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ABSTRACT 

The third order explicit autonomous differential equations named as jerk equations represent an interesting subclass of 
dynamical systems that can exhibit many major features of the regular and chaotic motion. In this paper, we show that 
an algebraically simple system, the Genesio system can be recast into a jerky dynamics and its jerk equation can be de- 
rived from one-dimensional Newtonian equation. We also investigate the global dynamical properties of the corre- 
sponding jerk system. 
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1. Introduction 

The term jerk [1], i.e., the third derivative of displace- 
ment, x , has attracted some attention because of its 
relevance to the theory of chaos [2-11]. Some papers 
appeared in response to a question [2] posed by Gottlieb 
concerning simple jerk functions which may lead to cha- 
otic phenomena. Sprott [3,4] found several simple non- 
linear jerk functions which gave strange attractor for ap- 
propriate choices of equation parameters and initial con- 
ditions. Linz [5,6] introduced the idea and conditions for 
Newtonian jerky dynamics, derivable by differentiation 
of a (one-space dimension) Newtonian equation of mo- 
tion for x , and analyzed the jerky dynamics for one- 
variable obtained from several familiar autonomous sys- 
tems of three simultaneous first-order ordinary differen- 
tial equations which are known to have chaotic solutions. 
He also allowed for the possibility of a memory or tem- 
poral history integral term in the force function. Coinci- 
dentally, Maccari [7] had considered such generalized 
oscillators, with nonlocal force terms, which obeyed an 
integro-differential equation and which were equivalent 
to an autonomous third-order nonlinear differential equa- 
tion. His interests there were in periodic and quasi-peri- 
odic solutions. 

As jerky dynamics can be considered a subclass of 
three-dimensional dynamical systems an interesting ques- 
tion [5] is which three-dimensional systems are equiva- 
lent to jerky dynamics. In [8], a class of three-dimen- 
sional nonlinear dynamical systems is studied which can 
be transformed into jerky dynamics. Most of the models 
of minimal chaotic dynamics considered in [8] belong to 
this class and can be transformed into jerky dynamics. 

The transformations used have the restriction that the 
variable in the scalar differential equation is the same as 
the system. A consequence is that a linear transformation 
is sometimes not possible; the resulting transformation is 
nonlinear. In [9], it is shown that by removing this re- 
striction, these models can be transformed to jerky dy- 
namics via an affine transformation. 

In [8], Eichhorn et al. used the method of Gröbner 
bases and showed that fifteen of Sprott’s chaotic flows [4] 
can be recast into a jerk form. They also showed that 
these fifteen models, Sprott’s minimal chaotic flow [4] 
and the Rössler toroidal model [10] can be arranged into 
seven classes (referred as JD1 to JD7) of jerky dynamics 
as a hierarchy of quadratic jerk equations with increas- 
ingly many terms as seen in Table 1. Such a classifica- 
tion provides simple means to compare the functional 
complexity of different systems and also demonstrate the 
equivalence of cases not otherwise apparent. In a subse- 
quent study, Eichhorn et al. [11] examined the simplest 
cases of JD1 and JD2 in more detail and identified the 
regions of parameter space over which they exhibit chaos. 

In this paper, we show that the Genesio system can be 
recast into a jerky dynamics by an affine transformation 
and the resulting form belongs to class JD2. Moreover it 
is derived from one-dimensional Newtonian equation 
that is, it is a Newtonian jerky dynamics. Furthermore we 
investigate the global dynamics of that jerk equation and 
also show that it shares the common route to chaos as 
systems in class JD2. 

2. Jerky Dynamics 

C   onsider the class of systems which can be written as a  
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Table 1. Basic classes of dissipative jerky dynamics. 

