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Abstract 

The airborne pollutants monitoring is an overriding task for humanity given 
that poor quality of air is a matter of public health, causing issues mainly in 
the respiratory and cardiovascular systems, specifically the PM10 particle. In 
this contribution is generated a base model with an Adaptive Neuro Fuzzy 
Inference System (ANFIS) which is later optimized, using a swarm intelli-
gence technique, named Bacteria Foraging Optimization Algorithm (BFOA). 
Several experiments were carried with BFOA parameters, tuning them to 
achieve the best configuration of said parameters that produce an optimized 
model, demonstrating that way, how the optimization process is influenced 
by choice of the parameters. 
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1. Introduction 

The present work proposes a method to model the particulate matter concentra-
tions using the BFOA; this method is considered as a novel method since it has 
not been found in the literature an application of the BFO algorithm in the 
problem of modeling the concentration of particulate material. Likewise, anoth-
er contribution of the present work is to demonstrate how the adjustment of the 
parameters of the algorithm affects the result and the way in which each of these 
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parameters individually influences said results. 
The methodology is basically to use BFOA as optimizer of a base model gen-

erated with another technique, ANFIS. The model generated with ANFIS 
presents some inaccuracies since it is unstable with highly non-linear problems 
such as the one that is to be modeled in this work. This is why this method was 
devised where the accuracy of the base model is improved. Once the model op-
timized with BFOA is generated, it will be compared against that generated with 
ANFIS. 

The use of an algorithm that has several agents or swarm intelligence, such as 
BFOA, gives us the opportunity to find an optimal solution since it involves sev-
eral, relatively simple agents exploring the study area, thus having a greater 
probability of finding the optimal global values avoiding the problem of getting 
stuck in a local solution as it happens with other methods such as neural net-
works, as well as being robust, flexible systems without central control that is-
sues orders to system agents [1]. 

To better understand what the problem is, it is important to define some con-
cepts, which are presented below. 

1.1. Air Quality 

Air quality is an essential issue for humanity since the industrial age, and nowa-
days it is more relevant than ever. Although pollutant concentrations are de-
creasing worldwide, since countries such as Japan, United States and Brazil, 
showed a decrease in the concentration of pollutants, there are still less devel-
oped countries that have the poorest air quality [2].  

The pollutants that are monitored include gases such as ozone (O3), nitrogen 
dioxide (NO2), sulfur dioxide (SO2) and particulate matter (PM2.5 and PM10) 
[3]. 

The risks of air pollution not only include pulmonary diseases like asthma or 
even lung cancer, but also the effects of the air pollution, which are related to the 
appearance of cardiovascular disease, specifically, the pollution of particulate 
matter, because of its size, which is in the order of the micrometers [4] [5]. 

The particulate matter is classified as PM2.5, which is 2.5 μm (micrometers) of 
aerodynamic diameter, and PM10, which has 10 μm of diameter; this diameter 
makes them suitable to be inhaled by humans, causing even deaths on the vul-
nerable population [6]. In this contribution, the PM10 concentration in Mexico 
City is modeled. 

1.2. PM10 Modeling 

In addition, there have been developed methods to model the behavior of the 
PM10 particles specifically; these methods include artificial neural networks to 
predict the concentration on the pollutant 24 hours in advance [7]. In general, 
neural networks have been the most widely used methods for modeling atmos-
pheric pollutants [8], including variants like the autoregressive neural networks, 

https://doi.org/10.4236/ijis.2019.93005


M. C. Cabrera-Hernandez et al. 
 

 

DOI: 10.4236/ijis.2019.93005 69 International Journal of Intelligence Science 

 

ARNN [9]. However, neural networks are not the only technique used for mod-
eling PM10. Techniques such as fuzzy logic type 2 [10] and in the field of the 
swarm intelligence, the ant colony optimization algorithm (ACO) for PM10, Ni-
trogen Dioxide and Ozone forecasting [11]. Also ACO in combination with 
Neuro Fuzzy algorithms applied on CO and O3 forecasting [12]. In addition the 
Particle Swarm Optimization, PSO [13] have also been applied to obtain a pre-
cise model for the concentration of polluting particles, where the technique 
showed good performance and is one of the recent works for the particulate 
matter modeling. PSO belongs to the swarm intelligence algorithms, the same as 
BFOA, that is why is expected to demonstrate that a swarm intelligence algo-
rithm is capable to generate an accurate model for the problem of PM10 beha-
vior. In addition, if it turns out to be capable, the goal is to prove which one of 
the swarm intelligence algorithms that have been implemented can originate the 
best model for the PM10 pollutant.  

