
International Journal of Intelligence Science, 2019, 9, 59-65
http://www.scirp.org/journal/ijis

ISSN Online: 2163-0356
ISSN Print: 2163-0283

DOI: 10.4236/ijis.2019.92004 Apr. 30, 2019 59 International Journal of Intelligence Science

Better Algorithm for Order On-Line Scheduling
on Uniform Machines

Rongheng Li1, Yunxia Zhou2

1Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics,
Department of Mathematics, Hunan Normal University, Changsha, China
2Department of Computer, Hunan Normal University, Changsha, China

Abstract
In this paper, we consider online scheduling for jobs with arbitrary release
times on the parallel uniform machine system. An algorithm with competi-
tive ratio of 7.4641 is addressed, which is better than the best existing result of
12.

Keywords
Online Scheduling, Uniform Machine, Competitive Ratio, LS Algorithm

1. Introduction

For the online scheduling on a system of m uniform parallel machines, denoted
by Qm/online/Cmax, each machine ()1,2, ,iM i m=  has a speed si, i.e., the time
used for finishing a job with size p on Mi is p/si. Without loss of generality, we
assume 1 2 ms s s< ≤ ≤ . Cho and Sahni [1] are the first to consider the online
scheduling problem on m uniform machines. For Q2/online/Cmax, Epstein et al.
[2] showed that LS has the competitive ratio () () (){ }min 2 1 1 , 1s s s s+ + +
and is an optimal online algorithm, where the speed ratio 2 1s s s= .
Q3/online/Cmax was considered by Cai and Yang [3]. They showed that the algo-
rithm LS is an optimal online algorithm when the speed ratios () 1 2,s t G G∈ ∪ ,
where 2 1s s s= , 3 2t s s= ,

()1 2

1 31 3, 1 ,
6 5 2 6

tG s t t s
t t

 + = ≤ < ≥ 
+ −  

,

(){ }2 , 1 , 1, 1G s t t s s t= ≥ + ≥ ≥ .

Aspnes et al. [4] are the first to try to design better algorithm for Qm/online/Cmax.

How to cite this paper: Li, R.H. and Zhou,
Y.X. (2019) Better Algorithm for Order
On-Line Scheduling on Uniform Machines.
International Journal of Intelligence Science,
9, 59-65.
https://doi.org/10.4236/ijis.2019.92004

Received: March 5, 2019
Accepted: April 27, 2019
Published: April 30, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ijis
https://doi.org/10.4236/ijis.2019.92004
http://www.scirp.org
https://doi.org/10.4236/ijis.2019.92004
http://creativecommons.org/licenses/by/4.0/

R. H. Li, Y. X. Zhou

DOI: 10.4236/ijis.2019.92004 60 International Journal of Intelligence Science

They presented a new algorithm with competitive ratio of 8 for the deterministic
version, and 5.436 for its randomized variant. Later the previous ratios are im-
proved to 5.828 and 4.311, respectively, by Berman et al. [5].

The special case ()1 1,2, , 1is i m= = − and 1ms s= ≥ was fisrt considered
by Li and Shi [6]. It is proved that for 3m ≤ LS is optimal when sm = 2 and
they also developed an algorithm with a better competitive ratio than LS for m ≥
4 and sm = s ≥ 1. For m ≥ 4 and 1 ≤ s ≤ 2, Cheng et al. [7] proposed an algorithm
with a competitive ratio not greater than 2.45.

Motivated by air cargo import terminal problem, a generalization of the Gra-
ham’s classical on-line scheduling problem was proposed by Li and Huang [8]
[9]. They describe the requests of all jobs in terms of order, where for any job list

{ }1 2, , , nL J J J=  , job Jj is given as order with the information of a release time
rj and a processing size of pj. More recent results can be found in the research by
Li et al. [10] and Yin et al. [11].

Our task is to allocate an order sequence of jobs to m parallel uniform ma-
chines which have speeds of 1 2 ms s s≤ ≤ ≤ in an online fashion, while mini-
mizing the maximum completion time of the machines. An algorithm with
worst case performance not bigger than 7.4641 is developed. The result is better
than the existing result of 12 in Cheng et al. [12].

The rest of the paper is organized as follows. In Section 2, some definitions are
given. In Section 3, an algorithm R is addressed and its competitive ratio is ana-
lyzed.

2. Some Definitions

In this section we will give some definitions.
Definition 1: We have m parallel machines with speeds 1 2, , , ms s s , respec-

tively. Let { }1 2, , , nL J J J=  be any list of jobs, where jobs arrives online one
by one and each Jj has a release time rj and a processing size of pj. Algorithm A is
a heuristic algorithm. ()max

AC L and ()max
OPTC L denote the makespan of algo-

rithm A and an optimal off-line algorithm, respectively. We refer to

() ()
()

max

max

, sup
A

OPT
L

C L
R m A

C L
=

as the competitive ratio of algorithm A.