Model Basic classes coefficients = values for which there is irregular behavior Transformation 

JD1 1 2k k k          3  

I 1 1k    2 2 0.k     4 8 2

3 2 0.0k         2y    

J 1 2k      2 4k       3 1 4k           2 1y     

L 1 1k    2 3.9k       3 2 8k       .19    2 x     

N 1 2k      2 4k       3 2 4k          2z    

R 1 1k    2 0.9k      3 0.4k         x   

SJ 1 2.017k A     2 1k    3 0k      v   

JD2 
2

1 2k k k          3    

M 1 1k    2 1.7k      
2

3 2.4225
4

k
        

2
x

    

Q 1 1 0.5k      2 2.6k       
2

3 2.4025
4

k


        
2

y
     

S 1 1k    2 4k      2

3 16k          z    

TR 1 0.2k      2 1k     2

3

1

4
0.0858

k    

 
     1

2
y     

GS 1k c   2k b   
2

3 4

a
k       

2

a
x    

JD3 
2

1 2 3k k k k           
4     

F 1 1 0.5k      
2

1
1 2.5k 


      3 0.25

2
k


     4

1
1

2
k


     

1
2x


   

G 1 1 0.6k      
2

1
1 1.85

2
k 


      3 0.4k      

4

1
0.625

4
k


    

1

2
x


   

H 1 1 0.5k      
2

1
1 2.5k 


      3 0.25

2
k


     4

1
1

2
k


     

1
2z


   

JD4 
2

1 2 3k k k k           
4     

O 1

1

2
k    2 1 1k     .7  3 1k    

4

1

4
k     

1

2
x    

JD5 
2 2

1 2 3k k k               

D 1 1k    2 1k    3 3k         x   

JD6 
2 2

1 2 3 4k k k k k              
5

.7

    

P 1 1k    2 1 1k      
3

1

2
k    4 1k   

5

1

2
k    2 1y    

JD7 
2 2

1 2 3 4 5k k k k k k                 
6   

K 1

1
1

2
2.37

k 


  

 
 2

1 1

2
3.53

k 


  

 
 3 0.3k      4 1k   5 2 1.k    7

6

1
0.83

4
k


   

1

2
y


   
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scalar ordinary differential equations: 

    1, , , ,n f        n            (1) 

where n is the order and  n  denotes the nth derivative 
of the scalar state variable  . Clearly an nth order scalar 
ODE can be written as a system of n first order ODEs. 
On the other hand, the following systems of equations 
can be rewritten as a scalar ODE:  

 0 1 1

00 1

.
00 1

n f xp p p 

  
  
     
       

 




x x



 

For third order   scalar ODEs, where 3n    is 
position,   is the change in acceleration which is gen- 
erally called the jerk, and the resulting dynamics are 
called jerky dynamics. In [8], a class of three-dimen- 
sional dynamical systems is considered whose members 
are topologically conjugate to jerky dynamics.  

Theorem 2.1 Consider a three-dimensional system of 
the form  

 A x x n x                 (2) 

where 3, x  3 3A 
 , 1, 2,3

 is a matrix with constant coeffi- 
cients ij  and  
a three-dimensional vector solely nonlinear functions in x, 
y, z that are twice differentiable and do not contain addi- 
tive constants. If  

a i j          T

1 2 3, ,n n nn x x x x 

     12 2 13 3 12 13,a n a n f x a y a z  x x       (3) 

and 

 2 2
12 23 13 32 12 13 33 22 0a a a a a a a a          (4) 

then the system is topologically conjugate to a jerky dy- 
namics via a state transformation. 

The state transformation in Theorem 2.1 has the re- 
striction that the state variable   in the corresponding 
jerky dynamics  , ,f        is equal to one of the 
state variables in Equation (2). It was shown that 16 out 
of 20 simple chaotic systems considered in [8] fall into 
this class and thus are equivalent to jerky dynamics. For 
some of these systems, the corresponding state transfor- 
mations are necessarily nonlinear. This is due to the 
above restriction on the state transformation. In [9] it was 
shown that without this restriction, simple linear trans- 
formations can be found which transform these systems 
into jerky dynamics. In particular, the following result 
gives sufficient conditions under which an n-dimensional 
system is topologically conjugate to a scalar ODE via an 
affine state transformation.  

