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Abstract 
In the paper, several different methods are adopted to control Lü system. With direct feedback 
method, Lü system can be stabilized at one equilibrium point or a limit cycle surrounding its equi-
librium. With adaptive time-delayed feedback method, feedback coefficient and delay time can be 
adjusted adaptively to stabilize Lü system at its original unstable periodic orbit. With minimal 
energy method, Lü system can also be stabilized at fixed point or limit cycle. Numerical simula-
tions show the effectiveness of our methods. 
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1. Introduction 
In 1990, Ott, Grebogi and Yorke presented the OGY method to control chaos [1]. After their pioneering work, 
chaotic control has become a focus in nonlinear problems and a lot of work has been done in the field [2]-[4]. 
Nowadays, many methods have been proposed to control chaos [5] [6]. Generally speaking, there are two kinds 
of control ways: feedback control and nonfeedback control [7]-[14]. Feedback methods are used to stabilize the 
unstable periodic orbit of chaotic systems by feeding back their states. Nonfeedback methods are adopted to 
change chaotic behaviors by applying perturbations to some parameters or variables. In the paper, we use sever-
al different methods to control the dynamic behavior of Lü system. With direct feedback method, Lü system can 
be stabilized at equilibrium point or limit cycle around its equilibrium. With adaptive time-delayed feedback 
method, Lü system can be stabilized at its original unstable periodic orbit. With minimal energy method (it’s a 
nonfeedback method), Lü system can also be stabilized at fixed point or limit cycle, though the fixed point or the 
center of the limit cycle is not its original equilibrium. Numerical simulations show the effectiveness of these 
methods.  
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2. The Description of Lü System 
The unified chaotic system [15] is described as 
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where [ ]0,1γ ∈ . When [ )0,0.8γ ∈ , system (1) belongs to Lorenz chaotic system [16]; when ( ]0.8,1γ ∈ , sys-
tem (1) belongs to Chen chaotic system [17]; when 0.8γ = , system (1) belongs to Lü chaotic system [18]. 

Obviously, Lü system is a bridge between Lorenz system and Chen system, so the study of Lü system is very 
significant. Let 0.8γ = , then system (1) is described as 

( )30
22.2

44 15.

x y x
y y xz
z xy z

= −


= −
 = −







                                     (2) 

System (2) is a typical Lü system. The attractor is shown in Figure 1 and the relevant projections of this at-
tractor are shown in Figure 2. 

There are close relationships between system (2) and a large class of chaotic systems (i.e. generalized Lorenz 
system family [19]), so it’s very meaningful to study the chaotic control of system (2). Next, direct feedback 
method, adaptive time-delayed feedback method and minimal energy method will be adopted to control this 
typical Lü system respectively. 

3. The Chaotic Control of Lü System with Three Methods 
3.1. Direct Feedback Method 
System (2) has three equilibriums, i.e., ( )0S 0,0,0 , ( )1S 8.0697,8.0697,22.2  and ( )1S 8.0697, 8.0697,22.2− − .  
 

 
Figure 1. The chaotic attractor of Lü system. 

 

 
(a)                                    (b)                                    (c) 

Figure 2. The projections of Lü attractor. 
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Suppose we want to stabilize Lü system at equilibrium S1 and the limit cycle surrounding S1 respectively. For 
convenience, choose y as feedback variable, this feedback is added to the second function of Equation (2), then 
the controlled Lü system can be described as 

( )
30( )
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where k is feedback coefficient. The Jacobian matrix of system (3) at ( )1S 8.0697,8.0697,22.2  is 

( )1
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Suppose λ  as eigenvalue, then the characteristic equation of Equation (4) is 
3 2

1 2 3 0c c cλ λ λ+ + + = ,                                   (5) 

where 1 10.7333c k= + , 2 88.0001 32.9333c k= + , 3 3907.2035+88c k= . 
According to Routh-Hurwitz criterion, when 1 0c > , 2 0c > , 3 0c >  and 1 2 3 0c c c− > , the real parts of all 

the eigenvalues of Equation (4) are negative, then system (3) will be stabilized at ( )1S 8.0697,8.0697,22.2 . It’s 
easy to obtain the solution 5.5311k > . Choose 6k = , the numerical simulations of system (3) are shown in 
Figure 3. 

