Y+ + →  , ( )1 :h I clb Y− − →  and ( )1 :h I clb Y+ + → .  

4. Uniformly Bounded Composition Operator 
Definition 4.1. ([8], Definition 1) Let X and Y be two metric (normed) spaces. We say that a mapping 

:H X Y→  is uniformly bounded if for any 0t >  there is a real number ( )tγ  such that for any nonempty set 
B X⊂  we have  

( ) ( ).diamB t diamH B tγ≤ ⇒ ≤                             (35) 

Remark 4.2. Obviously, every uniformly continuous operator or Lipschitzian operator is uniformly bounded. 
Note that, under the assumptions of this definition, every bounded operator is uniformly bounded.  

The main result of this paper reads as follows:  
Theorem 4.3. Let ( ),X ⋅  be a real normed space, ( ),Y ⋅  be a real Banach space, C X⊂  be a convex 

cone, I ⊂   be an arbitrary interval and suppose ,ϕ ψ ∈ . If the composition operator H  generated by a 
set-valued function ( ):h I C clb Y× →  maps ( ),RV I Cϕ  into ( )( ),RW I clb Yψ , and is uniformly bounded, 
then  

( ) ( ) ( )

( ) ( ) ( )

*

*

, : , , and

, : , ,

h t x A t x B t t I x C

h t x A t x B t t I x C

− − − −

+ + + +

= + ∈ ∈

= + ∈ ∈
 

for some functions ( )( ): ,A I X clb Y− − →  , ( )( ): ,A I X clb Y+ + →  , ( ):B I clb Y− − →  and  

( ):B I clb Y+ + → , where infI I I− =  , supI I I+ =  , and ( )( ), ,B B RW I clb Yψ
− + ∈ .  

Proof. Take any 0t ≥  and arbitrary ( )1 2, ,f f RV I Cϕ∈  such that  

1 2 .f f t
ϕ

− ≤                                        (36) 

Since { }1 2,diam f f t≤ , by the uniform boundedness of H, we have  

{ }( ) ( )1 2, ,diamH f f tγ≤                                   (37) 

that is  

( ) ( ) { }( ) ( )1 2 1 2 1 2, ,H f H f diamH f f f f
ϕψ

γ− = ≤ −                      (38) 

and the result follows from Theorem 3.1.  
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