Definition 2.1. Let A be an n by n matrix and b be an n 
by 1 vector. The pair  is controllable if the matrix   ,A b

   2 1, | | | | nK A A A A   b b b b b  

is nonsingular. The matrix K is called the controllability 
matrix. 

Theorem 2.2. Consider the system  

 A f  x x b x c



              (5) 

where A is an n by n matrix, b, c are n by 1 vectors and f 
is a real-valued function. If  is controllable, then 
the system is topologically conjugate to a scalar ODE via 
an affine transformation. 

 ,A b

It is possible that a dynamical system that is contained 
in the class specified by Equation (5) can be converted 
simultaneously into two or three jerky dynamics in dif- 
ferent variables (the jerky dynamics in the certain vari- 
able is unique, if it exists). 

To obtain dynamical systems of the class in Theorem 
2.2 with two simultaneously existing jerky dynamics, e.g., 
in x and y one has to restrict the nonlinear function 

 2n x  such that it is only function of y, i.e.,  2n x  
 2n y . This follows directly from Equation (2). In addi- 

tion to the conditions (3) and (4)  

    12 2 13 3 1 12 13,a n y a n f x a y a z  x         (6) 

 2 2
12 23 13 32 12 13 33 22 0a a a a a a a a           (7) 

that ensure the existence of the jerky dynamics in x, there 
are also corresponding constraints for the jerky dynamics 
in y that read explicitly  

     21 1 23 3 2 21 23,a n x a n f y a x a z  x       (8) 

 2 2
23 31 21 13 21 23 11 33 0a a a a a a a a           (9) 

where f1 and f2 are functions of the indicated arguments. 
Any dynamical system of functional form (5) with 

   2 2n nx y  that fulfills the conditions (6)-(9) can be 
recast into an equivalent jerky dynamics in its variables x 
and y. For simultaneously existing jerky dynamics in two 
other variables one has to take into account permutations 
of variables and indices, respectively. 

For dynamical systems that possess simultaneously 
three jerky dynamics, further constraints apply. Clearly, 

   3 3n nx z  must hold. Furthermore, in addition to 
Equations (6)-(9) there is a third condition reading ex- 
plicitly  

    31 1 32 2 3 31 32,a n x a n y f z a x a y          (10) 

 2 2
31 12 32 21 31 32 22 11 0a a a a a a a a          (11) 

If a jerky dynamics can be derived from one-dimen- 
sional Newtonian equation by taking its derivative with 
respect to time we call the dynamics Newtonian jerky. 
The following theorem [6], states under which conditions 
a jerky dynamics can be Newtonian jerky:  

 Theorem 2.3. Any jerky dynamics of the functional 
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form  

   , ,x p x x x q x x     0           (12) 

with p and q being differentiable and integrable func- 
tions of their arguments x and x , is Newtonian jerky. 

In the qualitative theory of dynamical systems [12,13] 
gradient systems play an interesting role. For these sys-
tems, one can rule out the existence of oscillatory solu-
tions just by considering their vector fields. In particular, 
a dynamical system is a gradient system if its vector field 
results from the gradient of a scalar potential. In [6], it is 
shown that there is no elementary criterion that excludes 
periodic solutions in some classes of Newtonian jerky 
dynamics. 

Theorem 2.4. Newtonian jerky dynamics are not gra- 
dient systems. 

