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ABSTRACT 

The aim of this contribution is the interpretation of intracratonic chains in African plates, but it is important to verify 
some parameters such us the oblique convergence between Africa and Europa plates. Particularly in southern central of 
atlassic Tunisian belts, the slickenside examination of directional preexisting faults of N120 direction shows the coexis-
tence of thrusting and strike-slip faults striation. In the limits of these faults principally in some tectonics lens we dis-
tinguish abnormal contacts with Triassic facies. The kinematic evolution of Gafsa basin resumed in the geometry of 
strike-slip faults connected in the thrusting system, this movement resulted from the oblique convergence on Ben 
Younes, Bou Ramli and Attig chains during compressive phases. This deformation style requires a shortening axis 
oblique to the NW-SE accidents (N120). The strain partitioning model verify the geometry of faults and equivalent 
evolution of folds and confirms the Triassic decollement level but without integrated of basement structures in the de-
formation. It permeated a passive transport of deformation observed in cover structure. 
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1. Introduction 

The geological complexity of Africo-European conver- 
gence controlled the variability of deformation mode in 
the intracratonic chains of Tunisia. [1] demonstrate that 
the velocity of convergence of Africo-European plaques 
is between 3 and 8 millimeters for year in the longitude 
of Sicily. 

According to [2], the obliquity convergence between 
African and European plate is compensated of 200 to 300 
kilometers of African lithosphere under Ibero-European 
stroke. Consequently the Africo-European convergence 
immersed in the Magrebide chains and exactly in most 
important faults [1]. 

Many works focus on the study of the largest faults in 
North African craton proposes some model to interpret 
the deformation mode of structures in the limits of south 
atlassic front [3-7]. In this study the model of strain par- 
titioning is the mechanism of genesis of major folds, this 
model is controlled by the properties of rocks, the tec- 
tonic inheritance and the role of preexistent faults. 
Therefore another parameter which is essential in the 
model of partitioning is the coefficient of friction along 
the fault [8-11], and the presence of decollement level 
can support the model of strain partitioning because it  

makes it possible to connect the thrusting and the strike 
slip faults. [12,13] shows that the faults meet starting 
from this decollement level. 

The locality of Gafsa basin in the active tectonics con-
text is responsible to genesis of folds in different direc-
tion limited by the major direction of faults (N120 to 
N140). The geometry of folds in Gafsa basin is con- 
trolled by the combination of thrust and strike-slip faults 
and the obliquity shortening axis to NW-SE major faults 
(Figure 1). 

This object is studied by the example of Gafsa basin 
particularly the locality of J. Ben Younes, J. Attig, J. Bou 
Ramli, J. Es Stah and J. Orbat (Figure 2). It is an exter-
nal zone affected by the oriental continuity of front south 
atlassic of NW-SE direction in this zone. 

Many models are proposed to interpret the geometry 
of folds in the limits of southern atlassic front, but the 
most important problem is the implication of the base-
ment in deformation. This study is focus on treatment of 
surface data with different parameters in order to corre-
late the kinematics of subsurface context. 

2. Tectonics Events 

The Tunisia is situated in the north east part of the Afri-
can plate; this later is surrounded by 90% of Oceanic 
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Figure 1. (a) Tectonic pattern of the western Mediterranean shows the major thrust front in the two part of alpine chains 
(European and African) [14]; (b) Location map of southern central Tunisia presented outcropped majority of cretaceous 
series affected by the major directional faults. 
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Figure 2. Map of localization of majors accidents which assign Gafsa basin of E-W to NW-SE. 
 
dorsal that undergoes the most consequences of Cenozoic 
convergence of Afrique and European plaques [15]. Con- 
sequently the Tunisian area evokes many tectonics phases. 

According to [16,17], the Magrebide platform is af- 
fected by syntectonics filling of graben and half-graben 
during upper Trias and lower Lias. Through the middle 
Lias a carbonated platform established, finally a Ceno-
mano-Turronian transgression covers the all system. 

In the Atlassic domain Tunisian an extensive phase is 
related to the Tethys opening according to NW-SE and 
E-W fault activity expressed by depression of Jeffara 
bloc [15,18] demonstrate that the Africo-European move- 
ment during middle Jurassic and lower Cretaceous cor- 
responding to sinistral lateral displacement. During Cre-
taceous an extensive mechanism of NE-SW to ENE- 
WSW trends is consequence of derives of African Plaque. 
This extension occurs in same time of drives of Apulian 
bloc that detached from African plaque during Créta-
ceous [19]. At the end of Cretaceous period the African 
and European plaques launch its convergence with slow 
velocity (less than 10 centimeters/year) [20]. The most 
important compressive phase is atlassic one of Tortonian 
age of NW-SE direction associated to Tethys closing and 
continues during post-villafranchian phase of N-S trends; 
these two phases are responsible to genesis of folds ac-
cording to NE-SW and E-W direction. Some authors [21] 
prove the activity of Eocene compressive phase but 