Definition 2: Suppose that Jj is the current job with release time rj and size of
pj. We say that machine Mi has an idle time interval for job Jj, if there exists a
time interval []1 2,T T satisfying the following two conditions:

1) Machine Mi is idle in interval []1 2,T T and a job with release time T2 has
been assigned to machine Mi to start at time T2.

2) 2 1max , j
j

i

p
T T r

s
 − ≥  .

It is obvious that if machine Mi has an idle time interval for job Jj, then we can
assign Jj to machine Mi in the idle interval.

https://doi.org/10.4236/ijis.2019.92004

R. H. Li, Y. X. Zhou

DOI: 10.4236/ijis.2019.92004 61 International Journal of Intelligence Science

In the following we consider m parallel uniform machines with speeds

1 2, , , ms s s and a job list { }1 2, , , nL J J J=  with information (rj, pj) for each
job jJ L∈ , where ri and pi represent its release time and processing size, re-
spectively. For convenience, we assume that the sequence of machine speeds is
non-decreasing, i.e., 1 2 ms s s≤ ≤ ≤ . Let

{ }1 20, , , , mS s s s=  ;

()
,

Bigsum
i i

i
s S s s

s s
∈ >

= ∑ ;

{ }10, , , ,i i i mS s s s+=  ; 1, 2, , , 1i m m= + ;

()
,

Bigsum ,
i i

i
s S s s

i s s
′ ′

′
∈ >

= ∑ ; 1,2, ,i m=  ,

()
,

Bigsum , ,
j j j

j
J L sr p s

ps L
∈ + > ∆

∆ = ∑ .

By our definition, { }1 0mS + = .

3. Algorithm R and Its Performance

Now we present the algorithm R by use of the notations given in the former sec-
tion in the following:

Algorithm R:
Step 0. Let t: = 0, Δt: = very small positive number.

For i = 1 to m do mi: = Δtsi, ci: = 2 mi, Hi = 0.
:tL = Φ .

Step 1. Let Jj be a new job with release time rj and processing size pj given
to the algorithm. If there is a machine Mi which has an idle time
interval for job Jj, then we assign Jj to machine Mi in the idle in-
terval and set :t t

jL L J=  .
Step 2. If j tr ≥ ∆ or () ()0

Bigsum , , Bigsumt
t t

k
k

Ls s
=

∆ > ∆


 for some
s S∈ then goto Step 3. Otherwise goto Step 4.

Step 3. (*start a new phase*)
Set Δ: = rΔt, t: = t + 1, Δt: = Δ,
For i = 1 to m do :i t im s= ∆ , (): 2 1i i ic c r m= + − .
Set :tL = Φ and Goto Step 2.

Step 4. (*schedule pj*)

{ }: min | i i i j jk i c m s r p= + > + ;

Assign Jj on machine Mk; Set:

{ }: max 0,k k k j k jc c s r H p= − − − ;

{ }: max 0,k k k j k jH H s r H p= + − + .

Set :t t
jL L J=  .

The running time of R is mainly in Step 1 and Step 4. In Step 1, at most j-1
times of checking can determine if there is an idle interval for current job Jj. In
Step 4 at most m times can determine to assign current job Jj. Hence the com-

https://doi.org/10.4236/ijis.2019.92004

R. H. Li, Y. X. Zhou

DOI: 10.4236/ijis.2019.92004 62 International Journal of Intelligence Science

plexity of our algorithm is O(n2).
Now we begin to analyze the performance of algorithm R. The following

statement is obvious:
Lemma 1. For a job list L, if ()max

OPTC L ≤ ∆ , then
() ()Bigsum , , Bigsums L s∆ ≤ ∆ and rj < Δ hold for every s S∈ and every

j L∈ .
Let Ll be the stream of jobs scheduled in phase l. We define l

iL to be the
stream of jobs that in phase l machine Mi passed over or Mi+1 received,

0,1, ,i m=  (for 1 i m≤ < , these two conditions are equivalent, for i = 0, only
the latter and for i = m only the former applies).

