
International Journal of Intelligence Science, 2014, 4, 29-37
Published Online January 2014 (http://www.scirp.org/journal/ijis)
http://dx.doi.org/10.4236/ijis.2014.41005

OPEN ACCESS IJIS

The Knowledge Base Development for the Web
Content Accessibility Guidelines

Yui-Liang Chen1, Limin Liu2
1Department of Information Management, Shih Hsin University, Mu-Cha, Taiwan

2Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li, Taiwan
Email: lmliu@math.cycu.edu.tw

Received October 18, 2013; revised November 18, 2013; accepted November 25, 2013

Copyright © 2014 Yui-Liang Chen, Limin Liu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the
intellectual property Yui-Liang Chen, Limin Liu. All Copyright © 2014 are guarded by low and by SCIRP as a guardian.

ABSTRACT
Web Content Accessibility Guideline (WCAG) proposed by Web Accessibility Initiative is the most recognized
regulation in the world in evaluating the accessibility of web contents and is one of the W3C documentations.
Currently, the WCAG documents are maintained as a non-computable dictionary like resources. In this study,
we proposed a methodology to develop an ontological knowledge base with rules for the WCAG 2.0. Two WCAG
techniques in different groups of techniques are used to illustrate the creation of the knowledge base and their
application programming interfaces. For demonstrating purpose, a web-based WCAG validation system is built.
With the proposed knowledge base and interfaces, computer programs can decide whether certain web content
satisfies a particular WCAG technique. In other words, the WCAG documents have been successfully trans-
formed to a computable recourse. Such sharable knowledge base and programming interfaces can be embedded
into any system requiring the WCAG knowledge.

KEYWORDS
Knowledge Base; Ontology; Web Accessibility; WCAG; Intelligent System

1. Introduction
In order to improve the accessibility of web contents for
people with particular disability, the WAI (Web Accessi-
bility Initiative) had released guidelines called the Web
Content Accessibility Guidelines, WCAG 1.0, as one of
the W3C (World Wide Web Consortium) documenta-
tions since 5 May 1999. The most recent version of the
WCAG is the version 2.0 and it is still an active project.
Meaningful comments or newly invented technologies
may create new guidelines for WCAG 2.0 [1]. The most
recent documents of the WCAG 2.0 techniques were
updated on Jan. 2012 with 437 techniques [2]. These
techniques have a many-to-many relationship to the 61
WCAG success criteria. With such a complexity, it re-
quires significant resources to fully understand the
WCAG 2.0, and it is practically impossible to manually
verify whether a certain amount of web contents satisfy
certain techniques or success criteria. In order to do so,
we need to have an intelligent system which has the

knowledge listed behind the guidelines of WCAG 2.0.
Ontology-based knowledge systems have been used to

handle complicated knowledge intensive problems with
many successful cases in different application domains [3,
4]. One of the essential parts of building such intelligent
systems is to correctly develop the knowledge base, KB,
behind it. The resulting ontology can be considered as
shared resources, e.g. UMLS, SNOMED, and WordNet,
etc. [5-8]. These ontologies not only properly represent
particular domain knowledge, but also can be used by
third-party applications via a local installation or applica-
tion programming interfaces.

The focus of this study is to develop a knowledge base
with ontology and semantic rules to preserve the know-
ledge described in the WCAG 2.0 documentations. Since
the knowledge base is a sharable resource, it can be em-
bedded into software systems requiring the knowledge of
WCAG 2.0. Developing such a WCAG KB is an expert
intensive task that requires both ontology and WCAG

http://www.scirp.org/journal/ijis�
http://dx.doi.org/10.4236/ijis.2014.41005�
mailto:lmliu@math.cycu.edu.tw�

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

30

experts to work closely to generate the correct result.
Fortunately, such an effort is a one-time investigation
and the resulting KB can be shared and reused. In addi-
tion to the KB, we also developed a set of WCAG appli-
cation programming interfaces (APIs). Application de-
velopers can use these APIs without the knowledge of
ontology, logic, or KB behind them.

The proposed KB and APIs can be used in various
ways. For example, one can develop a standalone system
to validate the level of accessibility of web contents. The
software system called Free go is an example of a tool
developed to verify the level of accessibility of web con-
tents on WCAG 1.0 [9]. Since the WCAG 2.0 is much
more complicated than version 1.0, sophisticated me-
chanisms such as ontological knowledge base systems
may be more appropriate for developing tools for WCAG
2.0. In this study, a web-based WCAG validation system
is built to illustrate the usage of the proposed KB and
APIs.

