
International Journal of Modern Nonlinear Theory and Application, 2015, 4, 127-141 
Published Online June 2015 in SciRes. http://www.scirp.org/journal/ijmnta 
http://dx.doi.org/10.4236/ijmnta.2015.42009  

How to cite this paper: Hou, J.Y., Yan, W.J. and Chen, J. (2015) Velocity Projection with Upwind Scheme Based on the Dis-
continuous Galerkin Methods for the Two Phase Flow Problem. International Journal of Modern Nonlinear Theory and Ap-
plication, 4, 127-141. http://dx.doi.org/10.4236/ijmnta.2015.42009  

 
 

Velocity Projection with Upwind Scheme 
Based on the Discontinuous Galerkin 
Methods for the Two Phase Flow Problem 
Jiangyong Hou1,2, Wenjing Yan1,2*, Jie Chen1,2 
1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China 
2Center for Computational Geosciences, Xi’an Jiaotong University, Xi’an, China 
Email: *wenjingyan@mail.xjtu.edu.cn  
 
Received 20 March 2015; accepted 12 June 2015; published 17 June 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The upwind scheme is very important in the numerical approximation of some problems such as 
the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow 
formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods 
combined with the upwind scheme are usually used to solve the phase pressure equation. In this 
case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local 
mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in 
some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways 
to calculate the nonlinear coefficients may have distinct and significant effects, which have been 
investigated by some authors. We propose a new algorithm to obtain a more effective and stable 
approximation of the coefficients under the consideration of the upwind scheme. 
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1. Introduction 
In the context of some fields, such as modeling and simulation of fluid flows in petroleum or groundwater re-
servoirs, the studies of processes of the simultaneous flow of two or more fluid phases within a porous medium 
are of great significance. In this paper, we consider the cases of two-phase flow where the fluids are immiscible. 
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A large number of methods, which are based on the finite difference (FD), the finite volume (FV) or the finite 
element (FE) methods, have been developed to deal with the two-phase flow problem. As is well known, no 
matter which kind of numerical methods is used, the upwind scheme is of great significance in the approxima-
tion of some problems such as the convection dominated problem, the two-phase flow problem, and so on. 

To achieve stable numerical computations in the simulation of two-phase flow problem, an accurate approxi-
mation of the flux is one of the most important and desirable ingredients. If we use Penalty Discontinuous Ga-
lerkin (PDG) methods to discretize the pressure equation, like in [1]-[3], both the pressure and saturation equa-
tions will be discritized by the PDG methods, and a process of reconstruction of the velocity needs to be done 
after the pressure equation is solved. In [2], an average total velocity was post processed by substituting the 
piecewise constants of pressure gradient and saturation gradient into the velocity-pressure expression directly. 
Actually such reconstructed velocity, on some level, belongs to the lowest order Raviart-Thomas finite element 
space. In [4], a post-processed total velocity is reconstructed in the Brezzi-Douglas-Marini (BDM) finite ele-
ment spaces. But it needs that the degree of the polynomial is more than one, that is, using the linear approxima-
tion in DG method is not enough to reconstruct a velocity in BDM1 space. A more stable and accurate recon-
struction was developed in [1], in which the velocity reconstructed from the piecewise linear pressures could 
even belong to the first-order Raviart-Thomas finite element space. However, all the reconstructions mentioned 
above didn’t consider the upwind scheme, which was basically used in the discretization of the equations. The 
property of the local mass conservation is crucial in porous media flow and transport problems. The upwind 
scheme has direct effect on the local mass conservation of the reconstructed velocity. We found that unless the 
upwind scheme and penalty terms which are used in the discretization of the two-phase flow problem are consi-
dered together into the velocity reconstruction, the error of the local mass conservation cannot reach a satisfac-
tory level. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces [5] with consi-
dering the upwind scheme totally. 