Looking at the functional form of a jerky dynamics, it 
is highly nontrivial to decide whether it can have chaotic 
solutions for some parameter ranges or not. For some 
subclasses of jerky dynamics one can derive a simple 
criterion under what circumstances aperiodic or chaotic 
solutions cannot appear. Consider the jerky dynamics (12) 
with  

    , ,q x x r x x x s x x    , 



         (13) 

where r and s are functions of the indicated arguments 
and  fulfills the Schwarz condition  ,r x x  ,x p x x    

x . As a consequence the jerky dynamics (12) can 
be rewritten as  

 ,r x x 

     , , ,x p x x x r x x x s x x              (14) 

or equivalently,  

   d d
, d , d .

d d

x t
x p x x x s x x

t t
     


        (15) 

Direct integration of Equation (15) yields  

   , d , d .
x t

x p x x x s x x   


           (16) 

This shows most clearly that the left-hand side of 
Equation (16) can be interpreted as an oscillator coupled 
to an internal driving mechanism or feedback (the right- 
hand side of Equation (16)) that is an integral over the 
history of its motion. This fact has some consequences 
for the possible dynamics of the jerky system (15).  

Theorem 2.5. [6] If 1) the oscillator on the left-hand 
side of Equation (16), , possesses 
only bounded solutions and 2) the integrand of memory 
term, 

 , d 0
x

x p x x x 


   

 ,s x x , on the right-hand side of Equation (16) is 
either positive semi-definite or negative semi-definite for 
all x and x , then the jerky dynamics (15) cannot show 
chaotic behavior. 

3. Genesio System as Jerky Dynamics 

The Genesio system, which was proposed by Genesio 

and Tesi [14], is described by the following simple three- 
dimensional autonomous system with only one quadratic 
nonlinear term:  

2,  ,  x y y z z ax by cz x               (17) 

where a, b, c are real parameters.  
Theorem 3.1. The Genesio system (17) can be recast 

into a jerky dynamics, and the resulting form belongs to 
class JD2. 

Proof. The Equation (17) can be written as  

 A f  x x b x c

,

c

            (18) 

where  

0 1 0

, 0 0 1

x

y A

z a b

   
       
        

x  

  2

0 0

0 , 0 , .

1 0

f x x

   
        
   
   

b c  

The matrix  
2

0 0 1

, 0 1

1

K A

c c b

 
  
   

b c 
  is nonsin-  

gular since  det 1 0  K . So, by Definition 2.1 K is 
the controllability matrix and the pair  ,A b  is control- 
lable. Hence the Genesio system can be recast into a 
jerky dynamics via an affine transformation by Theorem 
2.2. 

Application of the invertible transformation 
x y

y z


 




 

to the Equation (17) yields  
2.x cx bx ax x                  (19) 

Using the linear and invertible transformation  

, ,
2

a
x x   x                 (20) 

and then replacing   by x we write Equation (19) as  
2

2

4

a
x cx bx x                  (21) 

Comparing with Table 1, one can see that the resulting 
jerk equation belongs to the class JD2 with  

2

1 2 3,  and .
4

a
k c k b k       

Theorem 3.2. Genesio system has no equivalent jerky 
dynamics in the variables y and z. 

Proof. For a simultaneous existence of jerky dynamics 
in y and/or z first, the following conditions must be satis- 
fied:  

       2 2 3 3and orn n y n n x x  z     (22) 
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For the Equation (16) we have  

   2 30 and orn n x x  2
3 .x n z  

Since the second equation in (22) does not ho  we can 
concl

ld
ude that the Equation (17) cannot have a jerky dy- 

namics in z. 
From the condition (8) we get   2

2 ,f y z x  which is 
absurd. This follows that the Gene  have 
a jerky dynamics in y also. 

Theorem 3.3. The Genesio system is a Newtonian 
jerky dynamics. 

sio system cannot

where 

Proof. The Equation (21) can be put in the form (12)  

   , , 0x p x x x q x x       

 ,p x x c  and  
2

2x,
4

a
q x x bx    . Since  

nd q are dif e and integrable funboth p a ferentiabl ctions of 
their arguments x and x  the jerky dynamics (21) is 
Newtonian by Theorem 2.3. 

Corollary 3.1. The Genesio system is not a gradient 
system. 