The rest of the paper is organized as follows: Section 2
reviews the background knowledge of this study includ-
ing WCAG 2.0 and ontology technology. Section 3 illu-
strates the proposed WCAG knowledge base creation
using two specific technologies, H32 and C8. Section 4
contains the experiments of developing the web-based
WCAG validation system. Finally, the conclusions and
future works are presented in Section 5.

2. Backgrounds
2.1. WCAG 2.0
The WCAG 2.0 documentations are organized in four
layers (from top): Principles, Guidelines, Success Crite-
ria, and Sufficient and Advisory Techniques. Principles
lay the foundation necessary for anyone to access/use
web contents. Four principles are listed in the WCAG 2.0:
perceivable, operable, understandable, and robust
(numbered from 1 to 4). Under principles are 12 guide-
lines. Principle perceivable, operable, understandable,
and robust has 4, 4, 3, and 1 guideline, respectively. For
example, the second principle (operable) is “User inter-
face components and navigation must be operable” and
its first guideline (numbered as 2.1) is “Make all func-
tionality available from a keyboard.”

Each WCAG guideline has a list of testable success
criterion (SC) and there are 61 SC defined in WCAG 2.0.
For example, the guideline 2.1 has three SC (numbered
from 2.1.1 to 2.1.3). Every SC is assigned with a con-
formance level (A, AA, or AAA) where level A indicates
the lowest level (the easy requirements to fulfill) and
AAA the highest (the difficult one). The SC 2.1.1, 2.1.2,
and 2.1.3 are set with level A, A, and AAA, respectively.
Several factors are evaluated when WAI sets level to SC.
For instance, “whether the Success Criterion is essential”

is one of the factors.
Since web contents may adopt different kinds of tech-

niques, WCAG 2.0 lists 437 techniques and places them
into 12 groups, e.g. group CSS techniques (with 22 tech-
niques) and HTML and XHTML techniques (with 60
techniques) [2]. Figure 1 lists an important portion of the
document of technique H32 of the HTML and XHTML
techniques. WCAG 2.0 documents list not only the de-
scription of the technique, but also examples and (test)
procedure of the technique. The H32 technique requires
all forms in a HTML file having a submit button. Be-
cause a submit button can appear in three methods (an
input tag with type = “submit”, an input tag with type =
“image”, or a button with type = “submit”), the regula-
tion lists them all in the document.

Figure 2 lists an important portion of the document of
technique C8 of the CSS techniques. This technique
suggests the white space between characters in each
word should be increased to make these words visually
readable. The method to do so is to use the CSS letter-
spacing property. The example shown in Figure 2

Figure 1. Part of the technique H32 documentation.

Figure 2. Part of the technique C8 documentation.

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

31

has a word “Museum” surrounding by tag “h2” which is
defined with letter-spacing property in the header. To
meet this regulation, one needs to verify all words with
their associated heading tags, e.g. “h2”. More precisely,
if “<h2> Museum </h2>” is changed to “<h3> Museum
</h3>”, then this particular example does not meet the
C8 requirement, since the letter-spacing property is de-
fined only for heading “h2”.

WCAG 2.0 techniques fall into two categories: those
that are sufficient for meeting a SC and those that are
advisory. In order to carefully cover all cases, sufficient
techniques may contain several situations to describe
different cases. For example, the SC 3.2.5 has four situa-
tions (from A to D). Situations listed in a particular crite-
rion can be mutually exclusive, e.g. situations in SC 3.3.5,
or in some cases, situations can overlap (can be applied
on one single web content), e.g. situations in SC 3.2.5.
Figure 3 shows the sufficient and advisory techniques of
the success criterion 3.2.2 (On Input).

In addition, it is possible that a particular technique be
part of a sufficient technique of a SC and part of an ad-
visory technique of another SC. For instance, the CSS
technique C8 is one of the sufficient techniques of the SC
1.3.2 and also one of the advisory techniques of the SC
1.4.5.

2.2. Ontology Technology
Philosophically, the term ontology refers to the study of
the nature of being or the kinds of things [10]. In com-
puter science (or artificial intelligence in specific), an
ontology is an explicit specification mechanism or a spe-
cification of conceptualization [11]. Ontology is an
emerging technology for implementing a shared under-
standing of information and many ontology-based know-
ledge base systems have been developed in the past dec-
ades [5-8,12,13].

