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Abstract 
In this paper, we consider online scheduling for jobs with arbitrary release 
times on the parallel uniform machine system. An algorithm with competi-
tive ratio of 7.4641 is addressed, which is better than the best existing result of 
12. 
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1. Introduction 

For the online scheduling on a system of m uniform parallel machines, denoted 
by Qm/online/Cmax, each machine ( )1,2, ,iM i m=   has a speed si, i.e., the time 
used for finishing a job with size p on Mi is p/si. Without loss of generality, we 
assume 1 2 ms s s< ≤ ≤ . Cho and Sahni [1] are the first to consider the online 
scheduling problem on m uniform machines. For Q2/online/Cmax, Epstein et al. 
[2] showed that LS has the competitive ratio ( ) ( ) ( ){ }min 2 1 1 , 1s s s s+ + +  
and is an optimal online algorithm, where the speed ratio 2 1s s s= . 
Q3/online/Cmax was considered by Cai and Yang [3]. They showed that the algo-
rithm LS is an optimal online algorithm when the speed ratios ( ) 1 2,s t G G∈ ∪ , 
where 2 1s s s= , 3 2t s s= , 

( )1 2

1 31 3, 1 ,
6 5 2 6

tG s t t s
t t

 + = ≤ < ≥ 
+ −  

, 

( ){ }2 , 1 , 1, 1G s t t s s t= ≥ + ≥ ≥ . 

Aspnes et al. [4] are the first to try to design better algorithm for Qm/online/Cmax. 
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They presented a new algorithm with competitive ratio of 8 for the deterministic 
version, and 5.436 for its randomized variant. Later the previous ratios are im-
proved to 5.828 and 4.311, respectively, by Berman et al. [5]. 

The special case ( )1 1,2, , 1is i m= = −  and 1ms s= ≥  was fisrt considered 
by Li and Shi [6]. It is proved that for 3m ≤  LS is optimal when sm = 2 and 
they also developed an algorithm with a better competitive ratio than LS for m ≥ 
4 and sm = s ≥ 1. For m ≥ 4 and 1 ≤ s ≤ 2, Cheng et al. [7] proposed an algorithm 
with a competitive ratio not greater than 2.45. 

Motivated by air cargo import terminal problem, a generalization of the Gra-
ham’s classical on-line scheduling problem was proposed by Li and Huang [8] 
[9]. They describe the requests of all jobs in terms of order, where for any job list 

{ }1 2, , , nL J J J=  , job Jj is given as order with the information of a release time 
rj and a processing size of pj. More recent results can be found in the research by 
Li et al. [10] and Yin et al. [11]. 

Our task is to allocate an order sequence of jobs to m parallel uniform ma-
chines which have speeds of 1 2 ms s s≤ ≤ ≤  in an online fashion, while mini-
mizing the maximum completion time of the machines. An algorithm with 
worst case performance not bigger than 7.4641 is developed. The result is better 
than the existing result of 12 in Cheng et al. [12]. 

The rest of the paper is organized as follows. In Section 2, some definitions are 
given. In Section 3, an algorithm R is addressed and its competitive ratio is ana-
lyzed. 

2. Some Definitions 

In this section we will give some definitions. 
Definition 1: We have m parallel machines with speeds 1 2, , , ms s s , respec-

tively. Let { }1 2, , , nL J J J=   be any list of jobs, where jobs arrives online one 
by one and each Jj has a release time rj and a processing size of pj. Algorithm A is 
a heuristic algorithm. ( )max

AC L  and ( )max
OPTC L  denote the makespan of algo-

rithm A and an optimal off-line algorithm, respectively. We refer to 

( ) ( )
( )

max

max

, sup
A

OPT
L

C L
R m A

C L
=

 
as the competitive ratio of algorithm A. 

Definition 2: Suppose that Jj is the current job with release time rj and size of 
pj. We say that machine Mi has an idle time interval for job Jj, if there exists a 
time interval [ ]1 2,T T  satisfying the following two conditions: 

1) Machine Mi is idle in interval [ ]1 2,T T  and a job with release time T2 has 
been assigned to machine Mi to start at time T2. 

2) 2 1max , j
j

i

p
T T r

s
 − ≥  . 