1.3. Swarm Intelligence 

The social organisms like ants, bees and bacteria colonies perform common 
tasks as a society like gather food, nest building, among other tasks, for the well-
ness of the community, also, have the ability of self-organization forming decen-
tralized swarms. The term Swarm Intelligence (SI), first appeared in the late 80’s 
of the last century [14], the SI algorithms are based on a group of simple agents 
that interact between them and their environment, this with the objective of 
achieving a cooperative behavior and more complex than what each agent could 
individually achieve. These algorithms are mainly inspired by natural pheno-
mena such as the colonies of Ants [15], bees [16] or bacteria, water droplets [17], 
the behavior of bats [18], termites [19], among others. 

In this contribution, a Bacterial Foraging Optimization Algorithm (BFOA) is 
used to model the behavior of PM10 in Mexico City. 

Bacterial Foraging Optimization Algorithm 
The process of foraging of the Escherichia Coli Bacteria inspires the Bacterial 
Foraging Optimization Algorithm (BFOA) [20]. The way these bacteria per-
forms the process of foraging and reproduction maximizes the energy obtained 
from the environment.  

BFOA have been already accepted as an optimization algorithm and its effi-
ciency has been demonstrated in several areas. For instance, its application in 
the electric engineering a control field [21], pattern recognition [22], PID design 
[23], schedule programming [24], as well as the development of applications to 
solve simultaneous equations [25] has even been used for the selection of cha-
racteristics in problems of dimensionality reduction of data sets [26]. In addi-
tion, BFOA has also been applied hybridly together with other methods, for ex-
ample, with the Ant Colony algorithm for a scheduling problem [27] and in 
conjunction with the Particle Swarm Optimization algorithm for optimal design 
of power system stabilizers [28], and in power generation problems [29]. 
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The following sections of this paper present the materials and methods for the 
development of the environmental particle concentration PM10 behavior model, 
explaining where the data used comes from and how they are used in the gener-
ation of the optimized model, as well as a detailed explanation of the methodol-
ogy developed for this application. Finally, the results are presented explaining 
how the adjustment of the parameters of the BFOA algorithm was made, as well 
as its final configuration to obtain an optimized model. 

2. Materials and Methods 

2.1. Materials 

The data used to build the model were obtained from the Atmospheric Moni-
toring System (“Sistema de Monitoreo Atmosférico”, SIMAT) [30], which is re-
sponsible for the permanent measuring of the air quality in México City and the 
metropolitan area. SIMAT has a subsystem; the Automatic Network for Atmos-
pheric Monitoring (RAMA), this system uses continuous measuring equipment 
for air pollutants, such as sulfur dioxide, carbon monoxide, nitrogen dioxide, 
ozone, PM10 and PM2.5. 

Likewise, atmospheric data were taken from the Meteorology and Solar Radi-
ation Network (REDMET), which is a subsystem of SIMAT. From the 
REDMET, the data of temperature (TMP), relative humidity (RH), wind direc-
tion (WDR) and wind speed (WSP) are used. These data are part of the factors 
for modeling the pollutant concentration [31]. Table 1 contains information 
about the data used to construct the model and their units of measurement. 

SIMAT has monitoring stations distributed over different areas of the city. 
These monitoring stations collect information on concentrations of pollutants 
and atmospheric conditions every hour. Figure 1, shows the monitoring stations 
available in Mexico City and its surrounding area (called metropolitan area). 
The criterion for the selection of the stations whose data were used for the con-
struction of the model, was taking into account those that had more validated 
data, since some stations reported invalid data when their measuring instru-
ments failed. The stations are listed in Table 2.  

The model was validated using data from the same stations of 2015 and data 
of the year 2017 to evaluate the model performance. 
 
Table 1. Data to build the model. 

Data Unit of measurement Subsystem 

PM10 µg/m3 RAMA 

TMP Degrees Celsius (˚C) REDMET 

RH Percentage (%) REDMET 

WDR Azimut Degrees REDMET 

WSP Meters/second (m/s) REDMET 
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Table 2. ID of the stations. 

ID Name Location 

CHO Chalco State of Mexico 

CUA Cuajimalpa Mexico city 

CUT Cuautitlán State of Mexico 

FAC FES Acatlán State of Mexico 

HGM Hospital General de México Mexico city 

MGH Miguel Hidalgo Mexico city 

SAG San Agustín State of Mexico 

 

 
Figure 1. Monitoring stations. 