The proposed knowledge base contains two parts: an
ontology (taxonomy) and semantic rules. In this study,
the Web Ontology Language (OWL) is used to represent
the knowledge of the WCAG 2.0. OWL is a XML-based
semantic markup language developed by W3C [14].

Figure 3. The sufficient and advisory techniques of the suc-
cess criterion 3.2.2 (On Input).

OWL contains classes, individuals, and properties that
correspond to concepts, instances, and roles in ontology.
Classes provide an abstraction mechanism with similar
characteristics and each class is associated with a set of
individuals. There are three types of properties: object,
data type and annotation properties. The first one re-
presents semantic relations between individuals, the
second one links individuals to data values, and the last
one indicates additional notes.

According to the W3C specifications, OWL has three
increasingly expressive sublanguages for different levels
of usability: OWL Lite, OWL DL, and OWL Full. The
most popular version is OWL DL where DL stands for
Description Logic (DL) which is a decidable fragment of
First Order Logic. Inference of OWL ontologies can,
therefore, be handled by DL reasoners. This study also
employs semantic rules in the Semantic Web Rule Lan-
guage (SWRL) which provide procedural knowledge to
increase the inference power of ontology, especially in
identifying relationships between individuals [15]. The
ontology editor used in this paper is the Protégé 4.2 [16]
with the OWL reasoner Pellet [17].

3. Knowledge Base Modeling
3.1. Ontology Development

Since WCAG 2.0 contains 12 different groups of tech-
niques, each group of techniques will have its own subt-
ree in the ontology. With the subtree representing
WCAG 2.0 itself, there are 13 classes at the top level in
the class hierarchy (under class Thing). For the sake of
brevity, the figures shown in this paper contains only
three classes at the top level: WCAG2.0, HTML, and
CSS because this study uses only techniques H32 and C8
to illustrate the ontology development.

3.1.1. WCAG 2.0 Subtree
The proposed ontology of WCAG 2.0 subtree is rooted
with the class named WCAG2.0 which has five sub-
classes: Level, Principles, Guidelines, Success_Criteria,
and Techniques, as shown in Figure 4.

Since there are only three conformance levels in
WCAG 2.0, three mutually exclusive subclasses (Lev-
el_A, Level_AA, and Level_AAA) are created under
class Level. Class Principles has four subclasses to
represent the four principles listed in the WCAG 2.0.
Similarly the 12 guidelines, 61 SC and 437 techniques
are organized as subclasses of class Guidelines, Suc-
cess_Criteria, and Techniques, respectively. Subclasses
of Guidelines are prefixed with numbers as shown in
Figure 4. Subclasses of Success_Criteria are prefixed
with “SC_” followed by the number. For instance, SC
3.2.2 shown in Figure 3 has an associated class
SC_3_2_2 under class Success_Criteria. Subclasses of

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

32

Figure 4. Class WCAG2.0 with five subclasses.

Techniques are prefixed with “TC_” followed by the
name of the technique. For instance, class TC_HTML
And XHTML and TC_CSS represent the groups of
techniques HTML and XHTML and CSS. Particular
techniques are defined under their associated class, e.g.
class H_32 and C_8 are defined under TC_HTML And
XHTML and TC_CSS, respectively.

Object property hasGuideline is defined in class Prin-
ciples pointing to class Guidelines; property hasSuccess
Criteria is defined in class Guidelines pointing to class
Success_Criteria; similarly, property hasTechnique is
defined in class Success_Criteria pointing to class
Techniques. In addition, Success_Criteria has an object
property hasLevel pointing to one of the subclasses of
class Level, i.e., the range of hasLevel is either Level_A,
Level_AA, or Level_AAA. Additional datatype proper-
ties are defined for these classes for preserving
text-based information in WCAG document. For instance,
class Techniques has datatype property description (in
plain text) to keep the description defined in WCAG
document. For the sake of brevity, these properties are
not shown or described in this paper.

