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Abstract 

Under uncertain environment, it is very difficult to measure the entropy of 
quantum information system, because there is no effective method to model 
the randomness. First, different from the traditional classic uncertainty, a 
quantum uncertain model is proposed to simulate a quantum information 
system under uncertain environment, and to simplify the entropy measure-
ment of quantum information system. Second, different from the classic ran-
dom seed under uncertain environment which is often called as pseu-
do-random number, here the quantum random is employed to provide us a 
true random model for the entropy of quantum information system. Third, 
the complex interaction and entangling activity of uncertain factors of quan-
tum information is modeled as quantum binary instead of classic binary, 
which can help us to evaluate the entropy of uncertain environment, to ana-
lyze the entropy divergence in quantum information system. This work 
presents a non-classic risk factor measurement for quantum information sys-
tem and a helpful entropy measurement. 
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1. Introduction 

1.1. Related Work 

At present, the information system under uncertain environment is a hot point 
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in research. [1] used a multi-AUV autonomous task planning based on the scroll 
time domain quantum bee colony optimization algorithm in uncertain envi-
ronment, and [2] unveiled the performance verification for robot missions in 
uncertain environments. Different researchers provided different models. [3] 
sketched the quantum information splitting of an arbitrary three-ion state in 
ion-trap system, and [4] sculpted a dynamics of quantum fisher information in a 
two-level system coupled to multiple bosonic reservoirs. After that [5] reviewed 
the long-distance quantum information transfer with strong coupling hybrid 
solid system. 

The appearance of quantum mechanics brought more uncertainty in informa-
tion system which is different from traditional classic uncertainty. [6] researched 
Classical Information Storage in an n-Level Quantum System, and [7] implied a 
certifying single-system steering for quantum-information processing. Then, [8] 
illustrated causal boxes: quantum information-processing systems closed under 
composition, and [9] gave the dynamics of entanglement and quantum Fisher 
information for N-level atomic system under intrinsic decoherence. Apparently, 
the entanglement activity brought more uncertainty into quantum information. 
[10] framed information propagation in isolated quantum systems, and [11] 
featured noise management to achieve superiority in quantum information sys-
tems. [12] exhibited dynamics of quantum information in many-body localized 
systems, and [13] evaluated holographic control of information and dynamical 
topology change for composite open quantum systems, [14] extended thermo-
dynamic description of non-Markovian information flux of nonequilibrium 
open quantum systems. 

The entropy measurement method provided us a useful tool to measure the 
uncertain information. [15] etched a novel measurement method for transient 
detection based in wavelets entropy and the spectral kurtosis and provided an 
application to vibrations and acoustic emission signals from termite activity. [16] 
drew a method for the estimation of standard entropy of crystal phases at 298.15 
K on the limited temperature range of heat capacity measurements, and [17] 
constructed a measurement method of differences in group preferences based on 
relative entropy. [18] developed virtual entropy generation (VEG) method in 
experiment reliability control with implications for heat exchanger measurement, 
and [19] discussed a bi-objective MIP model for facility layout problem in un-
certain environment. These researches gave us a useful tool to evaluate the en-
tropy of uncertain systems with classic mathematics. 

After that the quantum entropy was put forward. [20] depicted a mean-reverting 
currency model in an uncertain environment, and [21] proposed an efficient 
systolic array grid-based structure of the robust Bayesian regularization tech-
nique for realtime enhanced imaging in uncertain remote sensing environment. 
[22] presented a dynamical scheduling and robust control in uncertain envi-
ronments with petri nets for DESs. [23] proposed a discontinuity and protection 
of quantum fisher information for a two-qubit system. These researches illumi-
nated that the entropy can be employed to measure the uncertainty of informa-
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tion system. However, these previous researches above focused on classic en-
tropy measurement of information system, this paper tried to provide a me-
thod to measure the entropy of quantum information system by quantum en-
tropy. 

1.2. Organization of the Article 

In Section 2, modelling a quantum information system is defined. Preliminaries, 
In Section 3, entropy of quantum information system will be contained. In Sec-
tion 4, the entropy measurement of quantum information system will be de-
scribed. In Section 5, the improvement for quantum information system will be 
contained. 

