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ABSTRACT 

The problem of generation and propagation of tsunami waves is mainly focused on plane beach, there are very few 
analytical works where wave generation is considered on non-uniformly sloping beach and as a result those works 
might have failed to capture important facts which are influenced by bottom-slope of the beach. Some researchers pro- 
vided solution to the forced long linear waves but on a beach with uniform slope while the importance of including 
variable bottom topography is mentioned by few researchers but they also stayed away from considering continuous 
variability of the ocean bed as they were studying runup problem. This paper analyzes tsunami waves which are gener-

ated by instantaneous bottom dislocation on a ocean floor with variable slope of the form ry qx 

r

, q > 0, r > 0. At-

tempts are made to find analytical solution of the problem and along the way tsunami forerunners are identified while 
investigating the short time wave behavior, not found even with constant slope beaches. In our study a rather significant 
phenomenon with regard to energy transmission to the waves at steady-state are observed with some notable features. 
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1. Introduction 

The evaluation of the terminal effect of natural hazards 
remains one of the holy grails of geophysical research [1]. 
Needless to say tsunami is one such geophysical problem 
where uncertainties are yet to settle on the core areas of 
tsunami generation and propagation. Over the years 
mathematical complicacies have prevented researchers to 
do analytical work both in linear or non-linear version of 
the problem. As a consequence analytical works are far 
and few compared to the numerical studies of this genre 
of problems with more or less identical physical setting. 
Talking about previous work, at this stage, we wish to 
mention the seminal work of Tuck and Hwang [2] and 
also of Liu et al. [3] both provided analytical solution to 
the forced wave problem in a linear setting with uniform 
sloping beach. On the other hand Kanoglu and Synolakis 
[4] considered a piecewise continuous bathymetry to 
study long wave runup problem. Our interest is to study 
the generation and propagation of long waves due to un-
derground sea bed dislocation on a variable ocean slope. 
The aim is to find an analytical solution and for that 
purpose we have restricted ourselves solving the linear 
shallow water equations with appropriate initial and 
boundary conditions. Here it would be quite interesting  

to point out that certain important parameters like tsu-
nami wave runup can realistically be estimated staying 
well within the linear theory [5]. In this article we inves-
tigate generation of waves which are assumed to be 
caused by an instantaneous ground upheaval, along with 
a prescribed initial elevation and a velocity of the free 
surface at the instant before the ground begins to move. 
The problem is analyzed taking into account linear shal-
low water equation for a beach of variable slope 
y qx  , q > 0, r > 0, referred to horizontal and vertical 

directions as x-and y-axis respectively. In conformity 
with Tuck and Hwang’s analysis of long wave generation 
due to arbitrary ground motion over a uniformly sloping 
beach (r = 1), we first show that it is possible to find a 
non-singular solution of the problem for all time t when 
the ocean slope varies. Then by taking a very general 
type of time–dependent bottom dislocation we have been 
able to split the integrals in two parts one representing 
the waves due to free vibration which we claim to be the 
forerunners and the other as the forced wave part. These 
forerunners will dominate the wave-spectrum for first 
few minutes before the giant waves come and then will 
be dominated by the forced wave part, which is the other 
part of the wave. These forced waves ultimately catching 
up the free waves will occupy the whole spectrum be-
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yond the half period of the quake forcing. An illustration 
of this has been shown by employing a particular type of 
bottom dislocation. Assuming a time periodic ground 
motion, we next show that a steady-state exists. At this 
stage we are confronted with a paradoxical result. Our 
solution at the steady-state shows a noteworthy feature of 
no transmission of energy from a finitely distributed 
time-periodic ground motion for a certain set of values of 
the disturbance function. This kind of paradox was first 
observed by Stoker for steady-state surface waves in in-
finitely deep water [6] and this peculiar ’resonance’ may 
perhaps be eliminated by assuming small viscosity of the 
fluid or by taking alongshore variations into account. Our 
attempt to find analytical solution of the problem helps 
us to understand the influence of variable bottom slope 
on wave elevation and velocity. Both the small-time and 
steady-state analysis of the problem performed here 
might be of some significance for the evolution of tsu-
nami waves induced by near-shore earthquakes [7]. It 
will not be out of context to mention that although 
physical settings are different, the generation of long 
waves by variable atmospheric pressure distribution is 
analogous to the problem of tsunami formation by bot-
tom displacement [8,9] and hence our solution may also 
prove pertinent to that direction. We have seen the dev-
astation of the great Indian Ocean Tsunamis of 2004 and 
that of the more recent Japan earthquake, and has also 
observed the failure of the early warning system in quite 
a number of cases, keeping that in mind we hope these 
solutions can be used as a benchmark to all such nu-
merical studies relating tsunami warning process. In 
passing, we wish to mention that in reality sea bottom 
profile is complex and is far from the general parabolic 
shape assumed here but this work can be considered as a 
first step, particularly in analytical sphere, towards in-
cluding those complex curvilinear ocean floor associated 
with the bathymetric obstacles like island chain, rises and 
seamounts [10]. 