3.1.2. HTML Subtree
The other two classes other than WCAG2.0 under Thing
are HTML and CSS representing ontologies of HTML
and CSS syntax. Ideally, if we have shareable KBs for
HTML and CSS, we can adopt those KBs into our
WCAG KB and make some necessary extensions for this
study. In that case, we do not need to develop HTML and
CSS ontologies from scratch. Unfortunately, such share-
able resources do not exist based on our knowledge.
Therefore, in order to make our WCAG KB functional,
we also developed HTML and CSS ontologies. For easy
implementation, there are only three levels of classes
defined for HTML. Such a design is not perfect but func-
tionally correct. The root class is HTML and all valid
HTML tags and attributes will have an associated class
under HTML with a prefix “HT_”. For example, class

HT_form, HT_input, HT_type, HT_heading, HT_
button represents HTML forms, input, type, heading,
and button, respectively. In additions, two classes that are
not html tag or attribute are also created: class HT_page
and HT_word. Class HT_page represents either static or
dynamically created web contents and class HT_word
represents words shown in web content.

One of the object properties defined in HTML is in
that represents the semantic of containing. A datatype
property, named hasValue, is also defined on class
HTML since many of the attributes require associated
values. For instance, the HTML attribute “type” of a par-
ticular input tag can have values like “text”, “hidden”, or
“submit”, etc. Such value is stored in the hasValue. Fur-
thermore, there are 6 types of HTML heading (h1 to h6)
and the actually type of a particular heading is also stored
in hasValue. For instance, for a text string s defined
within tag <h2>, an individual of HT_heading will be
created with property hasValue “h2”. For each word in s,
an individual of HT_word will be created with property
in linking to the associated HT_heading individual and
hasValue containing the particular word it represents.

In order to demonstrate techniques H32 and C8, we
created eight subclasses under class HTML. Individuals
with prefix “p_”, “f_”, “l_”, “i_”, “b_”, “w_”, “h_”, and
“t_” belong to class HT_page, HT_form, HT_label,
HT_input, HT_button, HT_word, HT_heading, and
HT_type, respectively.

With HTML and its subclasses, one can represent
HTML file as individuals in the proposed ontology. The
HTML code, shown at the bottom of Figure 5, will have
the associated individual network shown on top of the
same figure. To save space, we show only a portion of
the individual network. Individual f_00 represents this
form that contains a label (l_00), two inputs (i_00 and
i_01), and a paragraph tag (does not show in the figure).
Both input tags have type attributes (t_01 and t_02) and
they are linked by in to their associated input tags. The
value of attribute type is preserved by hasValue property
and shown by a dashed arrow in the figure.

The other two object properties used in this study are:
hasForm and pageHasWord. The domain and range of

Figure 5. Representing HTML code to KB individuals.

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

33

hasForm are HT_body and HT_form. The domain and
range of pageHasWord are HT_page and HT_word.

3.1.3. CSS Subtree
The CSS subtree is similar to the HTML subtree because
most of the tags defined in the CSS style section are
HTML tags. The root class of the CSS subtree is called
CSS and all its subclasses have prefix “CSS_”. In this
study, two subclasses (CSS_letter_spacing and CSS_
heading) are created under class CSS with individuals
prefixed by “css_ ls_” and “css_”.

Figure 6 shows an example of mapping an html page
with CSS style section into an individual network. The
four words in string “Museum of modern art” are repre-
sented by w_01 to w_04 and they are surrounded by two
html heading tags <h2> and <h4>, represented by indi-
viduals h_01 and h_02. Individual h_01/h_02 hasValue
“h2”/“h4” that shows what type of the heading it is. The
two heading defined in CSS section is represented by
css_01 and css_02 with hasValue of “h2” and “h4”. The
letter-spacing attribute defined in the CSS heading are
represented by individuals css_ls_01 and css_ls_02 with
in property linking their associated CSS heading indi-
viduals. The actual values of letter spacing are defined by
the hasValue property in css_ls_01 and css_ls_02. Indi-
vidual css_01, css_02, and b_01 are defined in the
HTML page p_01. Individual p_01 links to w_01~w_04
via object property pageHasWord.

3.2. Semantic Rules Creation
3.2.1. Modeling WCAG Technique H32
To properly represent techniques of WCAG 2.0, ontolo-
gy engineers need to carefully review the description and

Figure 6. Representing HTML code with CSS to KB indi-
viduals.

test procedure of techniques. They need to follow the
testable procedure to translate them to rules in SWRL
format. For example, the second step of the procedure of
H32 (shown in Figure 1) indicates that we need to check
whether there is a submit button in each HTML form and
there are three possible cases: (1) input type = “submit”,
(2) input type = “image”, and (3) button type = “submit”.
To represent these three cases, three Horn-like rules are
created listed below:
HT_form(?f) ∧ HT_input(?i) ∧ HT_type(?t) ∧
 in(?i,?f) ∧ in(?t,?i) ∧ hasValue(?t,?s) ∧
stringEqualIgnoreCase(?s,"submit") → H_32_form(?f)