The different ways to calculate the nonlinear coefficients may have distinct and significant effects, which 
have been investigated by some authors. For the approximation of the coefficients, we extend the one used in [6] 
to that each coefficient in element K is evaluated as the average of the upwind value on K∂ . This improves the 
stability of the numerical scheme even when an explicit scheme is used. In contrast with the explicit scheme de-
scribed in [2], our explicit PDG scheme with this special approximation of coefficients can not only get rid of 
the extra penalties from the pressure equation but also have a robust performance in the heterogeneous media. 

The rest of the article is organized as follows: In addition to the introduction and conclusion, we divide the 
text of this document into four parts. Section 2 is the first part and consists of two subsections, in which we in-
troduce governing equations of two-phase flow problem and the corresponding interface conditions in Subsec-
tions 2.1 and 2.2 respectively. The second part, Section 3, comes in four subsections. In Subsection 3.1, the up-
wind average approximations of coefficients are introduced. In Subsections 3.2 and 3.3, the PDG methods are 
used for the pressure equation and the velocity reconstruction is presented respectively. In Subsection 3.4, the 
PDG methods are used for the saturation equation. The third part, Section 4, consists of two subsections. In 
Subsections 4.1 and 4.2, we introduce all the possible projection schemes with respect to the velocity recon-
struction and the scheme without any explicit projections. In the last part, Section 5, several numerical examples 
in two dimensions are provided. 

2. Problem Model 
2.1. Mathematical Formulation 
We consider two immiscible incompressible fluids in porous media and there is no mass transfer between the 
phases. Various and alternative model equations for two-phase flow problem can be found in reference [7]. Here 
we use the phase formulation for which the primary variables are wetting phase pressure and saturation ( wp  
and wS ), and in the absence of gravity and sink/source term we have: 

( ) 0,t w n cD p D pλ λ−∇ ⋅ ∇ + ∇ =                                   (1) 

( )d
0,

d
w c

n w w w t
w

S p
f D S f u

t S
φ λ

 ∂
+∇ ⋅ ∇ +∇ ⋅ = ∂  

                     (2) 

where the denotations and meanings of each coefficient and their relationships are defined as follows: D is the 
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absolute permeability tensor and is discontinuous in heterogeneous media; φ  denotes the porosity of the me-
dium; cp  is the capillary pressure; nλ , wλ  and tλ  are wetting, nonwetting and total mobility respectively; 

wf  is the fractional flow; ∇  and ∇⋅  are the gradient operator and divergence operator respectively. We will 
use the Brooks-Corey model [8] throughout this paper, in which some of these coefficients are non-linear func-
tions defined below: 

( )
1

,c w d wp S p S θ
−

=                                          (3) 

( )
( )

2
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1 1
,

w w

n w
n

S S
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 =                               (4) 
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= + = =                               (6) 
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S S
S

S Srw
−

=
− −

                                       (7) 

where dp  is the entry pressure needed for the wetting phase to enter large pores which are completely filled 
with the non-wetting phase; nµ  and wµ  are the non-wetting and wetting phase viscosity; θ  is the parameter 
associated with pore size distribution; rnS  and rwS  are the residual saturation. 

Some notations for the mesh are given below: Ω  is the domain; ∂Ω  is the boundary of the domain; h  is 
the partition of Ω ; K is the finite element in h ; K∂  is the edges of element K; :h =  {e: all edges in h }, 
is the set of all edges contained in h ; i

h  is the set of all interior edges contained in h . The Equations (1) 
and (2) are subject to appropriate initial and boundary conditions to close the system. Here we give two feasible 
sets of boundary conditions: one is the Mixed-Neumann boundary condition as in [2], 

( ) ,   on  ,w t n w c in t sMS u f D p n S u nλ+ ∇ ⋅ = ⋅ Γ                          (8) 

,   on  ,n w c N sNf D p n gλ ∇ ⋅ = Γ                                    (9) 

,     on  ,w D pDp g= Γ                                          (10) 