y

η 

x

η0 
h0(x) 

2. Problem and Its Solution 

We take the vertical upward direction as the y-axis, and 
the undisturbed horizontal surface of the sea as the xz 
-plane of which the axis Oz is along the shoreline. The 
sea is supposed to be bounded by a beach of variable 
slope given by the equation y = h0 (x) at equilibrium 
(Figure 1). 

We assume a two-dimensional motion in which long 
waves are exited by a sudden bottom upheaval of height 
0 (x, t) accompanied by an initial surface displacement 
1(x) together with an initial vertical surface velocity 2 

(x). If u(x, t) is the horizontal velocity, (x, t) is the sur-
face displacement and 

 
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Figure 1. (a) The illustrative figure of the beach profile and 
the choice of axes; (b) This is a three-dimensional view of 
the bathymetry profile y = qxr for different values of r. 
 
is the depth at the point x, at time t > 0, the non-linear 
shallow water equations are 

     0h u h
t x
  
   

 
        (2) 

0
u u

u g
t x x

  
  

  
.              (3) 

At t = 0-, we have 

   1 2,       x x               (4) 

If   and 0  are small compared to  and u  is  0h

small compared with the local wave speed g 0h , Equa-  

tions (2) and (3), after using (1), may be linearised to 

  0
0uh

t x t

  
 

  
,              (5) 

0
u

g
t x

 
 

 
.                   (6) 

Eliminating u(x, t) from (5) and (6), and using suffix 
notation for partial differentiation, we obtain the partial 

Copyright © 2013 SciRes.                                                                                  IJG 



A. BANDYOPADHYAY 456 

 : differential equation satisfied by 

 tt xxgh x gh  0 0 0x ttx     

h

.      (7) 

when 0  and 0  are given, it is required to determine 
  as the solution of (7) subject to the initial condition 
(4). The horizontal velocity u is then found from (5); for 
this purpose, we may impose a physically reasonable 
boundary condition at x = 0, namely 

0 0uh h
x

~ 0 as 0x



 

  rh x qx

 1 2 2 0   v

         (8) 

when 0 , q > 0, r > 0, Equation (7) suggests 
that we consider the solution of the ordinary differential 
equation 

   r rr     v v      (9) 

for the determination of  . 
For 0 

 1 2c Y

, the general solution of this equation is [11] 

   c J   
      v       (10) 

e  and wher J Y 
 k

denote respectively Bessel functions of 
first and second ind of order  , and 

1 r r r 1
, 1 ,

2 2 2 r
      


          (11) 

For 0  , that is r = 2 the general solution of (9) is 

    constantsD C D


  v         (12) 

Equations (10) and (1  

, ,
C

2) show that  and  v v  
cannot be both finite at 0   (in other words,   and

x = 0 
 

u cannot be both finite at unless 

2 0c  , and 0  .           (13) 

