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Abstract 
Baseline is an important parameter of radar interferometry. Generally, it can be estimated by sa-
tellite orbital data or ground control points. In this paper, an adaptive method is proposed to es-
timate it with combination satellite orbital data, and the accuracy of baseline estimated can be 
improved without ground control points; actual data of ERS and ENVISAT ASAR have been used in 
algorithm development and the final obtained elevation shows that the precise orbit data is more 
accurate than original orbit data in estimating baseline. 
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1. Introduction 
Interferometric Synthetic Aperture Radar (InSAR) technology has been used frequently to monitoring tiny land 
surface deformation in recent years. Land target elevation can be obtained from phase information carried by 
radar signal. Couple of single look complex views of the same area obtained from two antennas simultaneously 
or two parallel observations from one antenna are used to produce the interferometric image; the geometric rela-
tion of two antennas and the observed target make interferometry turning into the truth. Combination with the 
orbit and sensor parameters, more accurate and higher resolution elevation can be obtained. 

As an important factor in InSAR, baseline is used to describe the spatial or temporal geometric relations be-
tween the two antennas and the slant range; the high-accuracy baseline can enhance interferometry of receiving 
signal, but poor-quality baseline will cause interference loss and lead to the low precise elevation evaluation. In 
this study, the optimal baseline is also used, and the result is verified by the ERS and ENVISAT ASAR data and 
shows good consistency with the observations. 
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2. InSAR Imaging Theory 
In general, the spatial location of antennas was different in twice repetition while receiving signal from the same 
land target, here A1 and A2 represented the first position and second position, respectively. The difference be-
tween the two location produce the interference baseline vector, and here b represented its length, the angle with 
the horizon direction was represented by α, the horizontal and vertical component of b was represented by by and 
bz, respectively. The height difference between A1 and reference plane was represented by H, the height of land 
target T Was represented by h(y) and its slant range was represented by r, r + δ represented the slant range be-
tween A2 and land target T, all symbols are described in Figure 1. 

Two complex images S1 and S2 were generated after processing echo signals of A1 and A2 using SAR tools, 
respectively. The interference image with dark and bright strips can be obtained after the operation 1 2S S∗⋅ , here 

2S∗  means the conjugation of S2. the phase of each pixel in interference image is in proportion to the distance 
difference δ and has constant ratio 2π λ  owing to the emission antenna is also echo receiver. in common, 
curvature of the earth can not be ignored in satellite-based processing. So the expressions concluded from Fig-
ure 1 are listed as follows [1]: 

2π
λφδ =                                                   (1) 

( )
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δ
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where ER  indicated the earth radius and a  indicated the half of the major axis of satellite orbit, r means the 
slant range and is bound up with echo delay, λ , b, α , r and H are known parameters, h, θ  and δ  can be 
calculated by expression (1), (2) and (3) if given φ  values. 

3. Optimal Baseline 
As an important parameter in InSAR processing, baseline is defined as the line between the different locations of 
twice satellite repetition. Its accuracy can determine the accuracy of land target elevation. according to the 
theory of InSAR, the phase difference, wave length and baseline are the determinants of computing land target 
elevation, that is to say, the orbit parameters are necessary when calculating the elevation, and the information 
includes the position of satellite, baseline and its azimuth when satellite scanning the target.  

As it is known, the more longer the spatial baseline is, the more weaker the interference of two images is, in-
creasing the spatial baseline can increase the accuracy of elevation, but the increment of baseline has its limita-
tion, and the limitation can be represented by CB  in the Equation (4). 
 

 
Figure 1. Geometry of InSAR.                             
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where β represented the surface gradient and 0r  represented the distance between the antenna and the land tar-
get. Assumed that all the parameters are independent each other, the overall root mean square error hσ  can be 
represented by the following equation [2]. 

2 2 2 2 2
2
h r b H

h h h h h
r b Hα θσ σ σ σ σ σ

α θ
∂ ∂ ∂ ∂ ∂         = + + + +         ∂ ∂ ∂ ∂ ∂         

                 (5) 

where rσ , bσ , ασ , Hσ  and θσ  are root mean square error of r, b, α , H and θ , respectively. 
According to the error theory, bσ , ασ , Hσ  are considered as system error as they are varied with different 

sensor system and have characters of common error, so they are ignored in the following computation. rσ  is 
decided by ambiguity of timing system, vibration of sampling system and latency while electromagnetic wave 
passing through air and cosmic space. It can be expressed by the following equation: 
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where rINρ  indicates the resolution of slant range in interferometric image and it can be computed by the fol-
lowing equation: 

Where yρ  indicates the range resolution and BC indicates the limitation of baseline. The measurement error 
θσ  can be computed by the following equation [3]: 
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where W indicates the land target effective extension in one unit range lobe which is perpendicular to the direc-
tion of electromagnetic wave. ϕ  indicates the half power width of each lobe produced by phase interferometry 
and can be expressed by the following equation: 

Substitution Equations (6), (7), (8) and (9) to Equation (5), the estimated variance of land target height hσ  
can be approximately obtained while baseline is perpendicular to the range direction [4] [5]: 
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where S N  is signal to noise ratio of the receiver. 
Taking derivative to b in Equation (10) and making the derivation is equal to zero, then the optimal baseline 

can be computed by the following equation: 
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The Equation (11) shows that the optimal baseline will increase while wave frequency decreases. 