0,   on  ,t pNu n⋅ = Γ                                           (11) 

and the other is Neumann-Drichlet boundary condition used in [9], 

( ) ,   on  ,w
w n w c w t N sNu n f D p f u n gλ⋅ = ∇ + ⋅ = Γ                       (12) 

,   on  ,n dir sDS S= Γ                                            (13) 

,   on  ,w dir pDp p= Γ                                           (14) 

,   on  .t
t N pNu n g n⋅ = ⋅ Γ                                        (15) 

The whole boundary of the porous medium domain ∂Ω  is divided into three mutually disjoint parts: the in-
flow, noflow, and outflow boundaries ( inΓ , noΓ , outΓ ), respectively. In the case of Neumann-Drichlet boun-
dary condition, pDΓ  and sDΓ  occupy the outflow boundary, pNΓ  and sNΓ  occupy the inflow and no-flow 
boundaries such that 0Ng <  on inflow boundary and 0Ng =  on no-flow boundary. In the case of mixed- 
Neumann boundary condition, pDΓ  occupies the inflow and outflow boundaries, pNΓ  occupies the no-flow 
boundary, sMΓ  occupies the inflow boundary, and sNΓ  occupies the no-flow and outflow boundaries. 
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2.2. Interface Conditions 
In order to test the barrier effect phenomenon of two phase flow, the nonlinear interface condition discussed in 
[1] [6] [10]-[13] will be introduced here. Following [9], we assume an initially fully water saturated domain 
( )I IIΩ = Ω Ω  with an interface JΓ  between two different sands, and the oil is injected from the inflow part of 
boundary inΓ , see Figure 1. In addition, we assume that IΩ  stands the coarse sand and IIΩ  is the fine sand. 

The process of the phenomenon is described briefly below. First, oil approaches the material interface but 
cannot penetrate it and begin to accumulate. In this case, only water pressure wp  is continuous on the interface, 
capillary pressure cp  and saturation wS  are discontinuous and satisfy: 

( )

1

,

,

1 .

I
I

II

I
c d w

II
c d

I II I II
w w w rn

p p S

p p

S S S S

θ
−

Ω

Ω


=

 =


− = − −


                              (16) 

Then, when more and more oils accumulate at the interface and the capillary pressure on the coarse side ex-
ceeds the entry pressure of the other side ( )I

II
c dp pΩ ≥ , the oils begin to penetrate and enter the fine sand. At 

this time, both wp  and cp  are continuous, but saturation wS  is still discontinuous and satisfies: 

( )1 .
1

II
II
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II I I

I II I II II IId w rw
w w w rw rn rwI I I
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                (17) 

We note that a critical point of saturation can be found when the capillary pressure on coarse side increases to 
the value equivalent to the threshold pressure on fine side. That is, deducing from 

I

II
c dp pΩ =  we have, 

( )* 1 .
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d

p
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p

θ
 

= − − + 
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                           (18) 

This point will be used to judge whether the nonwetting phase can or cannot penetrate the material interface. 
So the interface conditions can be rewritten in the form below. For capillary pressure, 

1
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, ,

0, ,
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I II II
d w d w wc c

I
w w

p S p S Sp p
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−
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                       (19) 

and for wetting phase saturation, 
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           (20) 

 

 
Figure 1. The interface (dashed line) between two subdomains 
with different rock properties. 
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Condition (20) is the same as that described in [1] except that the wetting phase (instead of the nonwetting 
phase) is used as the saturation variable. Moreover, (19) is only written for the capillary pressure and not for the 
wetting phase pressure, since the variable wp  is always continuous in the problem discussed. Noting that if the 
sub-domain IΩ  has a finer texture than IIΩ , all the relationship above can be treated in a similar manner with 
superscript I  and II  reversed. 