Choose the critical value 5.5311k = , the eigenvalues of Equation (4) are 16.4365j, −16.4365j and −16.2644, 
system (3) is a limit cycle surrounding S1, the numerical simulations are shown in Figure 4. 

In the same way, Lü system can be stabilized at S0 or S2, or the relevant limit cycle surrounding S0 or S2. 
From numerical simulations, we see that Lü system may exhibit periodic behavior with the direct feedback me-
thod, but the profile of the original chaotic Lü attractor disappears under this control method. Next, an adaptive  
 

 
(a)                                   (b)                                    (c) 

Figure 3. When k = 6, system (3) converges to S1.  
 

 
(a)                                    (b)                                    (c) 

Figure 4. When k = 5.5311, system (3) becomes a limit cycle surrounding S1. 
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time delayed feedback method will be adopted to control Lü system, and the periodic orbit of the controlled 
system can maintain the profile of the original Lü attractor. 

3.2. Adaptive Time-Delayed Feedback Method 
In the time-delayed feedback method, the feedback signal can be described as [20] 

( ) ( ) ( )( )t t tτ= − −F K X X ,                               (6) 

where K is feedback coefficient; τ  is delay time; X is measurable variable. In practical applications, it’s im-
portant to choose proper K and τ . K and τ  can be obtained by experiments and calculation. Pyragas has dis-
cussed about how to choose K and τ  detailedly [20]. As for non-autonomous system, we can choose the period 
of external force as τ ; As for autonomous system, the calculation of K and τ  is very tedious. Many numerical 
calculation results show that the available range of K is very small and it’s not easy to obtain the optimal solu-
tion of K. Though people have done a lot of work [21]-[23] in this field, how to find available K and τ  quickly 
and effectively is still an unresolved problem. 

In the paper, we choose an adaptive algorithm to obtain proper feedback coefficient K and delay time τ . 
Suppose the controlled Lü system as 
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where the controller ( ) ( ) ( )( )u t k z t z tτ= − − , then we can realize dynamic regulation of feedback coefficient k 
and delay time τ  by the following algorithm. 

As for feedback coefficient k, let ( ) ( )( )k z t z tβ τ= − − , where weight coefficient ( )0,1β ⊂ , obviously k 
can be dynamically adjusted by the error; as for delay time τ , we choose τ  as the time interval between two 
adjacent maximum of z, i.e. ( ) ( )1

max max
n n

n t tτ −= − , where ( )
max

nt  means z reaches its nth maximum at ( )
max

nt . 
In numerical simulations, choose time step 0.001 second, let initial state 0 1k =  and 0.9β = , the attractor of 

system (7) is shown in Figure 5, the projections of system (7)’s attractor are shown in Figure 6. From Figure 5 
and Figure 6, we can see that Lü system has been stabilized at its original unstable periodic orbit successfully. 

The simulation results of feedback coefficient k and delay time τ  are shown in Figure 7(a) and Figure 7(c). 
Figure 7(b) is part of Figure 7(a) with time from 45 sec to 60 sec. The simulation results of x, y, z with time 
from 45 sec to 60 sec are shown in Figure 8. From these simulation results, we can know that τ  becomes sta-
ble at 0.365 second lastly; the period of z is τ , and the period of x and y is 2τ , so the period of system (7) is 
2τ . Generally speaking, feedback coefficient is a constant, while in this paper, the coefficient k changes period-
ically under the adaptive time-delayed feedback control, which shows that when the period of feedback coeffi-
cient equals that of the controlled system, chaotic control may also be realized. 