It is obvious that if machine Mi has an idle time interval for job Jj, then we can 
assign Jj to machine Mi in the idle interval. 
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In the following we consider m parallel uniform machines with speeds 

1 2, , , ms s s  and a job list { }1 2, , , nL J J J=   with information (rj, pj) for each 
job jJ L∈ , where ri and pi represent its release time and processing size, re-
spectively. For convenience, we assume that the sequence of machine speeds is 
non-decreasing, i.e., 1 2 ms s s≤ ≤ ≤ . Let 

{ }1 20, , , , mS s s s=  ; 

( )
,

Bigsum
i i

i
s S s s

s s
∈ >

= ∑ ; 

{ }10, , , ,i i i mS s s s+=  ; 1, 2, , , 1i m m= + ; 

( )
,

Bigsum ,
i i

i
s S s s

i s s
′ ′

′
∈ >

= ∑ ; 1,2, ,i m=  , 

( )
,

Bigsum , ,
j j j

j
J L sr p s

ps L
∈ + > ∆

∆ = ∑ . 

By our definition, { }1 0mS + = . 

3. Algorithm R and Its Performance 

Now we present the algorithm R by use of the notations given in the former sec-
tion in the following: 

Algorithm R: 
Step 0. Let t: = 0, Δt: = very small positive number. 

For i = 1 to m do mi: = Δtsi, ci: = 2 mi, Hi = 0. 
:tL = Φ . 

Step 1. Let Jj be a new job with release time rj and processing size pj given 
to the algorithm. If there is a machine Mi which has an idle time 
interval for job Jj, then we assign Jj to machine Mi in the idle in-
terval and set :t t

jL L J=  . 
Step 2. If j tr ≥ ∆  or ( ) ( )0

Bigsum , , Bigsumt
t t

k
k

Ls s
=

∆ > ∆


 for some 
s S∈  then goto Step 3. Otherwise goto Step 4. 

Step 3. (*start a new phase*) 
Set Δ: = rΔt, t: = t + 1, Δt: = Δ, 
For i = 1 to m do :i t im s= ∆ , ( ): 2 1i i ic c r m= + − . 
Set :tL = Φ  and Goto Step 2. 

Step 4. (*schedule pj*) 

{ }: min | i i i j jk i c m s r p= + > + ; 

Assign Jj on machine Mk; Set: 

{ }: max 0,k k k j k jc c s r H p= − − − ; 

{ }: max 0,k k k j k jH H s r H p= + − + . 

Set :t t
jL L J=  . 

The running time of R is mainly in Step 1 and Step 4. In Step 1, at most j-1 
times of checking can determine if there is an idle interval for current job Jj. In 
Step 4 at most m times can determine to assign current job Jj. Hence the com-
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plexity of our algorithm is O(n2). 
Now we begin to analyze the performance of algorithm R. The following 

statement is obvious: 
Lemma 1. For a job list L, if ( )max

OPTC L ≤ ∆ , then  
( ) ( )Bigsum , , Bigsums L s∆ ≤ ∆  and rj < Δ hold for every s S∈  and every 

j L∈ . 
Let Ll be the stream of jobs scheduled in phase l. We define l

iL  to be the 
stream of jobs that in phase l machine Mi passed over or Mi+1 received, 

0,1, ,i m=   (for 1 i m≤ < , these two conditions are equivalent, for i = 0, only 
the latter and for i = m only the former applies). 

Now the correctness of algorithm R will mean that the stream l
mJ  is empty 

for every phase l. 
Lemma 2. For every 0,1,2, ,i m=   and every phase l, we have 

( )
0 0 1
Bigsum 0, , .

l l n
t

t i t q
t t q i

L s
= = = +

  ∆ ≤ ∆   
  

∑ ∑ ∑  

Proof: First of all, by the rules of the algorithm, we have 

( ) ( )0
Bigsum , , Bigsum .l t

t lt
s L s

=
∆ ≤ ∆


 

for every phase l and every s S∈ . Therefore 

( ) ( )Bigsum , , Bigsum .l
t ls L s∆ ≤ ∆  

for every phase l and every s S∈ . Now we prove the claim by induction. For i = 
0, it follows simply from the fact that 

( ) ( ) ( )0
1

Bigsum 0, , Bigsum 0, , Bigsum 0 , .t
m

t
t qt t

q
t t lLL s

=

∆ ∀∆ = ≤ ∆ = ≤∆ ∑  

For l = 0, L0 is empty and hence 0Li  is empty for all i. Thus we have 

( )0Bigsum 0, , , 2, ,0, 1i iL m=∆ =  . 