3. Discrete Schemes 
3.1. Approximation of Coefficients 
For the approximation of coefficients,we extend the one used in [6]. Let σ  denote any coefficients waiting for 
some proper approximations. Firstly we recall the original way to approximate the coefficients, 

1 ,

1 .

e e

K K

e

K

σ σ

σ σ

 =


 =


∫

∫
                                   (21) 

The approach described in [6] is, 

( )

( )
,

,

,

1 ,
3

e K e

K e K e
e K
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σ σ

σ σ
∈∂

 =



=


∑
                                (22) 

where ,K eTS  denotes the mean water saturation on the edge e of the element K, see [6] for more details. Now it 
is extended to the following one, 

1 ,

1 .
3

e e

K e
e K

e
σ σ

σ σ
↑

∈∂

 =

 =

∫

∑
                                   (23) 

where the upwind value of the side average on the interior edge is considered. The quantity σ ↑  is called the 
upwind flux which is done with respect to the normal component of the total velocity tu , such that for all 

e K K− +∈∂ ∂ , 

,  0,

,  0.
t eK

t eK

u n

u n

σ
σ

σ

−

+

↑
 ⋅ ≤= 

⋅ >
                                (24) 

where the normal vector en  points from K +  to K − . Throughout this paper, all the coefficients on element K 
and edge e are calculated by the upwind averaged constant and the integral average constant which are described 
in (23). 

3.2. Pressure Approximation with PDG 
In this section we apply the Penalty Discontinuous Galerkin (PDG) methods [14] such as Nonsymmetric Interior 
Penalty Galerkin (NIPG) to the pressure Equation (1). Some notations for DG methods are defined: 

{ } ( ) [ ]1: ,  : ,  ,
2 hv v v v v v e− + − += + = − ∀ ∈                          (25) 

{ } [ ]: ,  : ,  ,v v v v e= = ∀ ∈∂Ω                                      (26) 

( ) ( ){ }2
1: | | , ,h K hX w L w P K K= ∈ Ω ∈ ∀ ∈                        (27) 
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where v±  are the restrictions of v on two adjacent elements K ±  respectively. 
The pressure Equation (1) discretized by PDG reads as follows. 
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            (28) 

Indeed, the PDG methods are only applied to the wetting-phase pressure term, for the capillary pressure term 
a traditional DG method with the upwind scheme is used. 

3.3. Velocity Reconstruction 
After solving the discrete pressure Equation (28), the total velocity will be reconstructed in the lowest-order Ra-
viart-Thomas space ( )0RT , the first-order Raviart-Thomas space ( )1RT  and the first-order Brezzi-Douglas- 
Marini space ( )1BDM  respectively, refer to [5] for more details about those spaces. The main idea of the re-
construction in the current section follows the one depicted in [1], and we will extend it to the situation that the 
discretization of the pressure equation contains an upwind scheme. 

A proper reconstruction of velocity stems from the local mass conservation law as shown in the following 
description. Firstly, we recast the variational Equation (28) on element K into two parts as follows, 

{ }1 1 1d
,

d

k
k k k k k kc
t t K w n K w t e wK K K e

e Kw

p
u v D p v D S v D v n p

S
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 − ⋅∇ = ∇ ⋅∇ + ∇ ⋅∇ + ∇ ⋅   

 
∑∫ ∫ ∫ ∫     (29) 

{ }[ ] [ ] [ ]1 1 1d
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t e t w e n w e we e e e
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p
u n v D p n v D S n v p v
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     ⋅ = − ∇ ⋅ − ∇ ⋅ +      

∫ ∫ ∫ ∫         (30) 

Combing (29) and (30), it is easily seen that the local mass is conserved, 

( ) ( )1 1 1 1 1 ,k k k k k
t t t e w nK K e K

e K
u v u v u n v q q v+ + + + +

∈∂

∇ ⋅ = − ⋅∇ + ⋅ = +∑∫ ∫ ∫ ∫                (31) 

where wq  and nq  are the sink and source terms which are zeros here. Noting that if the edge e belongs to both 
K∂  and DΓ  on the right hand side of Equations (29) and (30), 1k

wp +    is equal to ( )1k
w dirp p+± −  and the 

sign ±  is determined by the direction of en , for example, the sign is positive when en  is the outer normal 
vector with respect to K∂ . 