2.2. Building the Model 

The approach of this work is the optimization of an existing model (base model), 
applying the bacterial foraging optimization algorithm as an optimization me-
thod. 

The main idea about optimizing the model is taking an existing model, which 
its accuracy can be improved using it as a start, namely, the base model, the 
proposed technique to generate this base model is an adaptive neuro fuzzy infe-
rence system (ANFIS). Fuzzy logic has been used in the past as an optimization 
method [32]. 

ANFIS is a type of artificial neural network that includes a Takagi-Sugeno 
fuzzy inference system, that kind of systems have been used in the past for 
real-time object identification [33], and which is shown in Figure 2. 

ANFIS constructs a fuzzy inference system (FIS) given a set of data of the type  
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Figure 2. ANFIS structure. 
 
input/output, and the membership functions parameters are adjusted using a 
backpropagation algorithm or in combination with a least squares method. 

A FIS can be defined as a set of fuzzy rules of the type IF-THEN, which are 
expressions with the form IF A THEN B, where A and B are the labels of fuzzy 
sets [34] [35]. 

As an example, suppose that we have two inputs (x, y) and an output, f, and 
has five layers to construct the model. Each layer has several nodes that can be 
adaptive (squared nodes) or fixed (circled nodes) [36]. 

Layer 1. It is the fuzzy layer and converts the inputs of the model into fuzzy 
sets by means of membership functions (MF) and the functions of the node are 
described as: 

( )1, 1 for 1,2i AiO X iµ= =                        (1) 

( )
1 21, 1 for 3,4i BO Y iµ
−

= =                       (2) 

where 1X  and 1Y  are the input nodes, A and B correspond to the linguistic 
labels associated with these nodes, ( )1Xµ  and ( )1Yµ , are the membership 
functions (MF), the parameters of this layer are called premise parameters. 

Layer 2. The nodes in this layer are fixed; the function of each node is multip-
lied by the input signals, which serves as an output signal and are labeled with Π. 

( ) ( )
1 22, 1 1 for 1, 2i i Ai BO w X Y iµ µ
−

= = ⋅ =                 (3) 

where 2,iO  is the output of the layer, and iw  represents the firing strength of 
the rule. 

Layer 3. In the layer the nodes are also fixed, they are labeled with N; its func-
tion is to normalize the firing strength, calculating the proportion of the ith fir-
ing strength to sum the firing strength of all the rules. 

3,
1 2

for 1,2i
i

w
O w i

w w
= = =

+
                     (4) 

where 3,iO  is the output of the layer 3, w  and is the normalized firing 
strength. 

Layer 4. The nodes of the layer are adjustable and are defined by 
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4, for 1, 2i i iO w f i =⋅=                         (5) 

where 1f  y 2f  represent the fuzzy rules IF-THEN that are defined like this: 
Rule 1. IF 1X  is 1A  and 1Y  is 1B , THEN 1 1 1 1 1 1f p X q Y r= + +   
Rule 2. IF 1X  is 2A  and 1Y  is 2B , THEN 2 2 1 2 1 2f p X q Y r= + +   

where  ,i ip q  y ir  are parameters that are already set and denoted as conse-
quent parameters. 

Layer 5. The nodes are fixed and labeled with ∑, their function is to calculate 
the total output and is defined by: 

5, total outputi ii
i i i outi

i

w f
O w f f

w
= =⋅= = ∑∑               (6) 

ANFIS has a very simple learning rule, the backpropagation; this rule calcu-
lates recurrently the error signals, starting from the output layer (Layer 5) to the 
input layers (Layer 1). 

2.3. Model Optimization 

The BFO algorithm mimics the process of foraging of a real bacterium, whose 
locomotion is achieved through the movement of its flagella that helps the bac-
terium to swim or tumble; these operations are basic in the foraging process. If 
the flagella rotate in a clockwise direction it generates a tumble movement, in a 
noxious environment the bacteria will tumble more to find nutrients and when 
the flagella rotate counterclockwise the bacterium makes a swim, in a suitable 
environment for the bacterium the swimming movement travels greater dis-
tances [37]. The tumble and swim are part of the chemotaxis process, where 
the bacteria will seek to move in an environment with nutrients while avoiding 
harmful areas. In Figure 3 the movements of tumble and swimming are 
shown. 
 