aren’t verified in studied sector. 
The south atlassic front correspond to faults corridors 

that extends from Algerian territory to oriental limits of 
Tunisian front. The Gafsa basin is a part of this domain 
delimited by NW-SE faults that controlled the tec-
tono-sedimentary evolution of chains from Cretaceous to 
Quaternary. Our study focus on segment of these faults 
particularly J. Orbat, J. J. Ben Younes, J. Es Stah, J. Attig 
and Bou Ramli. The kinematics of these faults control 
distribute of stratigraphic series from Trias Until actual. 
During Cretaceous an extensive tectonics phase is dis-
tinguished particularly of Aptian and Albian period ob-
served by normal faults and half-Graben. During this 
period the Gafsa basin shows a less sedimentary activity 
compared to north and south part what explain a less 
subsidence zone. This extensive mode is confirmed also 
during Cenomano-Turronian period verified by reduction 
of series from NW to SE of J. Ben Younes. 

During Cenozoic period Gafsa basin show an impor-
tant thickening of series particularly of Eocene age (Al-
though we notes lacuna of Eocene series in the two sides 
of Gafsa basin, north and south). 

The index of compressive phase is observed by the re-
activation of old normal fault to thrust and strike-slip 
fault. But the important question why we can notes in the 
same zone the coexistence of thrust faults and strike-slip 
one knowing that the shortening axis is oblique to front 
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of Gafsa and if the base is integrate in the deformation.  
Consequently the obliquity of shortening axis to pre-

existent fault confirms the choice of partitioning model 
during deformation proved by the coexistence of thrust 
and strike-slip faults. 

3. Relation Base and Cover 

Many studies in the North African plaque interested to 
synsedimentary tectonics activity of Triassic series (par-
ticularly in its occidental extremity) [22-24]. This activ-
ity shows the reactivation of prexisting faults and dem-
onstrate the integration maghrebide basement in the de-
formation.  

In the Gafsa basin the tectonics analysis proposed by 
[25] shows a structurale discontinuity in the surface con-
trolled by basement activity. [26] considered that the 
faults corridor in Gafsa basin are controlled by the base-
ment activity and necessary there is a basement deforma-
tion and other of cover. 

In studied sector the synsedimentary faults are obseved 
particularly in te Aptian-Albian series in the south of 
Kroumet Zerga associated (core of structure) to an exten- 
sives whetestones that confirme not only the extensive 
activity manifested in Gafsa basin during Cretaceous but 
also the fractionation of post triassic cover. Particularly 
in this zone the triassic blades align according to the ori- 
entation of major faults of NW-SE direction and parallel 
to folds of J. Ben Younes, J. Attig, and J. Bou Ramli 
(Figure 3). 

In this study we supposed that Gafsa basin subjected to 
a rigorous cover fracturation post triassic. The triassic 
rising is carried out in the opened fracture during cover 
extensive. This rising is facilited by halokinematics and  

rheology of triassic series; indeed the weight of Jurassic 
and Cretaceous series cause an overload on triassic series 
of weak density. That consequence of this outcroping of 
triassic blades marking out the old normal faults. The 
basement series permeated only a passive decollement 
but the important deformation is observed in the cover 
structures. 

4. Folding and Decolment of Cover 

The strain in southern atlassic Tunisia expresses by the 
folding and decolment of sedimentary cover (Figure 4). 
The decolment uses various levels of the lithostrati-
graphic column. The major level in Gafsa basin is situ-
ated at the level of Triassic facies [4,6,26-28] . 

The geometry of the various structures connected to 
the thrusting is guided by the extrusion of triassic facies 
limited by systems of faults of NW-SE of direction 
(Figure 5). 

5. Relation between Thrusting and Strike 
Slip Faults 

The thrustings on the surface of NW-SE direction in 
Gafsa basin affect the southern flank of Ben Younes 
monocline, in east of Bou Ramli and in southern of Orbat 
anticline (Figures 6 and 7). According to our study of 
seismic reflexion, the major thrustings affect the cover 
with a high dip suggesting that they are old normal faults 
formed at the time of the opening of Néotéthys at the 
beginning of Mésozoïque and reversed in the collision 
during compressive phases. An older heritage is evoked 
and gives rise to strike slip faults associated to the major 
thrustings (Figure 8). 

 

 

Figure 3. Block diagram in Gafsa basin shows the relation between cover and basement, the role of the faults of the basement 
in the transport of strain according to a decolment level within Triassic facies. 
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Figure 4. Cross section balanced with the software “Rampe 1.3.2”. 
 

 
(a)                                     (b) 

Figure 5. Representation of Triassic facies in east of Bou Ramli monocline. 
 