To solve the Equation (7) subject t
an

o the given initial 
d boundary conditions, we assume that 

       1 dx
1 2

0

, , rx t A t x J     


       (14) 

Using this in (7), we obtain, by means of (9) and (10), 
with 2 0c  , the integral equation of first kind 

       0
0

, dx t A A x J x
1 22 1r r    


       (15) 

where 

 
1

2gq                  (16) 

Then solution of  is obtained
in

 with the help of Hankel 
version theorem [12] as 

       

       
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
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
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where 



           1 0 1 2, , , ,x t x t x t H t t x t H t     

where H is the Heaviside unit function. 
We note that for r =1 this expression reduces to that of 

for constant slope beach [2]. 
ng a time-dependent bottom dislocation like the 

following 

 (18) 

 found 
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       i1 e tT t H t H t , π           (19) 

w
ti

 

e have been able to evaluate the above integral for all 
me t with the help of a very nice result [11, p. 58] 
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In the above the t-integral reduces to 
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where 

   π 2j z zJ z 1 2m m , 

Following this evaluation of the t-integral of (17) we
spilt the -integral of (17) in two parts one from  = 0 to  

 

 

g0 q  [the first part] which can be evaluated  

with the help of another result that com es product of 
two Bessel functions as a terminating hypergeometric 
se

  

 
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ries [11, p. 11, 7.2.7 (47)] 
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This spilt corresponds to 11, say, of  which after 
some tricky manipulation takes a nice form and it corre-
sponds to the free vibration that can be treated as the 
forerunners. These waves in this spectrum dominate for 
first few minutes, to be precise for the half period of the 
quake forcing. 
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and 

       
   

2 2
0 1

1 
I z z x J

x J z J x z

  
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On the other hand, the second part of -integral from  
= 0 to  contribute 12, say, of  representing the forced 
wave part is also analytically calculated with its expres-

ing a little complicated is not shown here. We 
 analyze their character in a subse per. At 

this stage, we remark qualitatively that 12 catch up the 
waves beyond half period  and dominate the wave 
rum gradually for t > . 

3. Discussion on the Nature of the Waves
with the Help of Some Illustrative Figures 

B

sion be
hope to quent pa


 

Figure 4. The nature of  for some sloppiness r = 0.7. 
 

free 
spect

 

efore we proceed further and discuss the steady-state 
nature of the waves and the energy transmission let us 
provide some illustrative figures showing the nature of 11 

and 12 in an attempt to distinguish them for small time. 
We will take for a particular type of bottom dislocation of 
the following form 

       1
1 c

2
T t H t       os t H t  

with 3 2r  , 1q   and  1 e .a xx x   
The following two figures (Figures 2 and 3) depicting 
and   for small time when r = 0.7 and r = 0.8, that is 

 

Figure 5. Again the nature of  for some arbitrary sloppiness 
given by r = 0.8. 
 
here we find  increasing indefinitely with increase of 
time. Our analytical result also has shown this. It indi-
cates that there might be some sort singularity at t = , 
the reason of which may be the sudden disappearance of 
the bottom vibration at t = . For any such definite con-
clusion, though, we require further analytical investiga-
tion of the motion for t > . 

The spilt of  namely 12 which comes from the sec

r two are standing disturbances, ana-

11 12

for two different sloppiness of the ocean bed and in both 
the cases we find the prominence of 11 over 12 as it was 
shown analytically and we call this 11 as the forerunners. 

The next two graphs (Figures 4 and 5) illustrate nature of 
 for two different values of r, namely r = 0.7 and r = 0.8, 
 

 

Figure 2. Comparison of 11 and 12 for a particular r = 0.7 
and it shows the dominance of 11 when t < . 

 

 

Figure 3. Comparison of 11 and 12 for another r = 0.  
w

7 and
again the same of dominance of 11 hen t < . 