 (1)
HT_form(?f) ∧ HT_input(?i) ∧ HT_type(?t) ∧
 in(?i, ?f) ∧ in(?t, ?i) ∧ hasValue(?t,?s) ∧
 stringEqualIgnoreCase(?s,"image") → H_32_form(?f)

(2)
HT_form(?f) ∧ HT_button(?b) ∧ HT_type(?t) ∧
in(?b,?f) ∧ in(?t,?b) ∧ hasValue(?t,?s) ∧
 stringEqualIgnoreCase(?s,"submit") → H_32_form(?f)

 (3)
Rules (1)-(3) are translated into SWRL format as

shown in Figure 7. If a particular form satisfies any of
these three rules, the individual represents this form will
also be assigned as an inferred individual (member) of
class H_32_form (a subclass of both class H_32 and
HT_form). However, the technique H32 requires “all
forms” in a page satisfying this constraint. To handle
such a universal quantification, a defined class called
H_32_body is created under class HT_32. Class
H_32_body is defined as “equivalent to” (the necessary
and sufficient conditions) “HT_body and (hasForm
some HT_form) and (hasForm_H32 only H_32_form)”
as shown in Figure 7. Object property hasForm_H32 is a
sub property of hasForm with range defined as
H_32_form. Hence, if an HT_Body individual contains
hasForm_H32 to only H_32_form, it will be assigned as
an inferred member of class H_32_Body by reasoners.

If a web page, p, contains a body satisfying a particu-
lar technique, then p satisfies this technique by nature. To
represent such a concept, a class named H_32_page un-
der class HT_32 and HT_Page is created. A Horn-like
rule is created for populating individuals of this class:

HT_page(?p) ∧ HT_32_body(?b) ∧ in(?b, ?p) →
H_32_page(?p)

(4)
Hence, if a page containing a body in class H_32_bo-

dy, it will be assigned as an inferred member of class
H_32_page by this rule (4), as shown in Figure 7.

3.2.2. Modeling WCAG Technique C8
Since representing technology C8 in the proposed ontol-
ogy only requires two CSS styles heading and letter-
spacing, under class CSS, we created only two classes:

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

34

Figure 7. Class H_32_body and rules for technique H_32_
form.

CSS_heading and CSS_letter_spacing. The CSS tech-
nique C8 requires text in an html page has more blank
space between characters that can be achieved by using
CSS style letter-spacing as shown in Figure 2. The only
test in the procedure is for each word, “Check whether
the CSS letter-spacing attribute was used to control
spacing.” Hence, we created a class called C_8 (a sub-
class of class TC_CSS under class Techniques). Class
C_8 has two subclasses: C_8_page and C_8_word.
Class C_8_page plays a similar role as H_32_page un-
der H_32 and C_8_word plays a similar role as
H_32_form under H_32. Words satisfying this C8 tech-
nique should be set as inferred members of class
C_8_word. This is achieved by the following Horn-like
rule (also shown in Figure 8 in SWRL format):
HT_page(?p)∧HT_body(?b)∧HT_heading(?h)∧in(?b,?p)
∧in(?h,?b)∧HT_word(?w)∧in(?w,?h)
∧hasValue(?h,?hs)∧CSS_heading(?ch)∧
CSS_letter_spacing(?cls)∧in(?css,?p)∧
hasValue(?ch,?chs)∧in(?cls,?ch)∧
stringEqualIgnoreCase(?chs,?hs) → C_8_word(?w)

(5)
The rule (5) can properly exclude the following situa-

tions: a) words that are not placed inside an html heading
tag; b) words within html heading, but the heading is not
defined in the CSS style section; c) words within heading
defined also in the CSS style section, but the heading
does not have letter-spacing attribute defined. With this
rule, individuals for words that do not satisfy C8 tech-
nique will be excluded from class C_8_word.

Technique C8 requires “all” words in a web page to
follow rule (5). Such a concept (universal quantification)
is similar to that H32 requires “all” forms to follow rules
(1)-(3). Therefore, we used the approach similar to how
we handled the universal quantification of technique H32
by defining a class C_8_page under class C_8. The class
C_8_page is defined as equivalent to “HT_page and
(pageHasWord some HT_word) and (pageHasWord_C8
only C_8_word)”, as shown in Figure 8. Object proper-

ty pasHasWord_C8 is a sub property of pasHasWord
with range defined as C_8_word. Hence, any HT_page
individual containing pageHasWord_C8 linking to only
C_8_word will be assigned as an inferred member of
class C_8_page by reasoners.