This means that it is true for all i. 
Now we will show the claim for (i, l) is true under the assumptions that the 

claim is true for (i−1, l) and (i, l−1). We prove it according to the following two 
cases: 

Case 1. ci > 0. In this case, any job J with release time r and size p satisfying 

i i irs p m s+ ≤ = ∆  in 1
l
iL −  cannot be passed over machine Mi to machine Mi+1. 

Hence we have 

{ }| , l
j i j li i

l j r s p s j LL = + > ∆ ∈ . 

Thus we have 

( ) ( ) ( )
1

Bigsum 0, , Bigsum , , Bigsuml
l i l l

m
l

ii l q
q i

s L sL s
= +

∆ = ∆ ≤ ∆ = ∆ ∑ . 

By the assumption on the claim for (i, l−1), we get 

( )
1 1

0 0 1
Bigsum 0, , .

l l n
t

t i t q
t t q i

L s
− −

= = = +

  ∆ ≤ ∆   
  

∑ ∑ ∑
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Adding up the above two inequality we get the claim for (i, l). 
Case 2. 0ic ≤ . In this case, we consider the sum of job sizes that assigned on 

machine Mi from phase 0 to phase l, which can be expressed as 

( ) ( )1
0

Bigsum 0, , Bigsum 0, ,
l

t t
i it t

t
L L−

=

 
 ∆ − ∆∑  

Because 0ic ≤ , Hi, the height of machine Mi at the end of phase l, is at least 

( ) ( )

0 1
0

0 1 0 1

0

1 12 2 2

2 2 2

l
t

i i i i l i
t

i i l l i

l

l i i t
t

H c s s s
r r

s s s

s s

=

−

=

   ≥ = ∆ + − ∆ + + − ∆   
   

= ∆ + ∆ −∆ + + ∆ −∆

= ∆ + ∆

∑

∑



  

By the rules of the algorithm, no job has release time greater than Δl. This 

means that there is no idle time in time interval 
0

, tl

l

l
t=

 ∆ ∆ + 
∆


∑  on machine 

Mi. Hence the sum of the job sizes that assigned on machine Mi from phase 0 to 
phase l satisfies: 

( ) ( )1
0 0

Bigsum 0, , Bigsum 0, ,
l l

t t
t ti i i t

t t
L L s−

= =

 ∆ − ∆ ≥ ∆ ∑ ∑ . 

By the inductive hypothesis for (i−1, l), we have 

( )
0 0
Bigsum 0, .

l m l

t q t
t q i t

s
= = =

  ∆ ≤ ∆  
  

∑ ∑ ∑  

The above two inequalities include the truth of the claim for (i, l). 
Lemma 2 show that, for every phase t, we have 

( )Bigsum 0, , 0t
t
mL∆ = . 

This includes that t
mL  is empty for every phase t. 

Theorem 3. The competitive ratio of algorithm R is not greater than 7.4641. 
Proof: Suppose that the algorithm ended at phase k. Then the optimal value is 

at least 1
1 0

k
k r −
−∆ = ∆  and the completion time of the algorithm is at most 

( ) ( )

0
0 1

0 1 0 1

0
0 0

1

0
0

1 12 2 2

2 2 2

2 2

12 .
1

k
t
i

t
k k

i

k k k

k k
k t

k t
t t

kk
k

t
t

c

s r r

r r

rr
r

=

−

= =

+

=

   = ∆ + − ∆ + + − ∆ + ∆   
   

= ∆ + ∆ −∆ + + ∆ −∆ + ∆

 = ∆ + ∆ = + ∆ 
 

 −
= ∆ = + ∆ − 

∑

∑ ∑

∑





 

Hence the performance ratio is not greater than 
21

1 112 2 3 1 .
1 1 1

k
k k rrr r r r

r r r

+
− −

+ < + = + + − − − 
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It is easy to see that the best value of r is 31
3

+  and the performance ratio is 

4 2 3 7.4641+ ≈ . 

4. Conclusion 

In this paper, on-line scheduling problem for jobs with arbitrary release times on 
uniform machines is considered. We developed an algorithm with the competi-
tive ratio of 7.4641 which is better than existing result of 12. In order to improve 
the competitive ratio more detailed consideration should be taken in. 
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