Secondly, using (29) and (30) as the degree of freedom for some H(div) spaces, the total velocity will be ob-
tained as some appropriate projections or interpolations in these spaces. In order to have a proper interpolation 
in 0RT , 1RT  and 1BDM  spaces, we should specify a set of degree of freedom (DOF) for these H(div) spaces 
and a corresponding set of basis functions. If let v be any constant in the polynomial space of degree zero 0P , 
(29) will vanish and (30) will become the 0RT  space’s DOF which is the integral of the normal component of 
velocity on each edge. Correspondingly, the set of basis functions for 0RT  on the reference element is, 

( )1ˆ ,  1, 2,3,
ˆ2

i ix a i
K

ϕ = − =                             (32) 

where K̂  is the area of the reference element K̂  and ia  is one of its the vertices. 
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Let |v K  and |v e  be any functions in the space of polynomial of degree one 1P , then (29) and (30) be-
come the DOFs for 1RT . The corresponding basis functions for 1RT  space on the reference elements are, 

2 2
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Let |v e  be any functions in 1P  polynomial space, thus the basis functions of 1BDM  can be obtained in a 
similar manner except that (29) is not used. All the DOFs for 1BDM  are just defined on the edges of element, 
so only (30) is used to determine the basis functions. The corresponding basis functions for 1BDM  are, 
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It is noted that the choice of DOFs for the 1BDM  and 1RT  spaces is not unique, for example, the half-edge 
integral of the normal components of velocity is also available and applicable. 

3.4. Saturation Approximation 
The spatial discretization of the saturation equation is similar to that of the pressure equation given in (28). The 
diffusion term of the saturation equation is discretized by the PDG methods, and the advective term is discre-
tized by a traditional DG method with using the upwind scheme. An Euler scheme in time is used. The satura-
tion Equation (2) equipped with Mixed-Neumann boundary conditions (8)-(11) could be written as: 
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The variational form in terms of Neumann-Dirichlet boundary conditions (12)-(15) reads: 
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where ( )wJ S  is the interface condition of saturation described in (20). 

4. Feasible Projections of the Discrete Strategies 
4.1. DDG Methods with Some Other Projections 
The abbreviation DDG means that DG methods are used for both pressure and saturation equations. For a clear 
comparison in the numerical experiments, we list all the possible and feasible projections below. Firstly, we de-
note RT(1) (or BDM(1)) as the the velocity space projected into RT (or BDM) space by (29) and (30). Secondly, 
RT(2) (or BDM(2)) means the projection into RT (or BDM) space with considering the upwind scheme but without 
the penalty term, 
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Thirdly, for ( )3RT  (or ( )3BDM ), it means the projection with considering the penalty term but without the 
upwind scheme, 
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At last, for ( )4RT  (or ( )4BDM ), it means the projection without considering both the penalty term and the 
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upwind scheme, 
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As indicated in introduction, for all DDG methods the velocity derived by the projection ( )1RT  (or ( )1
1BDM ) 

preserves the local mass conservation property best, which will shown in the numerical examples. 

4.2. DDG Method without Explicit Projections 
In [2] the velocity is used directly as the combination of the gradient of the solutions and coefficients, as 
follows, 
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where the average of the total velocity is used in the interior edges. Although it doesn’t use any projections ex-
plicitly, the velocities constructed from (41) and (42) are some kind of implicit projections into 0RT  space. The 
velocity derived from (41) and (42) is close to the velocity projection in ( )4

0RT  space which is constructed by 
(39) and (40). But their value in each element is different. Furthermore, the DDG method with using the velocity 
reconstruction presented in this subsection has certain differences in contrast to what proposed in [2], which are 
reflected in two aspects below: 

1) The variational form of the saturation equation doesn’t incorporate any additional penalties from the pres-
sure equation. 