4. Algorithm Development 
4.1. Original Satellite Data 
The satellite orbit can be expressed by position vector scR  and velocity vector scV  at given time in ECR coor-
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dinate system. Several vector scR  and scV  at specific time can be found in the meta data of radar products, 
such as ERS-1, ERS-2 and ENVISAT ASAR, they all provide five couples of scR  and scV  at given time. The 
pattern of recording scR  and scV  is nearly same in meta data: firstly, the orbit state vector number sN  is 
recorded and the time 0t  which is corresponding to the first track, the time period t∆  between the adjacent 
tracks; secondly, every track vector couple like ( )T, ,s s sX Y Z  and ( )T, ,v v vX Y Z  is recorded at specific time in 
increment order. 

To resolving the position model, the amount sN , the overall discrete pairs of ( )sc iR t  and ( )sc iV t , is used 
to calculate the pairs of ( )scR t  and ( )scV t  at any given time in interval [ ]0 0, s tt t N+ ∆ . 

The position vector of satellite can be expressed by the following polynomial [6]: 
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The velocity vector can be obtained by taking differential to time t in polynomial (12), and velocity will keep 
consistency with position at given time. The velocity can be expressed as polynomial (13). Where kN  is the 
degree of polynomial and its value must be less than or equal to ( 1sN − ). The vector series sN  can be used to 
evaluating parameters of velocity using the least square method. In general, only the differential position to time 
polynomial is fitted. 

4.2. Precise Orbit Data 
The precise orbit data are provided by DEOS (Delft Institute for Earth-oriented Space Research), in which 
ERS-1, ERS-2 and ENVISAT ASAR are include. Running the program (getorb, version 2.2.0) provided by 
DEOS at given start time, step size and period, the geodetic or geocentric coordinates will be interpolated auto-
matically after reading orbital data records, the program also can interpolate orbital profile every epoch and can 
print the UTC time, error, longitude, latitude, height of orbit (GRS80) and XYZ position values [7]. 

Inputting the original orbit profile and precise orbit profile to program(getorb), then using polynomial fitting 
or linear interpolation to calculating the coefficient of orbit, transforming the original image coordinates to orbit 
coordinates according to the Doppler equation, then computing the baseline and comparing it with the optimal 
baseline, if the biases of baseline computed by precise orbit are less than the biases computed by original orbit 
data, the elevation will be computed by the baseline produced by precise orbit, otherwise, the original orbit data 
will be used. 

5. Result and Discussion 
In this paper, ERS-1 and ERS-2 are used to calculating the orbit equation firstly, then original orbit and precise 
orbit are used to compute the elevation. Table 1 and Table 2 show the orbit data and the precise satellite data, 
respectively. Table 3 shows the elevations computed by the orbit data. From Table 3, we can see that the accu-
racy of elevation obtained by precise orbit is better than that obtained by original data, and the relative error 
computed by precise data is smaller than the original. Meanwhile, the comparison is consistent with the result 
obtained by the optimal baseline; the results have been verified by ERS and ENVISAT and show the consistency;  
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Table 1. Original satellite data.                                                                              

Type T (s) X (m) Y (m) Z (m) 

Principal 
Original data 

11,725.872 −2,484,054.95 5,618,643.75 3,677,802.95 

11,730.039 −2,483,766.58 5,635,945.89 3,651,511.18 

11,734.206 −2,483,421.15 5,653,142.13 3,625,150.41 

11,738.373 −2,483,018.71 5,670,232.12 3,598,721.14 

11,742.540 −2,482,559.36 5,687,215.50 3,572,223.87 

Auxiliary 
Original data 

11,727.669 −2,484,045.48 5,618,621.48 3,677,850.21 

11,731.836 −2,483,758.26 5,635,923.44 3,651,558.39 

11,736.003 −2,483,413.97 5,653,119.51 3,625,197.56 

11,740.170 −2,483,012.68 5,670,209.32 3,598,768.24 

11,744.337 −2,482,554.47 5,687,192.53 3,572,270.91  

 
Table 2. Precise satellite data.                                                                                

Type T (s) X (m) Y (m) Z (m) 

Principal 
Precise data 

11,721.000 −2,484,317.504 5,598,281.532 3,708,454.135 

11,725.000 −2,484,105.901 5,615,011.087 3,683,294.890 

11,729.000 −2,483,841.638 5,631,643.463 3,658,071.510 

11,733.000 −2,483,524.777 5,648,178.341 3,632,784.436 

11,737.000 −2,483,155.380 5,664,615.405 3,607,434.105 

Auxiliary 
Precise data 

11,723.000 −2,484,296.771 5,599,106.843 3,707,232.522 

11,727.000 −2,484,083.605 5,615,831.329 3,682,069.976 

11,731.000 −2,483,817.783 5,632,458.621 3,656,843.317 

11,735.000 −2,483,499.366 5,648,988.401 3,631,552.984 

11,739.000 −2,483,128.417 5,665,420.351 3,606,199.417 

 
Table 3. Computed elevation.                                                                                  

Order Theory (m) Original (m) Precise (m) Relative error 
(original) 

Relative error 
(precise) 

1 11,879.23 11,870.44 11,877.35 0.073967 0.015828 

2 11,880.24 11,871.45 11,878.36 0.074019 0.015811 

3 11,881.25 11,872.45 11,879.37 0.074071 0.015795 

4 11,882.26 11,873.45 11,880.39 0.074123 0.015778 

5 11,883.27 11,874.46 11,881.40 0.074175 0.015761 

6 11,884.28 11,875.46 11,882.41 0.074227 0.015745 

7 11,885.29 11,876.47 11,883.43 0.074279 0.015728 

8 11,886.31 11,877.47 11,884.44 0.07433 0.015711 

9 11,887.32 11,878.48 11,885.45 0.074382 0.015695 
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it shows that the methodology used in the paper provides more accurate baseline estimation and can be an im-
portant reference for estimating baseline parameter. 
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