The HTML example listed in Figure 6 is realized in
Protégé as shown in Figure 9 with the inference result
showing that individuals w_01-w_04 do satisfy tech-
nique C8 and, therefore, should be (inferred) members of
class C_8_word. Since the individual p_01 meets the
definition of class C_8_page, it will be an inferred
member of C_8_page as shown in Figure 10.

Since there are 437 techniques listed in WCAG 2.0
techniques, ideally, class HT_page will have 437 sub-
classes. They are either primitive classes such as H_32_
page or defined classes such as C_8_page. All these 437

Figure 8. Class C_8_page and the rule for technique C8.

Figure 9. Reasoning result of class C_8_word.

Figure 10. Reasoning result of class C_8_page.

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

35

classes will also be subclasses under Techniques. More
precisely, they will be subclasses of subclasses of class
Techniques. For example, the H_32_page is a subclass
of class H_32 and C_8_page is a subclass of class C_8,
shown in Figures 7 and 8, respectively.

3.2.3. Modeling WCAG Success Criterion
With the proposed modeling method described in the
previous subsections, SC can be handled by mapping
sufficient and advisory techniques to rules. For the time
being, we consider situations in a sufficient technique are
mutually exclusive. Each situation and advisory tech-
nique will be translated to a single rule. A page that sa-
tisfies any rule of a SC will be considered satisfying that
particular SC. According to this model, the criterion
3.2.2 shown in Figure 3 will have two rules as shown in
Figure 11. Since technique G80 described in this crite-
rion suggests the use of one of the five techniques listed
below (H32, H84, FLASH4, PDF15, and SL10), a page p
satisfies anyone of them will be considered satisfying
technique G80. Individual p will be also an individual of
class G_80_page. To fulfill criterion 3.2.2, a page must
satisfy techniques G80, G13 and SCR19 (for the suffi-
cient part) or technique G201 (for the advisory part).

3.3. Using WCAG Knowledge Base
Developing the proposed WCAG KB is a labor and ex-
pert intensive task requiring ontology engineers to work
closely with WCAG experts. By carefully examining
regulations (techniques and SC), the whole WCAG KB
can be constructed.

The constructed result WCAG KB can be used and
embedded into any application directly. However, if en-
gineers wish to do so, then they need to have a certain
level of understanding on ontology, logic, and KB. En-

H_32_page(?p) → G_80_page(?p)
H_84_page(?p) → G_80_page(?p)
PDF_15_page(?p) → G_80_page(?p)
SL_10_page(?p) → G_80_page(?p)
FLASH_4_page(?p) → G_80_page(?p)
G_80_page(?p) ∧ G_13_page(?p) ∧
SCR_19_page(?p) → SC_3_2_2(?p)
G_201_page(?p) → SC_3_2_2(?p)

Figure 11. Rules for criterion 3.2.2 (On Input).

Figure 12. The system architecture of the web-based
WCAG validation system.

gineers also to know how to manipulate individuals in
the KB, trigger the reasoner, retrieve, and explain the
result. A better approach to use the proposed WCAG KB
is to add an application programming interface layer for
developers. Details are explained in the next section.

4. Experiments
To illustrate how the proposed WCAG KB can be used,
we developed a web-based WCAG validation system.
The system was developed using the Java Plateform (Ja-
va Servlet), jsoup (HTML parser), OWL API (v3), and
Apache web server [17-21]. The web-based application
we built for this study realized the H32 technique de-
scribed in previous sections.

The architecture of this validation system is shown in
Figure 12. An additional layer called WCAG APIs is
added between the WCAG KB and Java Servlet to hide
the complexity of directly using WCAG KB as described
in the previous subection. In this way, application devel-
opers only need to know which function interfaces to
invoke without know anything about ontology, logic, and
KB. The dashed-rectangle represents the WCAG KB and
APIs, created by WCAG experts, ontology experts, and
API developer. The dotted-rectangle represents the ap-
plication layer created by application developers. When a
client makes a request, the web server will initiate ne-
cessary Java Servlet objects and these objects invoke
WCAG APIs with necessary parameters.