2) The approximations of the coefficients are totally different. 

5. Numerical Examples 
In this section, we present some computer experiments to examine the proposed methods on two dimensional 
spaces. Both two boundary conditions with different types are used in the examination of all the methods. In 
tests 1 and 2 we consider the displacement of the non-wetting phase by the wetting phase, which is similar to the 
so called quarter-five spot problem introduced in [2]. In test 3 we consider the displacement of the wetting phase 
by the non-wetting phase which is used to simulate the barrier effect in [9]. The domains used in the experi-
ments are the square ( )20, 2  with two corners be cut off, and for the mesh used in the discontinuous problem a 
small square with different rock property is fixed inside the domain, see Figure 2(a) and Figure 2(b). In each 
test, we use the Nonsymmetric Interior Penalty Galerkin (NIPG) method with the penalty parameters 1=ε , 

1=σ  and 1β = . In order to prevent the oscillations, a slope limiter procedure described in [15] is used. 
If considering the mixed-Neumann type boundary (8)-(9) for the saturation equation, the following initial and 

boundary conditions are used: 

( )0 0.2,wS t = =                                        (43) 

( )0.9   on  ,in sM inS = Γ Γ                                 (44) 

( )0 m s   on  ,N sN no outg = Γ Γ Γ                          (45) 

( )63.45 10 Pa   on  ,dir pD inp = × Γ Γ                         (46) 
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(a)                                                   (b) 

Figure 2. Meshes used in the experiments. (a) quarter-five spot mesh used in homogeneous medium; (b) 
quarter- five spot mesh used in discontinuous media. 

 
( )62.41 10 Pa   on  ,dir pD outp = × Γ Γ                            (47) 

( )0 m s   on  .t e pN nou n⋅ = Γ Γ                                 (48) 

When the Neumann-Dirichlet type boundary (12)-(13) is used for the saturation equation, the following initial 
and boundary conditions are considered: 

( )0 1,wS t = =                                            (49) 

( )10 m s    on  ,n e sN inu n −⋅ = ⋅ Γ Γ                              (50) 

( )10 m s    on  ,w e sN nou n −⋅ = ⋅ Γ Γ                              (51) 

( )1   on  ,dir sD outS = Γ Γ                                     (52) 

( )2 12.05 10  m s    on  ,t e pN inu n − −⋅ = × ⋅ Γ Γ                       (53) 

( )10 m s    on  t e pN nou n −⋅ = ⋅ Γ Γ                              (54) 

( )52.01 10 Pa   on  .dir pD outp = × Γ Γ                           (55) 

The parameters including rock and fluid properties used in the simulation are summarized in Table 1. 

5.1. Test 1 
In test 1, we examine the property of the local mass conservation law. For this purpose, we solve the so-called 
quarter-five spot problem on a homogeneous medium and check the numerical local mass of the reconstructed 
velocity. All the projection methods discussed above will be used and compared. The domain used in the expe-
riment is the square ( )20, 2  with two corners be cut off, see Figure 2(a). The initial and boundary conditions 
(43)-(48) is used. The parameters with respect to the rock property and Brooks-Corey model are listed in Table 
1, Test 1. In Figure 2(a), the spot at the left bottom is the inflow boundary inΓ , the outflow boundary outΓ  is 
located at the right top corner, the rest of the boundary is the noflow boundary noΓ . To make sure that the water 
front stays inside the domain, the final time is set to T = 160 s. We use a constant time step, and the ratio of the 
time step to the space step’s square is about 2 4.5dt h  . We use ( )0DDG  to denote the DDG method without 
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Table 1. Parameters used in the numerical simulations. 