-
ond part of -integral in (17) while integrating it from  = 
0 to  consists of three parts: one of which has a wave 

rm and the othefo
lytical expressions of which is valid for 2/3 < r < 4/3. We 
restrain ourselves of writing those complicated expres-
sions rather give some illustration of 12 below for two 
different arbitrary sloppiness of the ocean floor. 

The Figures 6 and 7 indicate the nature of 12 in the 
wave spectrum it actually corresponds to the forced wave 
part of  which will dominate the spectrum over those 
which are small and corresponds to the natural frequencies 
of wave motion. 

4. Periodic Ground Motion: Steady-State 
Solution of  and u 

We assume 
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e 6. The graph of 12 when t < , r = 0.7. 
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Figure 7. The graph o 12 when t < , r = 0.8. 
 

,  2 0x  ; 
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f 
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 0 x f x t  , t > 0 

and show that a  state  t   exists and also 
determine the g values of 



 steady
correspondin  and u. 

Steady-State Value of  

When the integration with respect to s in (17) is completed, 
we get 

    

   

1 2 1 2

1

i

sin sin

rgq x
t

t t

   

 dF
0

      

 




    

  
     (21) 





where 

         1 2 1 1F gq J x f
        ,    (22) 

       1 2 1r

0

df J f       .         (23) 

We spilt 


 

the  -range in (21) into the sub-intervals 
 0, 2  and  2,  . By the help of known results on 
Fo  integrals, the part of the integral in (2urier
interval 

1) over the 
 0, 2  is asymptotically equal to 

    
2

1

0
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as .

O t t

t


1

d ,F     



   
     (24) 

The remaining part of the integral in (21) is 

   
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
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Combining (24) and (25), we get for the integral in (21) 
the expression 
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Here the symbol  . .p v   indicates the Cauchy Prin-  

cipal value of the integral in question. Following Bochner 
[9], the asymptotic values of the third and fourth terms of 
(26) are respectively 

     1 1cos π and sin ,

as

t F O t O t t

t

       
 

  

The results in (27) hold provided 
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Equation (21) then gives 
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p v F O     
 







Writing p  gq , we have 

 

 

    1

      

     

     

0

11 2 2 2

0

1 21

12 2 1

2

. .

d

. . d

p v F d

gq p f f p

J x gq f p

p v p J x









 

  

 

  

   

 



  

  

 

 







   




(21b) 
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By Oberh 13, Section ettinger, F. [ 4.32] the second term is 

     1 2 π

2

2,

gq f p Y p x S 








 1 1
1, ,p x 

    
   (21c) 

where Y  denotes Bessel function of the sec
and ,S

ond kind, 

 
our discu

 is Lommel’s function. We note that si
< 2 in ssion, 2

nce 0 < r 
   imposes the further restric-

ntio 0 5r 
g the res

3 . 
Usin ults (21b) and (21c) in (21a), we finally 

obtain the ue of steady-state val  : 

   

    
       

     

        

1 22π 2 r
st gq x

2
1,

2

exp i π 2

2i π

t f gq

1 2

12 2 1

exp i

d

r

0

for 0 5 3

H x gq S x gq

p f f

 
 



 

    

gq x t

p J x

  

r

  

  



 

   

 

For the same periodic ground motion and following the 
same procedure as described  to obtain 

 



  



 

(28) 



 

above st , we find 
the steady-state value of u as 

       

 

 
   

        

1
1 2

0

1
2 12

1

1
2, 1

12 2 2
1

1

π
exp i

2

i 2

i d

sth u x

t gq f p H p x

p f p S p x

p f f p J x












 

  

0

for 0 5 3r

    



 



 

  




 

 


    


 

Here Y



(29) 

  denotes Bessel function of the second kind, 
and ,S   is Lommel’s function. The first term of both 

st  and stu , as given below, represent progressive 
waves: 

     

      

1 2rgq x

x gq



  



       

2

2

π 2

exp i π 2

gq f

t H

   

 
(30) 

 
   

0

   
2 1 2

2 1

π 2

exp i

h u gq x

t f p H p x

 