Proof. From Theorem 3.3 we know that the Genesio 
system is a Newtonian jerky. Since Newtonian jerky dy- 
namics are not gradient systems by Theorem 2.4, the 
Genesio system is not a gradient system. 

Theorem 3.4. The Genesio system exhibits chaotic so- 
lutions for some parameter ranges. 

Proof. We can write Equation (21) as  
2

2 a
x cx bx x          

4
        (23) 

Integration of Equation (23) yields  

 
2

2
d

t a
x cx x

4
 

 
 

The memory term 

 
    

2
2

4

a
x   changes sign as x varies,  

th ositive 
semi-definite for all x. Therefore the Genesio system can 

al Properties 

at is, it is neither p semi-definite nor negative 

have chaotic solutions for some parameter ranges by 
Theorem 2.5. 

4. Dynamic

Given the jerky dynamics  
2

2 0
4

a
x cx bx     x              (24) 

the equilibria can be found by assum
fixed point , , , which leads to  

ing that it has a 
 x � 0x  0x 

 
2

2,0,0 0
a

J x x   
4

, or 
2

a
x . So there are two  

equilibria: ,0,0
2

a
E

 
 
 

 and ,0,0 . Linearizing  

Equation (2 e equilib provides one 
real and a p plex co values along 

2

a
E

  
 

4) about th rium
air of com njuga n

n 

 E  
te eige

with the following characteristic equatio  
3 2 0c b a                   (25) 

and linearizing the Equation (24) about the other equilib- 
rium E  yields the following characteristic equation  

3 2 0.c b a                  (26) 

According to Routh-Hurwitz criteria, the equilibrium 
 is stable (i.e., the real part of all E roots  1,2,3i i   

of Equation (25) are negative) only if the conditions  

0,  0,  0,  0a b c bc a       ) 

are fulfilled. For   0, , 0bc a a b c

       (27

    , the fixed 
point becomes unstable and the two compl

 axes, while the third r
ex roots of (25) 

cross the imaginary oot remains 
real and negative. Therefore at bc a   a stable limit 
cycle arises via a Hopf bifurcation. 

E  has the same stability characterization. If  

0,  0,  0,  a b c bc   0a          (28) 

then criteria 
and at 

Equation (26) satisfies the Routh-Hurwitz 
bc a  a stable limit cycle arises 

lume

via a Hopf bi- 
furcation. 

The vo  contraction rate of the Equation (24) is  
2

2 ,
4x cx bx x c
a 

         
 

    

1 d

d

V
c

V t
  , i.e., which can be solved to yiel  d 

   0 e ctV t V 
tion (24) is

that contract at a

. When  is positive, the jerky d
Equa  dissipative with solutions for 

c ynamics 
t   

a limit
n exponential rate c  onto an attractor 

of zero volume that may be an equilibrium point,  
cycle, or a strange attractor. When c 0,   is zero and 
the phase space volume conserved and the dynamical 
system is conservative. When c is negativ

 = 

e,   is posi- 
tive and the volume expands exponentially fast and there 
are only unstable fixed points. Therefore the ynamics 
diverges for t   if the initial value does not lie ex- 
actly at such unstable set. 

The Equati n ( ) has three free parameters a, b and c  

and the position of equilib

 d

o 24

ria ,0,0 , ,0,0
2 2    

   

a a   E E    

o get the parameter inde
ransformation  

depends on the parameter a. T - 
pendent equilibria we use the t

2
,  x x t ct

a
                 (29) 

for x and t yielding the new quantities x  and t. With the 
ation (24) becomes  substitution of Equation (29), Equ

 2 3
1

2

b a
x x x x

c c
  2      
 

    
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2 ,
b

c
   

32

a

c
    introducing as new pa meters and 

dropping the overbars we write  

tionary points 

ra

 2 1 .x            (30) 

Equation (30) possesses two sta

x x x      

1x   , 
0x  , 

characte
0x  . Analyzing their stabi

 is stable only for 

lity leads to the 
ristic equation  

3 2 2 0.                 (31) 