Test 1 

porosity 0.4φ =  

permeability [m2] [ ] 1150.4,0;0,1 10D −= ×  

viscosity[kg/(ms)] 31.0 10nµ
−= × , 41.0 10wµ

−= ×  

residual saturation 0.05rwS = , 0.1rnS =  

Brooks-Corey 33 10 Padp = × , 3θ =  

Test 2 

porosity 0.2φ =  

permeability [m2] [ ] 111,0;0,1 10D −= ×  

viscosity[kg/(ms)] 32.0 10nµ
−= × , 45.0 10wµ

−= ×  

residual saturation 0.05, 0.01rw rnS S= =  

Brooks-Corey 35 10 Padp = × , 2θ =  

Test 3 

porosity 0.2Iφ = , 0.2IIφ =  

permeability [m2] [ ] 1110,0;0,1 10ID −= × , [ ] 111,0;0,1 10IID −= ×  

viscosity[kg/(ms)] 21.0 10nµ
−= × , 31.0 10wµ

−= ×  

residual saturation 0I II
rw rwS S= = , 0I II

rw rnS S= =  

Brooks-Corey 41 10 PaI
dp = × , 41.5 10 PaII

dp = × , 2Iθ = , 2IIθ =  

 
explicit projections. Since there is no sink and source terms the exact local mass is zero on each elements, that is,  

, 0,h t ee
e K

K u n
∈∂

∀ ∈ ⋅ =∑ ∫  where en  is the outward unit normal vector to K∂ . Thus we can easily define the  

errors of the local mass conservation under the vector norms l∞  and 2l  which are respectively 
1

2 2

max and .
h h

t e t ee eK e K K e K
u n u n

∈ ∈∂ ∈ ∈∂

  
⋅ ⋅       

∑ ∑ ∑∫ ∫ 
                     (56) 

The errors of the local mass conservation at selected times are listed in Table 2 and Table 3. 

5.2. Test 2 
In this test, we show the numerical solutions solved by our scheme with using projection ( )1

0RT  in a homoge-
neous media. For the results with using projection ( )1

1BDM  and ( )1
1RT , they are similar with using ( )1

0RT  so 
are omitted. The mesh used in test 2 is the same as the previous test.The initial and boundary conditions (43)-(48) 
are used in this test. To make sure that the water front stays inside the domain, the final time is set to T = 180 s. 
A constant time step is used, and the ratio of the time step to the space step’s square is about 2 4.5dt h  . The 
parameters of rock property and Brooks-Corey model are listed in Table 1, Test 2. The contours of wetting 
phase saturation in the homogeneous medium at selected times are presented in Figure 3. 

5.3. Test 3 
In the last test, we examine our scheme in a discontinuous media. We assume that the domain used here is in-
itially fully water saturated and with the interfaces between two different sands, see Figure 4. IIΩ  is the fine 
sand and IΩ  is the coarse sand, so the oil-trapped phenomenon will appear on the interfaces J

+Γ  see Figure 4. 
The critical point in (19) is * 0.44wS ≈ , and the oil will penetrate the interface J

+Γ  when *I
w wS S≤ . The mesh  
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Table 2. Numerical errors of the local mass conservation in test 1 at times t = 40 s and t = 80 s. 

 t = 40 s t = 80 s 

 l∞  2l  l∞  2l  

( )0DDG  2.2913e−04 5.7110e−04 2.3767e−04 5.8819e−04 

( )1
0RT  2.8284e−09 1.6994e−08 2.2655e−09 1.6564e−08 

( )2
0RT  2.2117e−04 5.2564e−04 2.2860e−04 5.3194e−04 

( )3
0RT  2.0947e−05 7.6105e−05 1.8192e−05 6.8195e−05 

( )4
0RT  2.2087e−04 5.2553e−04 2.2808e−04 5.3135e−04 

( )1
1BDM  2.6577e−09 1.6747e−08 2.1773e−09 1.5875e−08 

( )2
1BDM  2.2117e−04 5.2564e−04 2.2860e−04 5.3194e−04 

( )3
1BDM  2.1408e−05 7.8417e−05 1.7849e−05 6.9403e−05 

( )4
1BDM  2.2086e−04 5.2552e−04 2.2808e−04 5.3135e−04 

( )1
1RT  2.0632e−09 1.6436e−08 2.5179e−09 1.7404e−06 

( )2
1RT  2.2933e−04 5.7035e−04 2.3798e−04 5.8939e−04 

( )3
1RT  2.1631e−05 7.9100e−05 1.7994e−05 7.0000e−05 

( )4
1RT  2.2913e−04 5.7110e−04 2.3766e−04 5.8819e−04 

 
Table 3. Numerical errors of the local mass balance in test 1 at times t = 120 s and t = 160 s. 