3.3. Minimal Energy Method 
For physical systems, less energy means more stability, so reducing energy is an effective method to control  
 

 
Figure 5. The attractor of system (7) under the adap-
tive time-delayed feedback control. 
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(a)                                    (b)                                    (c) 

Figure 6. The projections of system (7)’s attractor under the adaptive time-delayed feedback control. 
 

 
(a)                                   (b)                                     (c) 

Figure 7. The simulation results of feedback coefficient k and delay time τ. 
 

 
(a)                                   (b)                                    (c) 

Figure 8. The simulation results of x, y, z. 
 
chaos. Generally speaking, when the energy of a chaotic system is reduced to a critical value, the system may 
behave period. According to this idea, we can design a strategy to stabilize Lü system at periodic orbits. For a 
chaotic system, it’s not easy to calculate its energy, but a generalized energy function can be used to instead of 
true energy. In many cases, Lyapunov function can be seemed as a generalized energy function. By calculation, 
the average energy avE  can be obtain ( avE  is the average value of the Lyapunov function), then we can choose 

m avE E< , adjust some variable(s) of this system so that the energy is no more than mE . Choose proper mE , 
then the controlled chaotic system may be stabilized at periodic orbits. 

As for system (2), choose the generalized energy function as 
2 2 2E x y z= + + .                                   (8) 

By calculation, we have the average value 809.3065avE = . Suppose y is adjustable, we adopt the following 
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strategy to control system (2): when mE E≤ , no control is required; when mE E>  and 2 2
mx z E+ < , if 

0y ≥ , then 
2 2

my E x z= − − , 

and if 0y < , then 
2 2

my E x z= − − − . 

From simulation results we can see that the strategy is available to control system (2). Figure 9 and Figure 10 
show the simulation results with different mE . From Figure 9 and Figure 10, we can see that with minimal 
energy method, Lü system can be stabilized at fixed point and periodic orbits. 

4. Conclusions 
We study the chaotic control of Lü system with several different methods. In the direct feedback scheme, Lü 
system is stabilized at equilibrium point and limit cycle successfully. In the adaptive time-delayed feedback 
scheme, feedback coefficient and delay time can be adjusted adaptively to stabilize Lü system at one of its orig-
inal periodic orbits. In the minimal energy method, Lü system can be guided to fixed point and periodic orbits 
too. Numerical simulations show the effectiveness of our methods. 

Direct feedback is the most common method for chaotic control. With linear or nonlinear, single-variable or 
multiple-variable feedback, it is available to the control of almost all chaotic systems, even multi-scroll systems 
[24] [25] and high-dimension systems. In the paper, we use this method to stabilize Lü system at its equilibrium 
or a limit cycle around its equilibrium. In the case, this method is based on Lyapunov stability theory, and the 
exact function of the system should be known before designing the control scheme. By the way, it’s hard to use 
the other two methods in the paper to stabilize a chaotic system at its original equilibrium because the equili-
brium will be changed in the other two methods. 
 

 
(a)                                   (b)                                    (c) 

Figure 9. The simulation results of controlled system (2) with Em = 600.  
 

 
(a)                                    (b)                                    (c) 

Figure 10. The simulation results of controlled system (2) with Em = 760. 
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On the contrary, we don’t require the detailed information of chaotic systems in our adaptive time-delayed 
feedback method. Feedback coefficient and delay time can be adjusted adaptively during the control process. In 
order to realize the control of complex chaotic systems, such as multi-scroll systems [24] [25] or high-dimension 
systems, the feedback can also involve multiple variables, and the period of the controlled system will be a 
common multiple of the period of every variable. ( ) ( ) ( )( )t t tτ= − −F K X X  can be seemed as the fixed 
feedback form of our adaptive method, but numerical simulations are indispensable to verify a concrete adaptive 
control scheme effective or not. 

As long as some variable(s) can be adjusted, the chaotic system may be controlled by minimal energy method. 
However, this method also depends on simulations. For a special chaotic system, proper mE  can only be ob-
tained by simulations. Even though, fortunately, by numerical simulations, we find that the available range of 

mE  is very large. 
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