 
Figure 3. Chemotaxis process [22].  
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When a bacterium finds enough nutrients and the environment has the ade-
quate temperature, the bacterium will reproduce dividing in two and creating a 
replica of itself, forming a colony of bacteria. Likewise, if an attack occurs or the 
environment suddenly changes, a group of bacteria is dispersed to other areas of 
the environment or is eliminated; this event is called elimination-dispersion. 

Suppose that we want to find the minimum of J(θ) where pθ ∈ℜ  (θ is a 
p-dimensional vector) and we ignore the nature of the gradient ( )J θ∇  since 
we do not know with an analytical description nor measurements of ( )J θ∇ .  

BFOA implements an imitation of the main mechanisms present in an actual 
bacteria E, Coli colony: chemotaxis, formation of the colony or swarming, re-
production and elimination-dispersion events, with which the problem of opti-
mization without gradient can be solved. The way to explain what a virtual bac-
terium represents is that a bacterium is a test solution that moves on the func-
tional surface to locate the global optimum [26].  

In order to implement the BFO algorithm is essential to define some terms, as 
an example, a chemotactic step as a tumble followed by a swim, or a tumble fol-
lowed by a tumble. Then j is the index of the chemotaxis steps, k is the index of 
the reproduction steps, and lastly l is the index of the elimination/dispersion 
events. 

The algorithm has certain parameters that must be initialized and on which 
depends the performance of the algorithm. So let be: 

p: Dimension of the search space 
S: Number of bacteria in the population 
Nc: Chemotactic steps 
Ns: Length of swim 
Nr: Reproduction steps 
Ne: Dispersal-elimination events 
Ped: Probability that a bacterium will be eliminated or dispersed 
C(i): Size of the step taken in a random direction specified by the turn. 
Let then ( ) ( ), , , ,iP j k l j k lθ=  where 1,2, ,i S=   the position of each 

member in the population of S bacteria in the jth step of chemotaxis, the k-th 
step of reproduction and the l-th elimination-dispersion event, then we can as-
sociate a cost ( ), ,J j k l  to that position ( ), ,i j k lθ . 

Next, each of the stages of BFOA is described: 
Chemotaxis: Suppose that ( ), ,i j k lθ  where 1,2, ,i S=   is the position of 

each member in the population of S bacteria in the j-th chemotactic step, the 
k-th step of reproduction and the l-th elimination-dispersion event and C(i) is 
the step taken in a random direction specified by the tumble, then the movement 
of artificial chemotaxis is represented by: 

( ) ( ) ( ) ( )
( ) ( )T

, , , ,i i i
j k l j k l C i

i i
θ θ

∆
=

∆

∆
+                (7) 

where ∆  is a vector that contains a random direction whose elements are be-
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tween [−1,1]. 
Swarm. The real cells respond to chemical stimuli to form groups of cells and 

thus travel in the environment. Cell-to-cell signals are represented as follows: 

( )( )

( )( )
( )( )

2

attractant attractant 1

2

repellant repellant 1

, , ,

exp

exp

cc

S p i
m mi l m

S p i
m mi l m

J P j k l

d w

h w

θ

θ θ

θ θ

= =

= =

 = − − −  
 + − − −  

∑ ∑

∑ ∑

           (8) 

where ccJ  is the value added to the objective function which is going to be mi-
nimized, attractantw  is the quantification of the diffusion rate of the attractant, 

attractantd  is a quantification of the attraction agent to be released. In the same 
way, a cell repels any nearby cell in the sense that it is not physically possible to 
have two cells in the same location. To model this is used the height of the re-
pellent repellanth , which is the magnitude of its effect and whose value is defined 
as repellant attractanth d=  and repellantw  is the measure of the diffusion rate of the re-
pellent. These coefficients must be chosen in an appropriate way according to 
our search space. 

The function presented in (8) represents how at the location of each cell as 
you move radially away from the cell, the function decreases and then increases. 
This with the purpose of modeling how distant cells will tend not to be attracted, 
while nearby cells will tend to try to scale the nutrient gradient from cell to cell 
with each other and, therefore, try to form a swarm. Is important to make clear 
that as the cell moves, so does its function representing the release of chemicals 
as it moves. Due to the movements of all the cells, the function varies with time, 
and if many cells gather, there will be a large amount of attractant, therefore, a 
greater probability that other cells will move towards the group forming the 
swarm. 

Reproduction. The general criterion for this stage is that the less healthy bac-
teria must die while the healthiest bacteria, which are the ones that have a lower 
value in the objective function, will be reproduced by dividing them in two, 
keeping the size of the population constant. 