 t = 120 s t = 160 s 

 ∞l  2l  ∞l  2l  

( )0DDG  2.4309e−04 5.9636e−04 2.4690e−04 6.0363e−04 

( )1
0RT  2.4551e−09 1.7281e−08 2.3734e−09 1.8916e−08 

( )2
0RT  2.3367e−04 5.4152e−04 2.3644e−04 5.4898e−04 

( )3
0RT  2.1099e−05 7.1351e−05 1.4933e−05 6.7183e−05 

( )4
0RT  2.3305e−04 5.3781e−04 2.3576e−04 5.4316e−04 

( )1
1BDM  2.4264e−09 1.7214e−08 2.4283e−09 1.7782e−08 

( )2
1BDM  2.3368e−04 5.4152e−04 2.3644e−04 5.4898e−04 

( )3
1BDM  2.1464e−05 7.2709e−05 1.5027e−05 6.7311e−05 

( )4
1BDM  2.3305e−04 5.3780e−04 2.3576e−04 5.4316e−04 

( )1
1RT  2.0203e−09 1.6556e−08 2.4811e−09 1.8123e−08 

( )2
1RT  1.5926e−04 5.9819e−04 2.4740e−04 6.0948e−04 

( )3
1RT  2.1777e−05 7.3186e−05 1.5423e−05 6.6493e−05 

( )4
1RT  2.4309e−04 5.9636e−04 2.4691e−04 6.0363e−04 
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Figure 3. The contours of wetting phase saturation in the homogeneous medium at selected times in the Test 2. 
 

 
Figure 4. Discontinuous quarter-five spot problem. 

 
used in this test is Figure 2(b). The initial and boundary conditions (49)-(55) are used in this test. The initial and 
boundary conditions (49)-(55) are used in this test. To make sure that the water front stays inside the domain, the 
final time is set to T = 200 s. A constant time step is used, and the ratio of the time step to the space step’s 
square is about 2 4.5dt h  . The parameters of rock property and Brooks-Corey model are listed in Table 1, 
Test 3. When the oil flows from coarse sand to fine sand with the injection of oil from the inflow boundary inΓ , 
more and more oil approaches and accumulates at the front of the interface of the fine sand. When the accumu-
lation reaches a critical point, that is, when the capillary pressure at the coarse side of the interface is greater 
than at the fine side, the accumulated oil will penetrate the interface and enter the fine sand area. By contrast, in  
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Figure 5. The contours of wetting phase saturation in the discontinuous media at selected times in the Test 3. 
 
the reversed direction the oil immediately penetrate the interface, that is, the oil-trapped phenomenon will not 
happen if the oil flows from fine sand to coarse sand. The contours of wetting phase saturation in the disconti-
nuous media at selected times are presented in Figure 5. 

6. Conclusion 
The velocities reconstructed from projections ( )1

0RT  ( )1
1BDM  and ( )1

1RT  are much better to preserve the local 
mass conservation property than the others. That is, the velocity reconstruction with the projection that considers 
both the upwind scheme and penalty term can best preserve the local mass conservation property. The approxi-
mation of the coefficient (23) is very essential to the stability of all the DDG methods. Instead of (23), if the ap-
proximation of coefficient (21) is used, the variational form of the saturation equation has to incorporate addi-
tional penalties from the pressure equation; otherwise the scheme will be unstable. 
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