It follows that x 1 0  , 
0   and 2 

 
 

   via 
and it becomes unstable at the line 

2 0, 0 a Hopf bifurcation. Sim
1   is stable only for 0

 
x
  ilarly, 

  , 0   and 2    
becom he line  2 0, 0and it es unstable at t        

. These stability properties of fixed 
o reflect the symmetry of the Genesio system. 

s invariant under 

via a Hopf bifurcation
points als

Equation (30) i x x  and   . 
Therefore, knowing the solution of  x t  of Equation 
(30) for a certain value of parameter   and certain ini- 
tial values, the dynamics of the corresponding
verted 

 sign in- 
  and initial values is given by  x t . 

Summarizing the results, we conclud  that possibly 
interesting dynamics of the Genesio system (17) is de- 
scribed by Equation (30). Due to the discussed symmetry 
of this equation, we need only to consid


e

er initial values 
close to one of the two stationary points. Then the most 
interesting region of the  ,  -parameter plane is the 
one for 2   and positive  . From the studies in 
[11,15,16], we also know that this parameter region con- 
tains homoclinic orbits of the other stationary point 

1x   , 0x  , 0x  , which here is also a saddle- 
focus. 

5. Numerical Results 

Besides the local stability and Hopf bifurcation analysis 
of Equation (30), we also computed the set of all Ly- 

ent values of parameters apunov exponents for differ   
and   and use to determine and classify the long-time 
dynamics of the Genesio system. Numerical calculations 
are performed using Mathematica and iDMC softwares, 
and RKF45 and RK2Imp are used as numerical algo- 
rithms with step size 0.001. The initial values are chosen 
as 1.005x  , 0.05x  , 0.05x   which are close to 
the fixed point 1x  , 0x  , 0x  . 

For the parameter regions 0   or 0  , no bounded 
solutions have been found. This suggests that the Gene- 
sio system does probab posse s at all a stable at- 
tractor in thes io r gi

ly not s
e reg ns. Fo e r 0th e on    and 

0   the resulting Lyapunov spectra are shown in 
Figure 1. The fixed point domain is followed by a large 
limit cycle region and a structured chaotic region. How- 
ever the chaotic region is not present for 1.6  . At  

 

Figure 1. Lyapunov spectra for the jerky dynamics Equa- 
tion (30). 
 

 its boundary is formed by two tongues tha

e only finds chaotic points at 

1.6  t 
reach into the limit cycle domain. For smaller parameter 
values on 0.75   and 

0.71  . Moreover there are islands with y- 
namics 

urcation
gram wh

 bounded d
(limit cycles and strange attractors) located with- 

in the diverging region.  
In Figure 2(a), we have shown the bif  dia- 

ich is the plot of successive maxima of the long 
time evolution of  x t  as a function of system parame- 
ter   for fixed value of the parameter 3.5 

pf bifur

. By Fig- 
ure 2(a), it becomes clear that the jerk dynamical system 
Equation (30) having quadratic nonlinearity shows the 
chaos with a cas of period-doubling bifurcations 
which is initiated by a supercritical Ho cation at 
the line 2

cade 

  . Therefore the limit cycle domain that 
follows the fixed point region  1.5 1.75  , consists 
of periodic attractors with period  2n nN , 1.75 <   
< 3.142.  

This re onsists of an infinite series of period- 
doubling bifurcations. It also y narrow 
windows, which are called limit cycle windows. As 

gion c
 contains man

  
is further increased the limit cycle windows break 
an

down 
d eventually disappear. In Figure 2(b), the Lyapunov 

exponents as a function of the parameter   is for the 
same range as that of the bifurcation plot. In Figure 2(c
the Lyapunov dimension is for the same range of 

), 
  as 

in Figures 2(a) and (b). It can be clearly seen that all the 
three frames have one-to-one correspondence with each 
other, i.e., we observe that for the values of parameter    
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where the bifurcation diagram shows the limit cycle so- 
lutions, the largest Lyapunov exponent is negative as 
well as the dimension of the attractor is two. However, 
for the values of the parameter   where the bifurcation 
plot shows the existence of aperiodic behavior (chaotic), 
the largest Lyapunov exponent is positive as well as the 
dimension of the attractor is a non-integer 2.15119 be- 
tween two and three for the parameter values 3.5   
and 3.46  . 

