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Abstract 
In this paper, we present Yan’s sine-cosine method and Wazwaz’s sine-cosine method to solve the 
(2+1)-dimensional Zoomeron equation. New exact travelling wave solutions are explicitly ob-
tained with the aid of symbolic computation. The study confirms the power of the two schemes. 
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1. Introduction 
In recent years, nonlinear evolution equations (NLEES) are widely used to describe complex phenomena in var-
ious fields of sciences, such as physics, biology, chemistry, etc. Therefore, seeking exact solutions of nonlinear 
evolution equations (NLEES) plays an important role in mathematical physics. In the past decades, many effec-
tive methods have been presented, such as the inverse scattering method [1], Hirota bilinear method [2], the 
tanh-function method [3] [4], homogeneous balance method [5] [6], Jacobi elliptic function method [7] [8], the  

first-integral method [9] [10], the Exp-function method [11]-[13], the G
G
′ 

 
 

-expansion method [14]-[16] and so 

on. 
Recently, Yan [17] directly obtained a simple transformation from the famous sine-Gordon equation. The 

simple transformation was used to get more solutions of a wide class of nonlinear wave equations [17]-[19]. The 
simple transformation which named sine-cosine method is based on the assumptions that the travelling wave 
solutions can be expressed by a trigonometric polynomial as follows: 
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The degree of the polynomial can be determined by considering the homogeneous balance between the high-
est order derivative and nonlinear terms appearing in the given NLEE. The coefficients of the polynomial can be 
obtained by solving a set of algebraic equations resulted from the process of using the method. More recently, a 
new sine-cosine method was proposed by Wazwaz [20]. The new sine-cosine algorithm admits the use of the 
ansatzes 

( ) ( ) πcos
2

u βξ λ µξ ξ
µ

= , ≤ ,                               (2) 

( ) ( ) πsin
2

u βξ λ µξ ξ
µ

= , ≤ ,                               (3) 

where λ , β  and µ  are parameters that will be determined later. By using Wazwaz’s sine-cosine method, 
many nonlinear equations [20]-[28] have been successfully solved. 

In the present paper, we will extend the two sine-cosine methods to the following (2+1)-dimensional Zoome-
ron equation: 
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                              (4) 

where ( )u x y t, ,  is the amplitude of the relevant wave mode; see [29]. To the best of our knowledge, there are  

a few articles about this equation. By applying the G
G
′ 

 
 

-expansion method, Abazari [30] obtained some periodic  

and soliton solutions to the Zoomeron equation. Recently, Alquran and Al-Khaled [31] studied the Zoomeron 
equation using the extended tanh, the exp-function and the sech tanhp p−  methods. In the subsequent section, 
we will illustrate the two sine-cosine methods in detail with the (2+1)-dimensional Zoomeron equation. 

2. Yan’s Sine-Cosine Method for the (2+1)-Dimensional Zoomeron Equation 
In this section, we start out our study for Equation (4) by Yan’s sine-cosine method. Firstly, making the follow-
ing wave variable 

( ) ( ) ( )u x y t U x cy vtξ ξ µ, , = , = + − ,                           (5) 

where c, and v  and µ  are constants to be determined later. Substitute Equation (5) into Equation (4) and in-
tegrating twice with respect to ξ , by setting the second constant of integration to zero, we obtain the following 
ODE: 

( )2 2 31 2 0c v U vU RUµ ′′− − + = ,                             (6) 

where R  is integration constant. According to Yan’s sine-cosine method, we make an ansatz (1) for the solu-
tion of Equation (6). Balancing the terms 3U  and U ′′  in Equation (6) yields the leading order 1n =  (from 
3 2n n= + ). Therefore, we can write the solution of Equation (6) in the form 

( ) 1 1 0
dsin cos sin
d

U B A A ωξ ω ω ω
ξ

= + + , = ,                        (7) 

and 
d sin
d
ω ω
ξ
= ,                                     (8) 

where 1B , 1A  and 0A  are unknown constants. 
Substituting (7) into (6), collecting the coefficients of sin cosj kω ω  ( )0 1 0 1 2 3j k= , ; = , , ,  and set it to zero 

we obtain the following system of algebraic equations for: 0A , 1A , 1B , c , v , and µ : 
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Solving the above system by Matlab gives 
Case 1. 

( )
4
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11

20
24

RA RA B c v
AR Aµ

−
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−
                         (9) 

where R , µ  and 1A  are arbitrary constants. 
Case 2. 

( )
4
1

0 1 22 2 4
11
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−

                        (10) 

where R , µ  and 1B  are arbitrary constants. 
Case 3. 
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80
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−
                    (11) 

where 1i = − , R , µ  and 1A  are arbitrary constants. 
Now, we consider Equation (8). By using the separation of variables method the solutions of Equation (8) are 

easily written in the following form 
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where 1p =  is the integration constant. 
Finally, combining (5), (7), (12), (13) along with cases 1 - 3, we find the following three types of travelling 

wave solutions for Equation (4): 
Type 1. 
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where R , µ  and 1A  are arbitrary constants. 
Type 2. 
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4
1

1 22 2 4
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µ
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where R , µ  and 1B  are arbitrary constants. 
Type 3. 
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where 1i = − , R , µ  and 1A  are arbitrary constants. 

Then if we take 1
1 2
2

RA
w
−

=   and 
( )2

1 2
2 1

R
c w

µ =
−

 in the new form of (14), it is easy that our results 

can reduce to Abazari’s [30] result (21a). When setting 1
RB
w

=  , our solution (15) will be same as Alquran’s 

[31] result (15). It is worth to note that our solution (16) is not derived in [30] [31]. 

3. Wazwaz’s Sine-Cosine Method for the (2+1)-Dimensional Zoomeron Equation 
Now, we use Wazwaz’s sine-cosine method to handle Equation (4). Substituting (2) into (6) gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 3 31 cos 1 1 cos 2 cos cos 0c v c v v Rβ β β βµ β λ µξ µ λβ β µξ λ µξ λ µξ−− − + − − − + = .    (17) 

The equation is satisfied only if the following system of algebraic equations hold 
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Solving the system (18) leads to the following sets of solutions: 
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                                    (19) 

where R , µ  and v  are any arbitrary constant. Therefore, the solution of Equation (4) is 
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Now, if we use the ansatze (3) instead of (2), then we get the same system (18) and therefore, the solution is 

( ) ( )2 2
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µ
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To the best of our knowledge, solutions (20) and (21) have not been reported in the literature. 

4. Conclusion 
The two sine-cosine methods have been successfully applied here to seek exact solutions of the (2+1)-dimen- 
sional Zoomeron equation. As a result, a series of new exact solutions are obtained and some solutions given in 
[30] [31] are only our special cases. The solution procedure is very simple, and the obtained solution is very 
concise. It is shown that the sine-cosine method provides a very effective and powerful mathematical tool for 
solving nonlinear equations in mathematical physics. 
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