2. Modelling a Quantum Information System 

2.1. Operation of Quantum Information Systems 

In quantum information system, there are full of quantum binary data as infor-
mation flow. Once a information sequence defines, a series of quantum binary 
data will be used to refer specially appointed information (e.g., 1, , yd d ) and 
the context will be used to refer to the information sequence as a whole (e.g., d). 
For each b, let b = 1 − b. For each sequence of bits ( )1, , yb b b=  , let 

( )1, , yb b b=  . 
The form f (m)n (where f is a function) is supposed to mean (f(m))n. There-

fore, such as, in the form 

[ ]Z 1r qγ                             (1) 

Rather before it, after the trace function the (1/q)th power map is displays. 
(logm) is used to express the logarithm with base 2, and (lnm) is used to ex-

press the logarithm with base e.d: [0, 1] → R is used to express the Shannon en-
tropy function of quantum information system [3]: 

( ) ( ) ( )log 1 log 1d m m m m m= − − − −                    (2) 

Capital letters (e.g., Q) are used to express quantum information systems. The 
same letter are used to express not only the system itself but also the complicated 
Hilbert space to be indicated. Each limited dimensional complicated Hilbert 
space Q, L(Q) is expressed to be the set of linear maps very Q to itself, and let 

( ) ( ){ }| 0P Q A Q Aρ= ∈ ≥                        (3) 

( ) ( ) ( ){ }| 0, 1S Q A Q A r Aρ γ= ∈ ≥ ≤                    (4) 

( ) ( ) ( ){ }| 0, 1H Q A Q A r Aρ γ= ∈ ≥ =                    (5) 

All these above are, respectively, a group of positive semidefinite operators, a 
group of subnormal-sized positive semidefinite operators, and a group of density 
operators. 

Suppose that L1: M1 → N1 and L2: M2 → N2 are two linear operators, so that the 
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operator from 1 2M M⊕  to 1 2 N N⊕  that maps (m1, m2) to (L1(m1), L2(m2)) 
are devoted by 1 2 L L⊕ . 

Suppose that (α, E) is a bipartite system, and L is supposed to be a density op-
erator about α ⊗  E to show a traditional-quantum state, thus L can be used as 
a diagonal-block operator [12] 

1

2

3

x

L
L

L L

L

=


                     (6) 

In quantum information system, the subnormalized operators of E reply to 
the basis groups of the classical register B are denoted by 1, , xL L . Additionally, 
L can be expressed as 1 2 xL L L L= ⊕ ⊕ ⊕ . 

Whichever B > 0, as well as each linear operator M, the Schatten norm is de-
noted by BM : 

( )
12*

BB
BM r M Mγ  =   .                     (7) 

Moreover, for M is positive semidefinite, that this may be written more easily 
as 

1 BB
BM r Mγ  =   .                        (8) 

Now the quantum information system can be expressed as Equation (8). 
When [ ]0,2m∈ , the function Z ↦ Zm matters frequently. Let [ ]0,1T ∈ , and 
let Z, W are denoted positive semidefinite operators about Cy. 

(a) If Z W≤ , then ZT WT≤ . 
(b) If Z W≤  and X W Z= − , then 

( ) ( ) ( )1 1 1M T r Z T r W Tγ γ γ+ + + ≤ +                 (9) 

Part (a) are followed by part (b) in quantum information system by the fol-
lowing reasoning: 

( ) ( )1r W T r W WTγ γ+ = ⋅                        (10) 

( ) ( )r M WT r Z WTγ γ= ⋅ + ⋅                       (11) 

( ) ( )r M XT r Z ZTγ γ≥ ⋅ + ⋅                       (12) 

( ) ( )1 1r M T r Z Tγ γ= + + +                        (13) 

2.2. The Interaction of Quantum Binary and Classic Binary 

As a finite dimensional C-vector space in quantum information system, and M0, 
M1 is supposed to be Hermitian operators about binary vector V satisfying 

0 1, 1M M ≤ . Thus, there exists a unitary embedding 2: C , 1yU W y→ ≥ , and 
operators N0, N1 of the form [3] 
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0

0 1
1 0

0 1
1 0

0 1
1 0

N

 
 
 
 
 =  
 
 
 
  



, 

1

1

2

21

0

0
0

0

0

0
j

j

x

x

N

ζ

ζ
ζ

ζ

ζ

ζ

 
 
 
 
 
 =
 
 
 
 
 
 



  (14) 

with 1kς = , so that *
k kM U N U=  for { }0,1k∈ . 

Considering the condition of quantum information system, binary informa-
tion flow is satisfied by the class of all triples (V, M0, M1). On the following 
triples consider the following two conditions: 

a) 2
k kM M =Ⅱ is satisfied by the operators 

b) Being equal to Cx, the vector space V and M0, M1 are considered as a block 
form that is uniform diagonal: 

1

2

1

2

k

k

r
k

K
k

k

s
k

M
b

b

b

α
α

α

 
 
 
 
 
 =  
 
 
 
 
  





              (15) 

Consider that { }1, 1j
kb ∈ − +  and each j

kα
 is a 2 × 2 Hermitian matrix with 

eigenvalues +1 and −1 at the condition 2r + s = x,. 
For each triple (V, M0, M1) has a unitary embedding to a triple that satisfies 

the conditions of quantum binary system, as well as Condition (σ). 
Let ( ) 0U v v= ⊕  gives :U V V V→ ⊕ , and { }0,1kM k′ =  is considered to 

be the operators about V V⊕  defined by [12] 
2

2

1

1
k k

k

k k

M M
M

M M

 −
 ′ =
 − − 

                    (16) 

That ( )2
kM ′ =Ⅱ is easily to be checked.  

For each triple (V, M0, M1) has a unitary embedding into a triple that satisfy-
ing Condition (σ) as well as Condition (α). 

An orthonormal basis { }1 dim, , Vv v  can be chosen for V so that M0 has the 

form 0

0
0

n

m

M
 

=  − 

Ⅱ

Ⅱ  
where the r × r binary identity matrix is denoted by Ir. 

An opportune unitary transformation of V that represents this information sys-
tem structure contains another orthonormal basis { }1 dim, , vv v′

  thus M0 and 
M1 have the form 

0

0
0

n

m

M
 

=  − 

Ⅱ

Ⅱ
 and 1

A D
M

D C∗

 
=  
 

                 (17) 
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Let α and C to be diagonal matrices. That 2 HHσ ∗+ =Ⅱ and 2H H C∗ + =Ⅱ 
are implied by the condition 2

1M =Ⅱ. For both HH ∗
 and H H∗  are diagonal, 

as well as H. For each triple (V, M0, M1) has a unitary embedding into a triple of 
the form satisfying Condition (α). 

It can be proved enough that M0, M1 are both scalars different from classical 
binary information system, and M0, M1 are each 2 × 2 Hermitian matrices with 
eigenvalues +1 and −1. For the quantum information system, an orthonormal  

basis {v1,v2} for C2 under which 0

0 1
1 0

M  
=  
 

 can be found, then under M1  

there is an antidiagonal matrix, a set of the form  
( ) ( ) ( ) ( ){ }1 2 2 1cos sin , cos sinv i v v i vθ θ θ θ+ +  with Cz∈ , 1z =  can be 

found. 

3. Entropy of Quantum Information System 

It is a challenge to evaluate the uncertainty in quantum information system. Al-
though entropy can be used to evaluate the uncertainty of information system 
with a classical number, such as the possibility B. Often a possibility is between o 
and 1, but add or subtract each other by information interaction. For B is too 
close to 1, then in the inequality associated with DB to minDλ  the penalty term 
will be big enough so that the lower bound of the smooth minimum entropy will 
be invalid, but this kind of operation may be not effective to evaluate the entropy 
of quantum information system. For B is too far from 1, such as Game Round 
Agreements R, the Renyientropy will not be enough sensitive so that detecting 
the effect of small probability events becomes harder to give us the entropy of 
quantum information system. Roughly speaking, the parameter B which is set 
such that the parameter q is proportional to B – 1 which is thus appropriate ac-
cording for parameters in the entropy measurement. 

To solve the entropy measurement problem, a quantum entropy method and 
measurement are built based on an entangled qubit. If QE is a two-part system at 
Q = 2, then it is considered that {L0, L1} and {L+, L−} are respectively the calcu-
lation base of Q and the subnormalizing state of Hadamard base E. On the 
quantities γr [ 1

ML λ+ ], uniform constraints (independent of the dimension of E) 
are expressed by Theorem 4.2. So that other known uncertainty relations such as 
quantum entanglement are paralleled. 

To prove the effectiveness of σ ′ , it is considered the quantum entropy as σ ′
that ( )1, , YG G G=   and ( )1, , YO O O=   which are registers respectively 
contains the input bits and output bits, where σ ′ , E is considered to express a 
purifying system for the device. According to the “success” event (s), s

EGOΓ  is 
considered to express the subnormalized state of these three systems, with an 
upper bound on the (negative) quantity ( )||s

B EGO EG OH Γ Γ ⊗ ΙΙ . 
The first-round registers G1 and O1 are considered. On EG1O1 the bounding 

operator 
1 1EG OΓ ⊗ ΙΙ  is equal to 

( ) ( )
( ) ( )

1 00 00 1 01 01

10 10 11 11 .
E E

E E

q q

q q

− Γ ⊗ + − Γ ⊗

+ Γ ⊗ + Γ ⊗
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ε > 0 is considered as a real parameter, and in the entropy summand, the fol-
lowing is considered to be alternative operator, which the factor 2ε is inserted in 
to be: 

( ) ( )
( ) ( )

: 1 00 00 1 01 01

10 10 2 11 11 .
E E

E E

q q

q q ε

Σ = − Γ ⊗ + − Γ ⊗

+ Γ ⊗ + Γ ⊗
 

When the entropy (g, o) = (1, 1) occurs corresponding to a game-loss in 
quantum information system R, randomness is added by the factor 2ε artificially. 
According to how well the device performs, the expectation for randomness is 
lowered effectively. 

For appropriate ε, B, the amount HB (rEG1O1||∑) has a form upper bound less 
than zero implied by the uncertainty principle for quantum entropy. By the ear-
lier reduction discussed, a lower bound on the amount of extractable bits output 
by quantum information entropy R used. 

4. Entropy Measurement of Quantum Information System 

Let S expresses uncertain entanglement in entropy measurement where informa-
tion system exists, and let s

EGOΓ  expresses the corresponding (subnormalized) 
operator on E G O⊗ ⊗ . 

A continuous entangled entropy function ( ), , , , ,R d q rν µ κ  exists as shown 
below. 

1) Let λ > 0. If a quantum information system σ ′  is performed with para-
meters ( ), , , , ,d Y q Hν µ , then 

( ) ( )
( )2

min

log 2
, , , ,s

EGOD EG Y R d q r
q r

λ
λ

ν κ
κ

Γ ≥ ⋅ −            (18) 

2) The following equality exists: 
The uncertainty of system σ  is defined by an inequality 

( ) ( )
( )

[ ]
( )

0,1, 0,0
, , , , , minlim

sq

sR d q r s
rκ

ν µ
ν µ κ π

∈→

− = + 
 

.           (19) 

The success of a quantum information system σ  is defined by an inequality 

( )2i i
i

g o d qYµ≤ +∑                      (20) 

Make S G O⊆ ⊗  is the scope of the vector go  of (G, O) in Equation (20) 
between all of the sequence of change. 

And for any classical quantum operator, X on E G O⊗ ⊗  with respect to 
(GO|E), let MS represent the restriction of M to  E SM⊗  to E. Applying this 
structure to inferences Corollary 7.5, to the operators EGOΓ , EGOΓ  and using 
the fact that the constraints of Hmax and 1⋅  and S are monotonically reduced, it 
can be found that [12]. 

( ) ( )
( )2

max

log 2
, , , ,s s

EGOH Y R d q r
q r

λ
λ

ν κ
κ

Γ Σ ≤ − ⋅ +              (21) 

To smooth the lower bound of minimum entropy of s
EGOΓ  is given, where X 
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is a density matrix, it is needed with respect to calculate to an operator on 
   E G O⊗ ⊗  that is of the form oM ⊗ΙΙ  on the divergent. Suppose a new oper-

ator N/ on    E G O⊗ ⊗  by 

( ) ( ) ( )

( )

1 2

,
1 2ii iig g d Yr

E
g o S

q q go goµ−∑ +

∈

∑ 
′Σ = Γ ⊗ −  

 
∑         (22) 

(recalling that T = qκr). Comparing this definition with Equation (22) and ap-
plying the success standard Equation (21), it can be found that s′Σ ≥ Σ . Thus, 
the boundary in Equation (22) is also established, when sΣ  is replaced by ′Σ . 

When suppose that Ψ as the operator on  E G⊗  defined by 

( ) ( )

{ }

1

, 0,1

1 ii ii

Y

g g
E

g o

q q g g−∑

∈

∑Ψ = Γ ⊗ −∑               (23) 

and rewrite ′Σ  as 
( ) ( )22 d Y r

o
µ+′Σ = Ψ⊗ΙΙ                     (24) 

It can be found (applying the rule ( ) ( )max maxlogH X Y c H X cYλ λ= + ) that 

( ) ( ) ( )
( )2

max

log 2
2 , , , ,s

EGO OH d Y r Y d q r
q r

λ
λ

µ ν κ
κ

Γ Ψ⊗ΙΙ ≤ + − ⋅∆ +  that 

For Ψ is a density matrix, then that 

( ) ( )min max
s s
EGO EGO OD EG Hλ λΓ ≥ − Γ Ψ⊗ΙΙ               (25) 

Therefore, if it is supposed that 

( ) ( )2, , , , , , , ,dR d q r d q r
r

µν κ ν κ+
= − + ∆             (26) 

Condition 1 of the theorem is satisfied. Condition 2 is easily obtained from 
the limit formula of limit of σ (22). 

By optimizing the coefficient r, it can be made a final improvement on the 
previous results σ. 

There exist continuous real-valued functions ( ), , , ,d qγ ν µ κ  and 
( ), , , ,F d qν µ κ  so that the following holds. 
1) If Protocol σ ′  is performed with parameters ( ), , , , ,d Y qν µ κ , thus for 

any (0, 2λ ∈   and ( )0,κ ∈ ∞ , 

( ) ( )
( )

( )min

log 2
, , , , , , , ,s

EGOD EG Y T d q F d q
q

λ
λ

ν µ κ ν µ κ
κ

 
 Γ ≥ ⋅ −
 
 

   (27) 

2) The following equalities hold, where n expresses the function from Theo-
rem 4.2. 

( ) ( )
( ) ( )

, 0,0
, , , ,lim

q
T d q

κ
ν µ κ π µ ν

→
=                  (28) 

( ) ( )
( ) ( )

, 0,0

2
, , ,lim

q
F d q

κ

π µ ν
ν µ κ

ν→

′−
=，                (29) 

Let 
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( )
1min ,r

q
ν

π µ ν κ
  =  ′−  

                       (30) 

Define the function T by [11] 

( ) ( ), , , , , , , ,T d q R d qν µ κ ν µ κ= .                    (31) 

By substitution into quantum information system (28), the constraint Equa-
tion (31) will be established when F is set to equal to 2 (r). To measure the en-
tropy of quantum information system, please note. 

( ) ( )
( )

( ) ( ) ( )

[ ]
( ) ( ) ( )

[ ]
( ) ( )

, 0,0 , 0,0

0,1

0,1

, , , , , , , , ,lim lim

min

min

q q

s

s

T d q R d q

s s

s s

κ κ

ν
ν µ κ ν µ κ

π µ ν

π µ ν
π ν µ

ν

π µ ν µ
π

ν ν

→ →

∈

∈

 
=   ′− 

′− 
= − − 

 
′−  = − −  

  

         (32) 

By square brackets in Equation (32), the function that is enclosed is a convex 
function of s whose derivative at s µ ν=  is zero. Thus, at s µ ν= , a mini-
mum is achieved and the expression in Equation (32) therefore expression in the 
assessment simply to ( )π µ ν . 

5. Improvement for Quantum Information System 

To improve the stability of quantum information system, the system evolution 
should march toward the direction of the minimization of entropy. Suppose that 

yU R⊆ , Let yz R⊆  as an element in the closure of U, and suppose f, g as con-
tinuous functions from U to R. Let that 

( ) 0lim
M z

f M
→

=                            (33) 

And 
( )
( )

lim
M z

f M
c

g M→
=                           (33) 

Then, 

( )( ) ( )1
lim 1 e

g M c

M Z
f M

→
+ =                      (34) 

It is easily to prove by taking the natural logarithm of two sides of Equation 
(34), which can direct the evolution of system entropy. 

Suppose that yU R⊆  and xY R⊆ , and denote that V is compact. Suppose 
:f U V R× →  as a continuous function. Suppose in the closure of U yz R∈  as 

an element, and denote that for every 0n V∈  ( ) ( ) ( )
0, ,lim ,m n z y f m n→  exists. 

Thus, 

( ) ( )lim min , min lim ,
M Z n V n V m z

f M N f M N
→ ∈ ∈ →

=                  (35) 

By assumption, a continuous extension of f to { }( )U z V×  exists. By f  
this extension can be expressed. Suppose that ( ) ( ) ( ), , ,d m n f m n f z n= − . 

Let δ > 0. Since ( ), 0h z n =  and d is continuous at (z,n) for any n V∈ , it can 
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be found that an λn > 0 so that the values of d on the cylinder 

( ){ }, ,n nm n m z n nλ λ′ ′− < − <                  (36) 

are defined to [−δ, δ]. Because V is compact, it can be chosen that a finite set S ⊆ 
V making the positive λn − cn linders for n S∈  cover V. Supposing 

minn nSλ λ λ= , it can be found that the values of d on the λ-neighborhood of 
V are defined to [−δ, δ]. Thus, the minimum value of f(m, n) on the ∈- 
neighborhood of V is in the range δ of ( )min ,n v f z n∈ . 

Supposing H is a binary quantum device with a y component in entropy evo-
lution process. For any j ≥ 1, it can be used that the expression Ij and Nj to 
represent the input strings and output strings of H in the jth iteration (each 
string is in { }0,1 x ). 

Suppose that G as a powerful self-test. For each input quantum information 

( ) { }1, , 0,1 yyi i i= ∈ , the unique optimal strategy of the output information is 
determined by the unique optimal strategy to minimize the entropy with the 
output information { }0,1 yn∈  that it can be denoted by { }0,1 yn

iP n∈ . It can 
be said that if, for any k ≥ 1, and { }1 1 1, , , , , 0,1 y

k ki i n n − ∈   H has noise level β 
(for the game G) so that [11] 

( ) ( ) ( ) ( )( )1 1 1 1 1 1 1, , , , , , , , 0k k k kP N N n n I I i i− − −= = >            (37) 

within statistical distance (2β) from { }k

n
i n

P , the conditional distribution is 

( ) ( ) ( ) ( ){ }1 1 1 1 1, , , , , , , ,k k k k kP N N n n N n I I i i n− = ∧ = =         (38) 

Please note that an easy argument shows that a device with noise level a must 
achieve an expected score of at least wg-1. 

Now comes to discussing completeness. 
Suppose that 1 2, , , YS S S  is B Martingale in entropy evolution with 

1 1i iS S+ − ≤ , and 1 , ,i i i iVar S S S S w+ − ≤  , for all i, 1 1i N≤ ≤ − . Then, for 
any ( )0,1λ∈ , there is 

[ ] 2 1exp 1
2 3Y
w wP S WY Yλ λ λ

 −  ≥ ≤ − −  
  

              (39) 

Particularly, if 1λ ≤ , we have that 

[ ] 2exp
2Y
wP S WY Yλ λ ≥ ≤ − 

 
                   (40) 

Let the quantum device in quantum information system has noise level 
µ µ′ < . So, the probability of an abort is at most ( )( )2exp 3qYµ µ′− − . 

Suppose that 1, , YI I  and 1, , YN N  as random variables which contain 
the inputs and outputs for system R. Suppose that Zi is equal to 1 if won on the 
ith round in the game, and 0 otherwise. Let 

1 1, , 1, , , 1i i i iz E Z I I N N = − −    

By definition, system R is aborted when [11]
 ( ) ( )1 1i i G

i
g z W qYµ− ≥ − +∑                    (42) 
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Through assumption, 

( )G i
i

W z yµ′− ≤∑                       (43) 

Suppose 

( ) ( )
1 1

1 1
i i

i k k k
k k

R g Z q z
= =

= − − −∑ ∑                (44) 

Then, 1 2, ,R R   is a Martingale with 

( ) ( )1 1 1 1 1 1i i i i iVar R R R R q z q Z q− −   − = − − − ≤            (45) 

thus, Equation (42) can be expressed as 

( ) ( ) ( ) ( )1 1i i i G ii i ig Z q Z qY q W Z qYµ µ µ′− − − ≥ − − ≥ −∑ ∑ ∑      (46) 

Therefore, the stability probability of quantum entropy is  
( )( )2exp 3qYµ µ′≤ − − . 

6. Conclusion 

In this work, the quantum entropy is employed to evaluate the uncertainty of 
quantum information system. First, a quantum information system under un-
certain environment is modelled as quantum entropy system. Second, entropy 
measurement of quantum information system is different from classical model. 
Third, for improvement for quantum information system, the entropy evolution 
strategy of quantum information system is provided. More importantly, differ-
ent form additional features in previous works, quantum entropy can provide us 
a true random to describe the uncertainty by quantum mechanics. 
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