For a computed value of  , we record the successive 
local maxima of  x t  for a trajectory on the strange 
attractor. Figure 3 shows 1nx   vs nx , where nx  

o
de

e nth r all
l

tain
r

- 
notes th  local maximum. The data points f  
nearly on a one-dimensiona  curve. These one-dimen- 
sional maps are ob ed to compare the different dy- 
namics on a dynamical system. Such maps with pa abola 
like maxima are well-known for the generation of the 
chaotic solution through period-doubling route and it 
gives us a clue the route to chaos in the jerk dynamical 
systems under consideration.  

Figure 4 shows two-dimensional projections of the 
system’s attractor for different values of   (with 

3.5   held fixed). At 2.5   the attractor is a stable 
limit cycle. As   is decreased to 3.0, the limit cycle 
goes around twice before closing, and its period is ap- 
proximately twice that of the original cycle. This is what 
peri oubling looks like ontinuous-time system. 
In fact, somewhere between 2.5

od-d in a c
   and 3.0, a period- 

doubling bifurcation of cycles must have occurred. An- 
other period-doubling bifurcation creates the four-loop 
cycle shown at 3.1  . After an infinite cascade of fur- 
ther period-doublings, we obtain strange attractor at 

3.46
 the 

  .  
 

 

Figure 2. Behavior of the jerk dynamical system having 
quadratic nonlinearity Equation (30) for a fixed value of the 
parameter α = 3.5. (a) The bifurcation diagram; (b) The 
Lyapunov exponents; (c) The Lyapunov dimension of th
attractor.  

e 
Figure 3. First return map. 
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β = 2.5              β = 3.0                 β = 3.1 

 
β = 3.12             β = 3.23                β = 3.46 

Figure 4. Two-dimensional projections of the attractor of 
the Equation (30) for different values of β. 
 

 

Figure 5. Homoclinic orbit of the Equation (30). 
 

The underlying variety of dynamical behavior can be 
related to the occurrence of homoclinic orbits as sh
in Eichhorn et al. [11] and Glendinning and Sparrow
[15] le

em is likely
rmined by the interactions between the stable and un-

stable manifolds of the single stationary point leading, 
finally, to homoclinicity.  

6. Discussion 

In this paper, we showed that Genesio system is one
the functionally simplest polynomial classes of jerky 
dynamics, JD2 and it is a Newtonian jerky dynamics. 
also investigated some aspects of the dynamical pr
ties of the Genesio system and we have found for this
system there are not only few parameters but wide ra g
of parameter values that lead to chaotic long time dy- 
namic  pre-

nt where the long time attractor of the dynamics 
si

 is associated with the appear- 
ance of various homoclinic orbits as in the works of 

1], Glendinning and Sparrow [15] and 

own 
, 

. In fact, with a numerical search we have been ab  
to detect homoclinic orbits as depicted in Figure 5. 
Hence the dynamics of the Genesio syst  de- 

 te

 of 

We 
oper- 

 
n es 

s. Moreover, also large parameter regions are  
se con- 

sts of stable limit cycles. The route to chaos is deter- 
mined by a period doubling cascade (for appropriately 
varied system parameters) that is initiated by a Hopf bi- 
furcation. Varying the initial conditions, we are also able 
to detect several coexisting stable attractors. Therefore, 
despite its functional simplicity, the Genesio system 

shows a rich diversity of dynamical behavior. 
We have seen that the complexity and diversity of the 

dynamics of Equation (30)

Eichhorn et al. [1
Arneodo et al. [16]. 
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