1
 








        (31) 

e al
equ



W so note that * is an integral of the hyperbolic 
ation 

 
2 2

1

2 2
gq1r rx rx

xx t

  
 

 
        (32) 

The rest part of 

 
 

 


 as well as st stu  represent clearly 
standing waves. Since  > 0 in our case, we
asymptotic expansion of    2

 may use the 
H z  for z ≥ 1 to obtain  

for large x: 
*

     
 

3 21 2 4~ π 2  

3π 1
       exp i π

rgq f gq

t x gq

  

   

 

4 2

x

         

The wa

 (33) 

ve described by (28) propagates towards x  
+ according to the equation 

 1 
x gqt     

ave dec
m the source, according to the factor 

        (34) 

Thus this wave moves with a variable acceleration 
unless r = 1 when the acceleration is constant [cp. [2], p. 
449]. The height of the w reases with the time or 
distance fro 4rx   

(which is equivalent to  4 2rr
t


). Since the depth in-  

creases as x, this corresponds to Green’s law of sh
water waves. 

5.

y-state solution is that no 
energy is transmitted through the liq

allow 

 Transmission of Energy 

A notable feature of the stead
uid for frequencies  

  0f gq  , and hence = 0, un * *  which make  

= 0, the part st   and stu u  being a standing wave. 
That these critical frequencies may form a countably in- 
finite set as shown by the following example: 

  i ,
0

exp 0
, , 0

P t x a
x t t

  
0, x a

     (35) 


with 

  1 2
0h x qx                 (36) 

Then 

 

 

5 4 4 3 4 df Pa 1 4 34a

1/3
0 3

J a

a1/2 3/4
2 3 3

Pa J a

   






The zeros of 

  


    
 

     (37) 

 

 J x , for 1    and x real, are known 
to be countably infinite. If 2 3,n be the n-th posit
of 

ion zero 
 2 3 0J x , the critical frequencies n  are given by  

 1 23 4
2 3,

3
, 1, 2,

4n na gq n          (38) 

6. Conclusion 

After the evaluation of s-integral in (17) the splitting of 
the -integral in two parts is not arbitrary but instead a 
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necessary one, so the existence of the forerunners. Tsu-
nami forerunners arrive before the arrival of the main 
tsunami waves with typically smaller amplitu
tence of such waves and a correct analytical expression 
of which is tried to put up here over a variable sloping 
be rva

at di
h
ile in wat

non-dis ve. Leaving aside the actual phy
cation sea floor the solution provided he

 if we apply the sea bed deform
as given by Okada’s solution [1

de, exis-

ach. Another interesting obse tion is that the choice 
of the depth profile rqx , stance x from the shore-
line, m e dispersive relation [viz. Equation (16)] 
disp  the classical shallow er theory it is

akes t
ersive wh

persi
of the 

 
sical dislo-

re is cor-
rect for all t. In fact
due to earthquake 

ation 
4] we 

may perhaps need to employ some numerical work al-
though in that case one has to remain cautious about 
wave integrals and their oscillatory nature have to be 
taken into consideration. We know wave is a means of 
transmission of energy through a medium where the me-
dium itself doesn’t travel. For a progressive wave the 
transmission of energy takes place which can be de-
scribed by a simple formula   21 4 ga c , where a = 
wave amplitude, c = w e velocity. If wave amplitude 
vanishes for some frequencies of the applied disturbances 
then the transmission of energy is zero, which has hap-
pened here. Needless to mention that the there is no 
transmission of energy for standing waves. Although we 
have shown it as a steady-state phenomenon for which 
there is no transmission of energy into the liquid, we 
surmise that the result may possibly hold for all time. 
This implies that some earth quakes may fail to generate 
propagating waves. 

7. Acknowledgements 

The author is deeply indebted to Prof. (Retd.) Asim Ran- 
jan Sen, Department of Mathematics, Jadavpur Univer- 
sity, Calcutta, India for his help stions during 
the preparation of this paper. The author is also grateful 
for the anonymous reviewer for suggesting some im- 
provements which have since been incorporated in the 
paper. 