Elimination/dispersion. To simulate dispersion and elimination events, a 
group of bacteria is randomly eliminated with a small probability, and replace-
ments are initialized randomly over the search space. 

2.4. Methodology 

Below are presented the steps of the methodology to obtain the optimized model 
(Figure 4). 

1) Acquisition of data: The raw data to create the model are obtained from a 
database. 

2) Data filtering: The database contains some data that is not valid or that 
could be partial and must be filtered to avoid having a biased model. 

3) Data entry: once the data has been reviewed and is valid, then it can be fed  
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Figure 4. Methodology. 
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into the model. 
4) Fuzzification: It is the process of converting the input data into a linguistic 

value; this depends on the membership functions. In this case, generalized 
membership functions were used in the form of a bell. The bell function depends 
on three parameters a, b and c, and is given by.  

( ) 2

1; , ,
1

bf x a b c
x c

a

=
−

+

                       (9) 

Evaluation of the rules: the rules of the model are evaluated with respect to the 
fuzzy rules and the values of the membership functions. 

5) Defuzzification: The defuzzification method used was the weighted average 
of all rule exits. 

6) Model Fuzzy inference system: Once the evaluation and defuzzification 
steps have been completed, the model is constructed with the specific equations 
of ANFIS expressed in the construction section of the model. 

7) Definition of the search space: A search space is defined as all feasible solu-
tions within our problem, which is why our search space must first be located 
between the valid data for environmental factors. Relative humidity, tempera-
ture, direction and wind speed as well as within the feasible values of PM10, be-
cause given the nature of the problem, another way to define the search space is 
very difficult since the possibilities are very broad. 

8) Generation of the population: the population with S bacteria must be gen-
erated, in initial random positions within a range of possible values that the ac-
tual data may have for the time when the bacteria are being generated. The ob-
jective is to perform experiments using different values of S to determine how 
the size of the population affects the optimized model. 

We used the ANFIS models generated with data from seven stations that had 
enough data to build and optimize the model, we took the data from the same 
period of time and thus generate the search space where the bacteria will mi-
nimize the difference, as shown in Figure 5. Therefore, the generation of the ini-
tial population of bacteria was carried out at random, taking as a reference the 
minimum and maximum spread of the data for each day of the month for all 7 
stations. 

9) Initialization of parameters: The parameters of BFOA must be initialized, 
these parameters include initializing the counters of the loops of elimina-
tion/dispersion j, reproduction k, chemotaxis l, and the index s of the bacterium 
i. As well as the parameters of attraction and repellent ( attractantw , attractantd , 

repellanth , repellantw ), which are the ones that generate the swarm effect, in this case 
the values of attractant 0.05d = , attractant 0.15w = , repellant attractanth d= , repellant 10w =  
were used. 

These values were initially selected according to studies carried out by some 
authors [20], who recommended that they be selected according to certain crite-
ria. For example the height or magnitude of the repellent should be equal to the  
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Figure 5. ANFIS of all stations. 
 
width of the attraction signal to avoid having two bacteria at the same point. 
This is modeled by making repellant attractanth d= , on the other hand, it also recom-
mends that the attraction signal be very small compared to the nutrient concen-
tration values in our search space and therefore the repellent it must be large 
enough to prevent bacteria from being very close. However, experimenting with 
different variants of these values is part of future work to locate the optimal val-
ue of this parameter. 

10) Calculation of the objective function: We must calculate the criterion that 
will tell us how healthy the bacterium is, in the algorithm the calculation of 
swarm factor Jcc with Equation (8) and add it to the cost J of the bacterium in the 
actual position is calculated.  

Update of the bacteria position: An update of the bacteria is made according 
to the cost of the bacteria in the current position, comparing it with the cost of 
the next position. In order to achieve this, the tumble of the bacteria is calculated 
and a swim is made in that direction, the cost of the new position is calculated, if 
it has lower cost then it becomes the best position of the bacterium and it keeps 
moving in that direction. Otherwise, finishes the swim loop and if it is not found 
a better position it means that it is not located in an adequate environment and 
continues with the next bacterium. 

11) The reproduction, dispersion and elimination events are carried out where 
the best half of the population reproduces, that is, an exact copy of the bacteria is 
made with lower total cost and the other half is replaced by randomly generated 
bacteria, as well a group with low probability they are scattered in the search 
space randomly. 