Now the correctness of algorithm R will mean that the stream l
mJ is empty

for every phase l.
Lemma 2. For every 0,1,2, ,i m=  and every phase l, we have

()
0 0 1
Bigsum 0, , .

l l n
t

t i t q
t t q i

L s
= = = +

  ∆ ≤ ∆   
  

∑ ∑ ∑

Proof: First of all, by the rules of the algorithm, we have

() ()0
Bigsum , , Bigsum .l t

t lt
s L s

=
∆ ≤ ∆


for every phase l and every s S∈ . Therefore

() ()Bigsum , , Bigsum .l
t ls L s∆ ≤ ∆

for every phase l and every s S∈ . Now we prove the claim by induction. For i =
0, it follows simply from the fact that

() () ()0
1

Bigsum 0, , Bigsum 0, , Bigsum 0 , .t
m

t
t qt t

q
t t lLL s

=

∆ ∀∆ = ≤ ∆ = ≤∆ ∑

For l = 0, L0 is empty and hence 0Li is empty for all i. Thus we have

()0Bigsum 0, , , 2, ,0, 1i iL m=∆ =  .

This means that it is true for all i.
Now we will show the claim for (i, l) is true under the assumptions that the

claim is true for (i−1, l) and (i, l−1). We prove it according to the following two
cases:

Case 1. ci > 0. In this case, any job J with release time r and size p satisfying

i i irs p m s+ ≤ = ∆ in 1
l
iL − cannot be passed over machine Mi to machine Mi+1.

Hence we have

{ }| , l
j i j li i

l j r s p s j LL = + > ∆ ∈ .

Thus we have

() () ()
1

Bigsum 0, , Bigsum , , Bigsuml
l i l l

m
l

ii l q
q i

s L sL s
= +

∆ = ∆ ≤ ∆ = ∆ ∑ .

By the assumption on the claim for (i, l−1), we get

()
1 1

0 0 1
Bigsum 0, , .

l l n
t

t i t q
t t q i

L s
− −

= = = +

  ∆ ≤ ∆   
  

∑ ∑ ∑

https://doi.org/10.4236/ijis.2019.92004

R. H. Li, Y. X. Zhou

DOI: 10.4236/ijis.2019.92004 63 International Journal of Intelligence Science

Adding up the above two inequality we get the claim for (i, l).
Case 2. 0ic ≤ . In this case, we consider the sum of job sizes that assigned on

machine Mi from phase 0 to phase l, which can be expressed as

() ()1
0

Bigsum 0, , Bigsum 0, ,
l

t t
i it t

t
L L−

=

 
 ∆ − ∆∑

Because 0ic ≤ , Hi, the height of machine Mi at the end of phase l, is at least

() ()

0 1
0

0 1 0 1

0

1 12 2 2

2 2 2

l
t

i i i i l i
t

i i l l i

l

l i i t
t

H c s s s
r r

s s s

s s

=

−

=

   ≥ = ∆ + − ∆ + + − ∆   
   

= ∆ + ∆ −∆ + + ∆ −∆

= ∆ + ∆

∑

∑





By the rules of the algorithm, no job has release time greater than Δl. This

means that there is no idle time in time interval
0

, tl

l

l
t=

 ∆ ∆ + 
∆


∑ on machine

Mi. Hence the sum of the job sizes that assigned on machine Mi from phase 0 to
phase l satisfies:

() ()1
0 0

Bigsum 0, , Bigsum 0, ,
l l

t t
t ti i i t

t t
L L s−

= =

 ∆ − ∆ ≥ ∆ ∑ ∑ .

By the inductive hypothesis for (i−1, l), we have

()
0 0
Bigsum 0, .

l m l

t q t
t q i t

s
= = =

  ∆ ≤ ∆  
  

∑ ∑ ∑

The above two inequalities include the truth of the claim for (i, l).
Lemma 2 show that, for every phase t, we have

()Bigsum 0, , 0t
t
mL∆ = .

This includes that t
mL is empty for every phase t.

Theorem 3. The competitive ratio of algorithm R is not greater than 7.4641.
Proof: Suppose that the algorithm ended at phase k. Then the optimal value is

at least 1
1 0

k
k r −
−∆ = ∆ and the completion time of the algorithm is at most

() ()

0
0 1

0 1 0 1

0
0 0

1

0
0

1 12 2 2

2 2 2

2 2

12 .
1

k
t
i

t
k k

i

k k k

k k
k t

k t
t t

kk
k

t
t

c

s r r

r r

rr
r

=

−

= =

+

=

   = ∆ + − ∆ + + − ∆ + ∆   
   

= ∆ + ∆ −∆ + + ∆ −∆ + ∆

 = ∆ + ∆ = + ∆ 
 

 −
= ∆ = + ∆ − 

∑

∑ ∑

∑





Hence the performance ratio is not greater than
21

1 112 2 3 1 .
1 1 1

k
k k rrr r r r

r r r

+
− −

+ < + = + + − − − 

https://doi.org/10.4236/ijis.2019.92004

R. H. Li, Y. X. Zhou

DOI: 10.4236/ijis.2019.92004 64 International Journal of Intelligence Science

It is easy to see that the best value of r is 31
3

+ and the performance ratio is

4 2 3 7.4641+ ≈ .