Some portion of this work was presented by the author 
at the ISOPE 2012 conference [15] held at Rhodes Island, 
Greece. 

REFERENCES 

av

 and sugge

[1] C. E. Synolakis and E. N. Bernard, “Tsunami Science 

ansactions of the Royal Society A, Vol. 364, No. 1845, 
before and beyond Boxing Day 2004,” Philosophical 
Tr
2006, pp. 2231-2265. doi:10.1098/rsta.2006.1824 

[2] E. O. Tuck and L. S. Hwang, “Long Wave Generation on 
a Sloping Beach,” Journal of Fluid Mechanics, Vol. 51, 
No. 3, 1972, pp. 449-461.  
doi:10.1017/S0022112072002289 

[3] P. L.-F. Liu, is, “Analytical P. Lynett and C. E. Synolak
Solution for Forced Long Waves on a Sloping Beach,” 
Journal of Fluid Mechanics, Vol. 478, 2003, pp. 101-109.  
doi:10.1017/S0022112002003385 

[4] U. Kanoglu and C. E. Synolakis, “Long Wave Runup on 
Piecewise Linear Topographies,” Journal of Fluid Me- 
chanics, Vol. 374, 1998, pp. 1-28. 

[5] C. E. Synolakis, “Tsunami Runup on Steep Slopes: How 
Good Linear Theory Is,” Natural Hazards, Vol. 4, No. 2- 
3, 1991, pp. 221-234. doi:10.1007/BF00162789 

[6] J. J. Stoker, “Water Waves,” Interscience Pulishers, New 
York, 1957.  

[7] S. Tinti and R. Tonini, “Evolution of Tsunamis Induced 
by Near-Shore Earthquakes on a Constant Slope Ocean,” 
Journal of Fluid Mechanics, Vol. 535, 2005, pp. 33-64.  
doi:10.1017/S0022112005004532 

[8] E. Pelinovsky, T. Talipova, et al., “Nonlinear Mechanism 
of Tsunami Wave Generation by Atmospheric Distur- 
bances,” Natural Hazards and Earth System Sciences, 
Vol. 1, 2001, pp. 243-250. doi:10.5194/nhess-1-243-2001 

[9] J. V. Weahausen and E. V. Laitone, “Surface Waves,” In: 
Handbuch der Physik, Vol. 9, Springer, Berlin, 1960, pp. 
446-778. 

[10] B. Edward, “Tsunami an Underrated Hazard,” Cambridge 
University Press, Cambridge, 2005. 

[11] Erdélyi, et al., “Higher Transcendental Functions,” Vol. 2, 
McGraw-Hill, New York, 1953, p. 58.  

[12] Erdélyi, et al., “Tables of Integral Transforms,” Vol. 2, 
McGraw-Hill, New York, 1954, p. 29. 

[13] F. Oberhettinger, “Tables of Bessel Transforms,” Springer, 
Berlin, 1970. 

[14] Y. Okada, “Internal Deformation Due to Shear and Ten- 

992, pp. 1018-1040. 

niformly 

sile Faults in a Half-Space,” Bulletin of the Seismological 
Society of America, Vol. 82, No. 2, 1

[15] A. Bandyopadhyay, “Mathematical Modeling of Tsunami 
Waves Generated by Bottom Motion on a Non-U
Sloping Beach,” Proceedings of 22nd ISOPE Conference, 
Rhodes, June 2012, pp. 68-71. 

 

 

 

 

http://dx.doi.org/10.1098/rsta.2006.1824
http://dx.doi.org/10.1098/rsta.2006.1824
http://dx.doi.org/10.1017/S0022112002003385
http://dx.doi.org/10.1017/S0022112002003385
http://dx.doi.org/10.1017/S0022112002003385
http://dx.doi.org/10.1017/S0022112002003385