12) If the iterations of the BFO algorithm have been completed, the optimiza-
tion criteria are met. The bacteria have converged to a value for the current data; 
in this case, it refers to the value of the concentration of PM10 for that hour. The 
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criterion to determine that the bacteria have converged is by means of the para-
meters of Nre and Ned, which are the events that influence the convergence of 
the algorithm [38]. The next thing is to return to step 8 but taking the corres-
ponding data for the next hour, and so, until the month’s data is finished. 

13) Optimized model: if all the loops of the BFO algorithm and the hours of 
the month have been completed, also if the optimization criteria are met, it is 
said that an Optimized Model has been created. 

3. Results  

To illustrate the complexity of the problem, the actual PM10 concentration data 
and its non-linear behavior can be observed in Figure 6. 

For a better understanding about the complexity of the data it is necessary to 
analyze the variability of the data coming from the different monitoring stations. 
This variability has origin in the nature of the phenomenon of the behavior of 
the atmospheric particles, in Table 3 can be observed some measurements of 
dispersion of three stations, as a sample of this variability, we can see that the 
standard deviation shows that the data are distributed in a wider range. 

Once the complexity of the problem is established, we can state that the pur-
pose of using the BFOA optimization method is the reduction of the error that 
exists when applying the model created with ANFIS, which is why the experi-
ments conducted are aimed at testing the efficiency of the BFO algorithm and 
the different configurations of its parameters. 

It is important to calculate the error that is obtained when using ANFIS to 
create the model, which can be observed in Figure 7 and that, will later serve to  
 

 
Figure 6. Concentration of PM10 real data. 
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Figure 7. Error of ANFIS vs. real data. 
 
Table 3. Variability of the data. 

Station Minimum Maximum Range Standard deviation Mean 

hgm 5 196 191 30.74678334 46.325452 

fac 1 264 263 36.87219649 45.9357045 

sag 3 238 235 34.85784066 58.5607094 

cho 1 220 219 44.80596269 56.6182573 

cua 1 168 167 27.56101595 33.4013699 

cut 1 290 289 51.84183066 73.6511628 

mgh 3 177 174 29.99927561 41.217862 

 
make the comparison with the optimized model. The quantification of the error 
between the real data and those calculated by the ANFIS model was carried out 
using the root mean square error (RMSE) which is a method historically used to 
measure the accuracy of data forecasts [39]. 

The problem of using ANFIS to generate a pollutant concentration model is 
that the values obtained with ANFIS present large differences compared to the 
real values. 

In the case of the model generated with ANFIS, an RMSE = 24,147 is ob-
tained, which is expected to be minimized with BFOA.  

As for the optimization of the model, the objective is to generate a more accu-
rate model, and this could be achieved by varying the parameters of the algo-
rithm, such as the number of bacteria that will move in the search space, the 
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number of steps of chemotaxis and reproduction steps. However, the variation 
in BFOA parameters could generate a high execution time, given the nature of 
BFOA, since it is an algorithm that has nested cycles, that is why the processing 
time of each parameter configuration was also taken into account in the experi-
ments. 

Such experiments were focused on the parameter in question and in its effect 
on the model, that is why the other parameters were maintained fixed and on 
low values to avoid unnecessarily rising the execution time and avoid interfe-
rence with the parameter tests. 

As a context for the runtime tests, a PC with Windows 7, 64 bits, Intel Core 
i3-2100 3.10 GHz processor and 12 Gb RAM was used. 

3.1. Variation in the Number of Bacteria 

The number of bacteria in population S is perhaps the first parameter to choose, 
since each of the bacteria represents a possible solution to the optimization 
problem, even though it must be taken into account that increasing the size of S 
can also increase the computational complexity. However, if S has a large value 
and by randomly distributing the initial population in the search space, there is a 
greater probability that some of these bacteria have been positioned near an op-
timal point, and that during the execution of the algorithm is also higher the 
probability that there is a higher density of bacteria in said optimal region. 

The proposed values to experiment with the number of bacteria were S = {10, 
50, 100, 200, 500}, in Table 4 it can be observed how the amount of bacteria in-
fluences in obtaining an optimized model, achieving a lower error measurement 
(RMSE). However, it is important to note how the effect of the size of the popu-
lation S in obtaining the error has a higher rate of change when the population is 
less than 50 and after that value the rate of change decreases (Figure 8). Howev-
er, as the number of bacteria increases, so does the computational time as shown 
on Table 4 up to the point to the time increasing considerably with a RMSE of 
3.75, which is a decrease of only 1.57. For that reason, it is important to deter-
mine the point where the number of bacteria shows a low RMSE, but the time 
does not increase considerably. 

3.2. Variation of Chemotaxis Steps 

When the steps of chemotaxis are increased, that is, Nc has a larger value, which  
 
Table 4. Ratio of bacteria quantity, RMSE and execution time. 

Bacteria RMSE Time/seconds 

10 19.8851195 419.84 

50 10.1072 2268.786 

100 7.07398003 4185.117 

200 5.32684396 8062.675 

500 3.75769854 20,625.8073 
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results in a greater optimization advance when having more opportunities to 
reach an optimal point. Therefore, in Figure 9 we can observe a decrease in the 
error when Nc = 10 and especially when the population S is greater (S = 500), 
but this also implies a greater computational complexity. In addition, it can be 
noted on Figure 9 that the difference in RMSE then having 10 and 50 bacteria is 
negligible and a more consistent difference in RMSE is given between 200 and  
 

 
Figure 8. Error RMSE in relation to population S. 

 

 
Figure 9. Different values for Nc (steps of chemotaxis). 
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500 bacteria. Which seems to indicate that at low values the steps of which the 
bacteria moves does not have an effect on the results due that with few bacteria 
will take longer to find an optimum solution regardless of the steps. 

3.3. Variation of Reproduction Steps 

The reproduction steps, Nre, give an indication of how the algorithm ignores re-
gions with few nutrients, and focuses on regions with high nutritional content 
for the bacteria. This means, whether the bacteria are finding better solutions, 
given that the bacteria in bad regions die and bacteria that are in good regions 
tend to reproduce faster. Furthermore, if Nre is very small, the algorithm con-
verges prematurely, and if on the contrary the value of the reproduction steps is 
very high, the computational complexity increases exponentially. 

In Figure 10, the value of Nre and its corresponding RMSE is shown. In this 
figure, is displayed that the RMSE decreases rapidly as the Nre increases up to 
12. After this point, the optimization process no longer improves and the error 
begins to stall at a particular value, even if Nre increases up to 20. 

In terms of computational complexity, in Figure 11 it can be observed that 
undoubtedly the complexity increases significantly when increasing the values of 
the reproduction steps where there is a considerable difference between the val-
ues Nr = 12 and Nre = 20. This must be taken into account when selecting the 
parameters, since the improvement in the optimization is not significant in 
terms of but it does increase the complexity a lot. 

3.4. Variation of the Elimination/Dispersion Events 

The value of the elimination/dispersion events, Ned, refers to how many times a 
group of bacteria will be eliminated and new bacteria will be generated in ran-
dom positions throughout the search space. This means that a low value for Ned 
will not have to rely on random elimination/dispersion events to find favorable 
regions, whilst a higher value of Ned will allow bacteria to have access to more 
 

 
Figure 10. Nre variation with respect to the RMSE error. 
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regions of the search space in which they might find higher concentrations of 
nutrients. This parameter must be also being taken into account, that increasing 
the number of these events can increase computational complexity. 

As a result of the tests carried out with different values for Ned, it can be seen 
in Figure 12, that the Ned increase contributes to the result of obtaining a 
smaller error in the optimized model. However, it can be seen in the same figure 
that by the time the population size is larger, Ned’s contribution is no longer as 
significant, since the error value for when Ned = 10 is very close to the error 
when Ned = 16. Due to the issues on computational complexity discussed pre-
viously, it may be concluded that S = 50 and Ned = 10 may be the most appro-
priate values to since S = 100 does not improve with a large value of Ned as 
shown on Figure 12 and in the values in Table 5. 
 

 
Figure 11. Cost/Benefit of Nre in terms of execution time. 
 

 
Figure 12. Variation of elimination/dispersion events. 
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Table 5. Ned y RMSE values. 

Ned S = 10 S = 100 

2 21.9864716 8.53933847 

4 14.1218685 2.93864778 

10 7.00605537 1.12131925 

16 4.17984705 1.18270545 

3.5. Variation in Step Size Taken during the Tumble 

C(i), where 1,2, ,i S=  , is defined as the size of the step taken in a random di-
rection specified by the tumble. One could say that C(i) is the size of the step by 
which the BFO algorithm advances. This makes it one of the main parameters to 
experiment in this contribution. However, it can be intuited that if the values of 
step C(i) are very large, and the optimum value is within a valley with very pro-
nounced edges, the search could jump the valley without stopping, or it may also 
omit minimums locals swimming through them. On the other hand, if the values 
of C(i) are very small, the convergence becomes slower. 

In Figure 13, an observation on how the value of C(i) when taking different 
values affects the result obtained by the algorithm is seen. In this specific confi-
guration its optimum value reaches with C(i) = 4 with an RMSE = 6.79, after that 
value, the error increases considerably. As explained above, this is due to the fact 
that the advance step of the algorithm, c(i), is directly linked to the nature of the 
problem since a very large value can skip regions with critical values (local or 
global minimums) and if is very small makes the convergence slower. C(i) = 4 is 
the best for the problem posed here. 

For example, when C(i) = 30, the error is even greater than the one obtained 
with the non-optimized model, as expected, since the step is larger, it is easier to 
pass by regions with high nutrients if they are within a valley, thus avoiding local 
minimum. 

3.6. Final Parameter Tuning 

In the previous sections is explained the effect that have the most significant in 
obtaining the optimized model parameters and the individual effects that each of 
them have in the model. Based upon these results, it may be concluded that giv-
en the appropriate configuration of the parameters are selected, the algorithm 
succeeds in reducing the Root Mean Square Error (RMSE) given a set of models 
for Airborne Particulate Matter PM10 without sacrificing computational speed. 

The final configuration, proposed for the model optimized with BFO, is 
shown in Table 6. 

In Figure 14, the error is shown for each hour of the month, corresponding to 
the ANFIS method with respect to the real data (blue line), compared to the er-
ror rate of the optimized model ANFIS/BFOA with respect to the real data 
(orange line). This comparison shows that the error rate, the optimized model  
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Figure 13. Variation in step size taken during the tumble. 
 

 
Figure 14. Comparison of errors of the ANFIS model and optimized model BFOA/ANFIS. 

 
with BFOA, is better adjusted to the real data than the ANFIS method alone, in 
Table 7, the errors calculated with RMSE, of each model for each of the different 
values of the population S are presented. 

Figure 15 shows the difference in errors between two models optimized with  
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Table 6. Final configuration of parameters. 

Parameter Value 

S 300 

Nc 10 

Ned 10 

Nre 12 

C(i) 4 

 
Table 7. RMSE for ANFIS and BFOA. 

S RMSE ANFIS RMSE BFOA 

S = 10 25.1144672 4.62980105 

S = 100 25.1144672 2.32101394 

 

 
Figure 15. Comparison of errors of the optimized BFOA/ANFIS model with variation in 
population S. 
 
BFOA, but with different sizes of population S, where it can be seen that the sig-
nificant value is still the size of S, since we see that even errors of large scale 
(Figure 15, labeled 49.93). 

4. Conclusions and Future Work 

In general, it can be concluded that the use of the Bacterial Foraging Optimiza-
tion Algorithm (BFOA), turned out to be useful for the optimization of the 
PM10 concentration model. The contribution of this work is the successful use 
of BFOA applied to an environmental problem. Being more specific, previous 
section shows how the variation of parameters modifies the result in the opti-
mized model, being the size of the population of bacteria, S, one of the funda-
mental parameters, which has to be chosen appropriately to obtain an optimiza-
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tion without increasing the execution time. Similarly, it was shown that, the size 
of the step, C(i), is an essential parameter, because its variation has a significant 
influence on the optimized model, and the range is narrow where the appropri-
ate value is located. Apart from the parameters of chemotactic steps, Nc, and the 
number of reproduction steps, Nre also contributes to the final parameter con-
figuration to obtain the optimized model. 

Also, it is important to state that even though BFOA is a stochastic method 
and contains some degree of randomness, for instance, in the population gener-
ation. That is why several tests must be performed to certainly know that the al-
gorithm is reliable, along with the tests using validation data. 

It should be mentioned that the implementation of the BFO algorithm was 
based on the author’s original version [20]. However, there is a very broad field 
where, as future research work, more data could be tested, for example, testing 
their performance with data from other cities around the world and even gene-
rating an optimized model for PM2.5 particles. It could also include more mon-
itoring stations, as well as the implementation of hybrid versions for this same 
application. For instance, the hybrid version of BFO with Optimization of Par-
ticle Swarm (PSO) could be implemented as they have done in other works [40]. 
Also the hybrid version (HBFO) could be applied where a part of the ant colony 
optimization algorithm (ACO) is used in the rotation mechanism of artificial 
bacteria [28]. All of this is for obtaining better results in the modeling of conso-
lidating BFOA as an optimization algorithm, and its successful application in a 
problem of environmental data. 
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