Figure 13 shows a piece of Java Servlet program to
invoke the WCAG APIs. First, an object of class H32,
from the WCAG API package, is created with necessary
parameter retrieved from Servlet objects. The constructor
of class H32 instantiates necessary KB individuals illu-
strated in Figure 5. Then by invoking function
do_validation(), print_result(), and clear(), the system
performs validation, prints result in html format, and
releases allocated resources, respectively. The complexi-
ty of directly using WCAG KB is totally hidden behind
the WCAG APIs.

Since the system was built for demonstration purpose,
it validates only the technique H32 described in the Sec-
tion 2 (Figure 1). The input text area shown in the Fig-
ure 14 takes a HTML file with the name htmlstr that will
link to the code, request. getParameter (“htmlstr”) shown

Figure 13. Sample code to invoke the WCAG APIs.

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

36

Figure 14. An invalid H32 HTML file.

in Figure 13. Since the second form does not satisfy the
regulation, the result “Not Satisfied.” is printed aside the
form. Because the order of forms is irrelevant, the WCAG
APIs do not keep track of their order. In this particular
case, the second form in the input HTML file appears on
top of Figure 15.

If one changes the type of the second form of the input
HTML file shown in Figure 14 from “text” to “submit”
as shown in Figure 16, this particular input will meet the
H32 regulation. The result is shown in Figure 17 and the
bottom line shows “The web page meets the guideline
(H32).”

This system can be easily modified into a batch system
taking a large number of HTML files and validating them
one by one. As aforementioned, to validate a number of
HTML files by human experts is practically impossible,
but such a task can be achieved swiftly and accurately
with the proposed WCAG KB and the experimental sys-
tem.

5. Conclusions
WCAG 2.0 is the most well-known specification for
evaluating the accessibility of web contents. In this study,
we presented a modeling method to translate the dictio-
nary like documents to a computable knowledge base.
We examined two major groups of techniques and used a
technique in each group to illustrate the proposed model.
We also demonstrated how to translate WCAG test pro-
cedures to SWRL rules. With the proposed knowledge
base, OWL reasoners can properly generate the expected
inferred results.

There are two major contributions of this study. First,
we illustrate that the complicated WCAG 2.0 documents
indeed can be represented as a knowledge base. In other
words, we show that the knowledge described in WCAG
documents can be preserved in a knowledge base, a
computable resource. Secondly, the proposed knowledge
base is shareable in nature. Although creating such

Figure 15. The validation result of Figure 14.

Figure 16. A valid H32 HTML file.

Figure 17. The validation result of Figure 16.

a reusable resource is a labor and expert intensive task, it
is still a one-time investigation.

In this study, we also developed a web-based WCAG

Y.-L. CHEN, L. M. LIU

OPEN ACCESS IJIS

37

validation system to illustrate how to use the proposed
WCAG knowledge base. The knowledge base is wrapped
in a set of application programmer interfaces. With these
interfaces, application programmers can develop a sys-
tem without having any understanding of ontology, logic,
and knowledge base behind them.

Several topics related to this study merit further inves-
tigation. First, the HTML tags and attributes have more
complicated hierarchy, relationships, and constraints
compared to the model proposed in this paper. For in-
stance, Tag input has attribute type that is not a valid
attribute for tags like <p>. The proposed ontology places
tags and attributes at the same level under class HTML
because a) the proposed method functions well for our
purpose in creating WCAG knowledge base, and b) the
main focus of this study is not to develop ontology for
HTML. The class CSS has a similar situation that CSS
styles have complicated hierarchy, relationships, and
constraints, e.g. letter-spacing can only be defined inside
headings and not the other way round. Although an in-
teresting research topic, developing knowledge bases for
HTML and CSS is beyond the scope of this study. Se-
condly, there are 60 HTML and XHTML techniques and
22 CSS techniques defined in WCAG 2.0. Readers with
resources can translate all these 82 techniques into an
integrated ontology. Third, some of the WCAG 2.0 tech-
niques require human inspection. For instance, technique
C27 “Making the DOM order match the visual order”
must be checked only by human experts visually. Incor-
porating techniques requiring human inspection into the
proposed model are also a topic worth exploring.