4. Conclusion

In this paper, on-line scheduling problem for jobs with arbitrary release times on
uniform machines is considered. We developed an algorithm with the competi-
tive ratio of 7.4641 which is better than existing result of 12. In order to improve
the competitive ratio more detailed consideration should be taken in.

Acknowledgements

The authors would like to express their thanks to the National Natural Science
Foundation of China for financially supporting under Grant No.11471110 and
the Foundation Grant of Education Department of Hunan (No. 16A126).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Cho, Y. and Sahni, S. (1980) Bounds for List Schedules on Uniform Processors.

SIAM Journal on Computing, 9, 91-103. https://doi.org/10.1137/0209007

[2] Epstein, L., Noga, J., Seiden, S.S., Sgall, J. and Woeginger, G.J. (2001) Randomized
on-Line Scheduling on Two Uniform Machines. Journal of Scheduling, 4, 71-92.
https://doi.org/10.1002/jos.60

[3] Cai, S.Y. and Yang, Q.F. (2012) Online Scheduling on Three Uniform Machines.
Discrete Applied Mathematics, 160, 291-302.
https://doi.org/10.1016/j.dam.2011.10.001

[4] Aspnes, J., Azar, Y., Fiat, A., Plotkin, S. and Waarts, O. (1997) On-Line Routing of
Virtual Circuits with Applications to Load Balancing and Machine Scheduling.
Journal of the ACM, 44, 486-504. https://doi.org/10.1145/258128.258201

[5] Berman, P., Charikar, M. and Karpinski, M. (2000) On-Line Load Balancing for Re-
lated Machines. Journal of Algorithms, 35, 108-121.
https://doi.org/10.1006/jagm.1999.1070

[6] Li, R.H. and Shi, L.J. (1998) An on-Line Algorithm for Some Uniform Processor
Scheduling. SIAM Journal on Computing, 27, 414-422.
https://doi.org/10.1137/S0097539799527969

[7] Cheng, T.C.E., Ng, C. and Kotov, V. (2006) A New Algorithm for Online Uni-
form-Machine Scheduling to Minimize the Makespan. Information Processing Let-
ters, 99, 102-105.

[8] Li, R.H. and Huang, H.C. (2004) On-Line Scheduling for Jobs with Arbitrary Re-
lease Times. Computing, 73, 79-97. https://doi.org/10.1007/s00607-004-0067-1

[9] Li, R.H. and Huang, H.C. (2007) Improved Algorithm for a Generalized On-line
Scheduling Problem on Identical Machines. European Journal of Operations Re-
search, 176, 643-652. https://doi.org/10.1016/j.ejor.2005.06.061

https://doi.org/10.4236/ijis.2019.92004
https://doi.org/10.1137/0209007
https://doi.org/10.1002/jos.60
https://doi.org/10.1016/j.dam.2011.10.001
https://doi.org/10.1145/258128.258201
https://doi.org/10.1006/jagm.1999.1070
https://doi.org/10.1137/S0097539799527969
https://doi.org/10.1007/s00607-004-0067-1
https://doi.org/10.1016/j.ejor.2005.06.061

R. H. Li, Y. X. Zhou

DOI: 10.4236/ijis.2019.92004 65 International Journal of Intelligence Science

[10] Li, K., Zhang, H., Cheng, B. and Pardalos, P. (2018) Uniform Parallel Machine
Scheduling Problem with Fixed Machine Cost. Optimization Letter, 12, 73-86.
https://doi.org/10.1007/s11590-016-1096-3

[11] Yin, Y., Chen, Y., Qin, K. and Wang, D. (2019) Two-Agent Scheduling on Unre-
lated Parallel Machines with Total Completion Time and Weighted Number of
Tardy Jobs Criteria. Journal of Scheduling, 22, 315-333.
https://doi.org/10.1007/s10951-018-0583-z

[12] Cheng, X., Li, R. and Zhou, Y. (2016) On-Line Scheduling for Jobs with Arbitrary
Release Times on Parallel Related Uniform Machines. Intelligent Information
Management, 8, 98-102. https://doi.org/10.4236/iim.2016.84008

https://doi.org/10.4236/ijis.2019.92004
https://doi.org/10.1007/s11590-016-1096-3
https://doi.org/10.1007/s10951-018-0583-z
https://doi.org/10.4236/iim.2016.84008

	Better Algorithm for Order On-Line Scheduling on Uniform Machines
	Abstract
	Keywords
	1. Introduction
	2. Some Definitions
	3. Algorithm R and Its Performance
	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