The thrusting fault is a discontinuity of basement 
which disturbs the axis of shortening on the scale of the 
southern atlassic tunisa since in the basin of Gafsa, 

The transpressive strain was adapted by various struc-
tures like folds and thrusting of variable direction and a 
major fault of NW-SE direction with opposite movement 

whereas the strike slip faults as a result of rotation of axis 
of shortening. These faults are represented by the varia-
tions of facies and thicknesses 

The thrusting fault in study area is the results of reac-
tivation of preexistant fault of basement which accom-
modates the mouvement of African and European plates.  
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Figure 6. Major thrustings affect Gafsa basin in east of Bou 
Ramli monocline, in southern of Ben Younes monocline and 
in southern of Orbat anticline. 

The increase of strain is absorbed by the compressives 
structures which are oblique with axis of shortening of 
N-S direction.  

The initiation of the collision, the chains of Tunisia 
subjected to an oblique convergence between the African 
Plate and the Eurasia Plate. A tectonic and geomor-
phological analysis on the major faults of the southern 
atlassic Tunisia makes it possible to propose a kinematic 
model in which these faults contribute to the partitioning 
of the deformation. The tectonic analysis of main faults 
in southern atlassic Tunisia can proposed the kinematic 
model of strain partitioning under control of oblique 
ramp. 

6. Modeling and Discussion 

During approaching of two blocs, the deformation can be 
absorbed along the largest orogenic domain. The distri-
bution of deformation in this domain isn’t homogeny. It 
is accommodate by the orientation of different structures 
(Faults and folds). 

Related to the importance of obliquity angle of con-
vergence vector to faults trends, the deformation will be 
accommodate by partitioning producing a tranpressional 
deformation [29,30]. 

The transpressional deformation is accommodating 
also by the coexistence of strike-slip faults and thrust 
fault [31,32] It permeated also the genesis of folds in 

 

 

Figure 7. (A) Triassic facies in middle member of Zebbag formation associated with major acident of NW-SE direction; (B) 
Panoramic viewshows the major thrusting with the various of dipping; (C) Major thrusting in Zebbag formation; (D) Pres-
entation of thrusting faults in east of Bou Ramli monocline. 

Copyright © 2013 SciRes.                                                                                  IJG 



S. AMAMRIA  ET  AL. 414 

 

Figure 8. Presentation of major strike slip faults in northern of Bou Ramli monocline. 
 
echelon disposition [12-33]. 

In Gafsa basin, the massives of Ben younes, Attig and 
Bou ramli are defined by N115-130 perpendicular to 
direction of atlassic folds in central of Tunisia. This par-
ticular disposition is related to activity of corridor fault of 
NW-SE direction (N120). 

The oblique position of préexistant fault to shrortening 
axis permits the genesis of transpressional structures, 
Gafsa basin characterized by the abundance of transpres-
sional structures associated with major thrusting and 
strike slip faults, the style of deformation related with the 
direction of faults that control the genesis of folds. This 
style of deformation controls the genesis of folds and 
shows a thrusting associated to dextral and sinistral 
strike-slip faults (Figure 9). This geometry is verified by 
the model of partitioning deformation.  

7. Synthesis 

The originality of this work is the interpretation in the 
first time in North Africa a model of partitioning de- 
formation basing on surface data. This interpretation is 
related to reactivation of directional preexisting faults 
during compressive phases. 

Many parameters explain the choice of this model par-
ticularly the obliquity direction of shortening axis and 
convergence of field stress during compressive phase. In 
ground this kinematics is proven by the coexistence of 
strike-slip and trust faults. 

The main problem is the evolution of shortening axis 
during compressive phase; indeed the study of actual 

disposition of folds (NW-SE). The direction of stress 
field is change while approaching to old fault. It is im-
portant to signal that the basement faults is not integrate 
in the deformation but it is the principal conduct on the 
deviation of stress field. The role of basement structures 
is a simple displacement of deformation according to 
decollement level in Triassic series. The maximum of 
deformation is observed in the forelimb in the cover 
structures limited by the front of Gafsa. The elevated 
deformation is observed by the geometries of folds (acute 
hinge and successful anticline and lacuna of syncline) 
and the outcropped of Triassic series in the limits of 
south atlassic front in Gafsa basin.  

The examination of the slickensides of faults in the 
study area shows different generations of striate which 
shows thrusting associated a strike slip faults. The coex-
istence of these two types of the faults confirms the 
model of strain partitioning; particularly the thrusting is 
the principal accidents of deformation in Gafsa basin. 
Against the other studies shows that thrust is the results 
of transpressive activity of Gafsa strike slip faults. 

Many model proposed have to explain the transpres- 
sional tectonics between African and European plaques, 
these models require several mechanisms according to 
variable scale. In intracratonic chains of Gafsa basin, 
basing on kinematics of faults (coexistence of thrust and 
strike-slip faults) and the obliquity angle between short- 
ening axis and directional faults, we confirms the appli- 
cation of partitioning deformation responsible to genesis 
of folds. This model is verified in cover structures with-
out integration of basement structures in deformation   
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Figure 9. Cross section in east of Bou Ramli monocline shows the relation between major thrusting (FBR2, FBR˚) and the 
strike slip faults. 
 
associated to decollement level in the top of Triassic se- 
ries. 
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