REFERENCES
[1] The W3C, “Web Content Accessibility Guidelines (WCAG)

2.0,” 2013. http://www.w3.org/TR/WCAG
[2] The W3C, “Techniques for WCAG 2.0,” 2013.

http://www.w3.org/TR/WCAG20-TECHS
[3] R. Stevens, C. A. Goble and S. Bechhofer, “Ontology-

Based Knowledge Representation for Bioinformatics,”
Brief Bioinform, Vol. 1, No. 4, 2000, pp. 398-414.
http://dx.doi.org/10.1093/bib/1.4.398

[4] Y. L. Chi, “Rule-Based Ontological Knowledge Base for
Monitoring Partners across Supply Networks,” Expert Sy-
stems with Applications, Vol. 37, No. 2, 2010, pp. 1400-
1407. http://dx.doi.org/10.1016/j.eswa.2009.06.097

[5] US National Library of Medicine, “UMLS: Unified Med-

ical Language System,” 2013.
http://www.nlm.nih.gov/research/umls/

[6] International Health Terminology Standards Development
Organization, “SNOMED Clinical Terms,” 2013.
http://www.snomed.org

[7] G. A. Miller, “WordNet: A Lexical Database for English,”
Communications of the ACM, Vol. 38, No. 11, 1995, pp.
39-41. http://dx.doi.org/10.1145/219717.219748

[8] C. Fellbaum, “WordNet: An Electronic Lexical Database,”
MIT Press, Cambridge, 1997.

[9] Development and Evaluation Commission, Executive
Yuan, Taiwan, “Freego,” 2009.
http://www.webguide.nat.gov.tw/wSite/ct?xItem=36316
&ctNode=14521&mp=1

[10] The Merriam-Webster Dictionary, 2013.
http://www.merriam-webster.com/

[11] T. R. Gruber, “A Translation Approach to Portable On-
tology Specifications,” Knowledge Acquisition, Vol. 5,
No. 2, 1993, pp. 199-220.
http://dx.doi.org/10.1006/knac.1993.1008

[12] N. Guarino, “Understanding, Building, and Using Ontol-
ogies,” International Journal of Human Computer Studies,
Vol. 46, No. 2-3, 1997, pp. 293-310.
http://dx.doi.org/10.1006/ijhc.1996.0091

[13] N. F. Noy and C. D. Hafner, “The State of the Art in On-
tology Design: A Survey and Comparative Review,” AI
Magazine, Vol. 18, No. 3, 1997, pp. 53-74.

[14] The W3C, “OWL Web Ontology Language Reference,”
2013. http://www.w3.org/TR/owl-ref

[15] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer and D.
Tsarkov, “Owl Rules: A Proposal and Prototype Imple-
mentation,” Journal of Web Semantics, Vol. 3, No. 1,
2005, pp. 23-40.
http://dx.doi.org/10.1016/j.websem.2005.05.003

[16] N. F. Noy, R. W. Fergerson and M. A. Musen, “The
Knowledge Model of Protege-2000: Combining Intero-
perability and Flexibility,” Proceedings of 12th Interna-
tional Conference of Knowledge Acquisition, Modeling
and Management, Juan-les-Pins, 2-6 October 2001, pp.
17-32.

[17] Pellet: OWL 2 Reasoner for Java, 2013.
http://clarkparsia.com/pellet/

[18] Java Platform, 2013.
http://www.oracle.com/technetwork/java/index.html

[19] The OWL API, 2013. http://owlapi.sourceforge.net/
[20] The Jsoup: Java HTML Parser, 2013. http://jsoup.org
[21] The Apache HTTP Server Project, 2013.

http://httpd.apache.org

http://www.w3.org/TR/WCAG�
http://www.w3.org/TR/WCAG20-TECHS�
http://dx.doi.org/10.1093/bib/1.4.398�
http://dx.doi.org/10.1016/j.eswa.2009.06.097�
http://www.nlm.nih.gov/research/umls/�
http://www.snomed.org/�
http://dx.doi.org/10.1145/219717.219748�
http://www.webguide.nat.gov.tw/wSite/ct?xItem=36316&ctNode=14521&mp=1�
http://www.webguide.nat.gov.tw/wSite/ct?xItem=36316&ctNode=14521&mp=1�
http://www.merriam-webster.com/�
http://dx.doi.org/10.1006/knac.1993.1008�
http://dx.doi.org/10.1006/ijhc.1996.0091�
http://www.w3.org/TR/owl-ref�
http://dx.doi.org/10.1016/j.websem.2005.05.003�
http://clarkparsia.com/pellet/�
http://www.oracle.com/technetwork/java/index.html�
http://owlapi.sourceforge.net/�
http://jsoup.org/�
http://httpd.apache.org/�

