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ABSTRACT 

The isostatic gravity anomalies have been traditionally used to solve the inverse problems of isostasy. Since gravity 
measurements are nowadays carried out together with GPS positioning, the utilization of gravity disturbances in various 
regional gravimetric applications becomes possible. In global studies, the gravity disturbances can be computed using 
global geopotential models which are currently available to a relatively high accuracy and resolution. In this study we 
facilitate the definition of the isostatic gravity disturbances in the Vening-Meinesz Moritz inverse problem of isostasy 
for finding the Moho depths. We further utilize uniform mathematical formalism in the gravimetric forward modelling 
based on methods for a spherical harmonic analysis and synthesis of gravity field. We then apply both mathematical 
procedures to determine globally the Moho depths using the isostatic gravity disturbances. The results of gravimetric 
inversion are finally compared with the global crustal seismic model CRUST2.0; the RMS fit of the gravimetric Moho 
model with CRUST2.0 is 5.3 km. This is considerably better than the RMS fit of 7.0 km obtained after using the 
isostatic gravity anomalies. 
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1. Introduction 

The functional models of solving the inverse problem of 
isostasy have been traditionally formulated by means of 
the isostatic gravity anomalies (cf. Heiskanen and Moritz 
[1], p. 133). According to these definitions the topog-
raphic mass surplus and the ocean mass deficiency are 
compensated either by a variable crustal thickness or 
density. The isostatic equilibrium is described in terms of 
the isostatic gravity anomalies which should theoretically 
be equal zero, provided that the refined Bouguer gravity 
anomalies are isostatically fully rebalanced by the corre-
sponding gravitational attraction of compensating masses. 
The Pratt-Hayford isostatic model is based on adopting a 
constant depth of compensation while considering a 
variable density contrast (Pratt [2], Hayford [3], Hayford 
and Bowie [4]). In the Airy-Heiskanen isostatic model a 
constant density contrast is assumed while a depth of 
compensation is variable (Airy [5], Heiskanen and Ven-
ing Meinesz [6]). Both these classical isostatic models are 
based on a local compensation scheme. Vening-Meinesz 
[7] modified the Airy-Heiskanen theory of isostasy with 
applying the regional instead of local compensation. 
Moritz [8] utilized the Vening-Meinesz inverse problem 
of isostasy for finding the Moho depths. Sjöberg [9] fur- 

ther generalized this concept for finding the Moho depths 
and density contrast. Sjöberg and Bagherbandi [10] 
computed the Moho depths based on solving Moritz’s 
generalization of the Vening-Meinesz inverse problem of 
isostasy (VMM isostatic model). Bagherbandi and Sjö- 
berg [11] demonstrated that the VMM Moho depths bet-
ter agree with the Moho data taken from the global 
crustal seismic model CRUST2.0 (Bassin et al. [12]) 
than those obtained based on solving the Airy-Heiskanen 
isostatic model. 

The results of regional and global studies have shown 
often existing significant disagreement between the isos-
tatic and seismic Moho depths. Several different reasons 
explaining this misfit were proposed and also confirmed 
by numerical experiments. Kaban et al. [13], for instance, 
demonstrated that the isostatic compensation does not 
take place only within the Earth’s crust but essentially  
also within the lithospheric mantle. This finding was later 
confirmed by Kaban et al. [14] and Tenzer et al. [15,16]. 
Several authors argued that the isostatic balance is also 
partially affected by the changing rigidity, glacial iso- 
static adjustment, plate motion, ocean lithosphere cooling, 
and other geophysical processes. Moreover, large portion 
of the isostatic mass balance is attributed to variable li-  
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thospheric density structures which are usually not taken 
into consideration in computing the isostatic gravity 
anomalies. Therefore, the models for gravimetric recov-
ery of the Moho parameters should incorporate all known 
information on subsurface density structures. One exam-
ple can be given in Greenland and Antarctica where the 
application of the ice density contrast stripping correction 
to gravity data is essential for a realistic interpretation of 
gravimetric results. Another significant gravitational con- 
tribution to be modelled and subsequently subtracted 
from gravity data is due to large sedimentary basins. 
Braitenberg et al. [17] and Wienecke et al. [18] demon-
strated that the misfit of the isostatic assumption of the 
Moho interface to the long-wavelength part of gravity 
field is explained by large sedimentary basins and rigid-
ity variations of the crustal plate. 

The gravity anomalies have been primarily used in re-
gional and global studies investigating the Earth’s inner 
structures. Vajda et al. [19], however, argued that the 
definition of gravity disturbances in the context of these 
studies is theoretically more appropriate. Moreover, 
modern gravity observation techniques (such as air-born 
gravimetry) nowadays incorporate the GPS positioning 
systems. Therefore, it is expected that the gravity distur-
bances will become the most often used gravity data type 
in all gravimetric applications. This is due to the fact that 
GPS observations provide the geodetic heights above the 
reference ellipsoid surface, while the definition of gravity 
anomalies requires topographic heights with respect to 
sea level. Tenzer et al. [20-22] utilized the definition of 
gravity disturbances in the forward modeling of gravita-
tional field generated by major known crustal density 
structures. Following this concept, here we define the 
VMM inverse problem of isostasy by means of the 
isostatic gravity disturbances.  

2. Refined Gravity Disturbances 

To solve the gravimetric problem of isostasy for finding 
the Moho parameters, the gravitational contributions of 
all known density contrasts within the Earth’s crust 
should be modeled and subsequently removed from grav- 
ity data. Moreover, the inhomogeneous density structures 
within the mantle lithosphere and sub-lithosphere mantle 
should be taken into consideration provided that reliable 
data of global mantle density structures are available. 
The resulting gravity data which have a maximum corre- 
lation with the Moho geometry are theoretically the most 
appropriate for the gravimetric recovery of the Moho 
parameters. Tenzer et al. [23] used the global gravity and 
crustal density structure models to investigate the global 
correlation of various gravity field quantities with the 
Moho geometry. They demonstrated that a maximum 
correlation is attained when using the gravity distur-

bances which are corrected for the gravitational contribu-
tions of topography and density contrasts of ocean, ice 
and sediments. They also showed that the application of 
the stripping gravity correction due to the anomalous 
density structures within the consolidated (crystalline) 
crust slightly decreased the correlation with the Moho 
geometry. The possible reason is more likely due to large 
inaccuracies within the CRUST2.0 consolidated crustal 
data. 

csgThe gravity disturbances   which have theoreti-
cally a maximum correlation with the Moho geometry 
(for a chosen lithosphere density model) are obtained 
from the gravity disturbances g  after subtracting the 
gravitational effect of topographic masses. Furthermore, 
the gravitational contributions of density differences be-
tween the known and synthetic model of lithosphere are 
modeled and subsequently removed from the topogra-
phy-corrected gravity disturbances. This is done by 
means of applying the stripping gravity corrections. The 
computation of the gravity disturbances and gravity cor-
rections is done here in spectral domain using methods 
for a spherical harmonic analysis and synthesis of gravity 
field. 

 ,rg  at a point The gravity disturbance   is 
computed using the following expression [1] 
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where  m3/s2 is the geocentric 
gravitational constant,  m is the Earth’s 
mean radius, ,n mY  are the surface spherical harmonic 
functions of degree  and order , ,n m  are the nu-
merical coefficients which describe the disturbing poten-
tial , and n

T

 ,r  r
 ,

 is the maximum degree of spherical 
harmonics. The coefficients ,n m  are obtained from the 
global geopotential model (GGM) coefficients after sub-
tracting the spherical harmonic coefficients describing 
the normal gravity field. The 3-D position is defined in 
the system of spherical coordinates ; where  is 
the spherical radius, and     denotes the spheri-
cal direction with the spherical latitude   and longitude 
 . 

Tenzer et al. [22] developed and applied the uniform 
mathematical formalism of computing the topographic 
and density contrasts stripping gravity corrections. It 
utilizes the expression for computing the gravitational 
attraction g  (defined approximately as a negative radial 
derivative of the respective potential ; i.e.,  V
g V r   ) generated by an arbitrary volumetric mass 
layer with a variable depth and thickness while having a 
laterally distributed vertical density variation. According 
to their approach, the gravity corrections at a point 
 ,r   are computed using the following expression 
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The potential coefficients  in Equation (2) read 
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The terms  and  define  

the spherical lower- and upper-bound laterally distributed 
radial density variation functions L  and  of de-

gree . These spherical functions and their higher-order 

terms  1 1L , U : 0,1, ; 1,2, ,k i k i
n n k i I        are 

computed using the following expressions 
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The infinitesimal surface element on the unit sphere is 
denoted as       

 
. The full spatial angle is 
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a specific volumetric layer, the mass density   is either 

constant  , laterally-varying  or—in the most 
general case—approximated by the laterally distributed 
radial density variation model using the following poly-
nomial function (for each lateral column) 
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where U  is the nominal value of the lateral 
density stipulated at the depth U  of the upper bound 
of the volumetric mass layer. This density distribution 
model describes the radial density variation within the 
volumetric mass layer at a location . Alternatively, 
when modeling the gravitational field of the anomalous 
mass density structures, the density contrast 



  of the 
volumetric mass layer relative to the reference crustal 
density c  is defined as 
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where U  is the nominal value of the lateral 
density contrast stipulated at the depth  of the upper 
bound of the volumetric mass layer. 

The coefficients ,n m  and ,Un m  combine the infor-
mation on the geometry and density (or density contrast) 

distribution of volumetric layer. These coefficients are 
generated to a certain degree of spherical harmonics us-
ing the discrete data of the spatial density distribution 
(i.e., typically provided by means of density, depth and 
thickness data) of a particular structural component of 
the Earth’s interior. 

3. Vening Meinesz-Moritz Isostatic Model 

Here we adopt the principle of solving Moritz’s gener-
alization of the Vening-Meinesz inverse problem of isos-
tasy based on generating the isostatic gravity distur-
bances which equal zero. The formulation of the problem 
is done under the assumption of varying Moho depths T 
while adopting a constant value of the Moho density 
contrast     c; where m  and    denote 
the constant density values of the Earth’s crust and the 
encompassing upper(most) mantle respectively (cf. Ven-
ing Meinesz [7]). The isostatic gravity disturbance ig  
at a position  ,r   is then defined as follows 
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   , ,i csg r g r    
cs

 , 0cg r   ,     (10) 

where g  is the refined gravity disturbance (defined 
in Section 2), and cg  is the gravitational attraction of 
isostatic compensation masses (e.g., Moritz [8]).  

Sjöberg [9] derived the VMM inverse problem of 
isostasy in the following generic form 
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where  m3·kg–1·s–2 is Newton’s gravi-
tational constant. The integral kernel K in Equation (11) 
is a function of parameters 
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where n  is the Legendre polynomial of degree . The 
isostatic gravity disturbance functional f  on the right- 
hand side of Equation (11) is introduced as follows   
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.          (13) 

The expression given in Equation (11) is a non-linear 
Fredholm integral equation of the first kind. A direct 
solution for finding the Moho depths  was given by 
Sjöberg [9] which is a second-order approximation. It 
reads 
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The term 1  is computed in spectral domain using the 
following expression 
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The numerical coefficients ,n mf  of the isostatic grav-
ity disturbance functional f  are defined as 
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where ,n mg
cs

 are the spherical harmonics of the refined 
gravity disturbance g . The nominal compensation 
attraction (of zero-degree) 0

cg

/
0 04πGc c m

 stipulated at the sphere of 
radius  is given by (cf. Sjöberg [9]) R

g T

T

0.00637  ,            (17) 

where 0  is the adopted nominal mean value of the 
Moho depths.  

4. Input Data Acquisition 

The expressions for the gravimetric forward modeling 
were utilized to compute the topographic and stripping 
gravity corrections due to ocean, ice and sediment den-
sity contrasts. These corrections were then applied to the 
gravity disturbances in order to obtain the refined gravity 
disturbances which were used for solving the VMM in-
verse problem of isostasy. All computations were real-
ized globally on a 1 × 1 arc-deg geographical grid of the 
surface points.  

The gravity disturbances were generated using the 
EGM08 coefficients (Pavlis et al. [24]) with a spectral 
resolution complete to degree 180 of spherical harmonics 
(which corresponds to a half-wavelength of 1 arc-deg or 
about 100 km). The spherical harmonic terms of the 
normal gravitational field were computed according to 
the parameters of GRS-80 (Moritz [25]). The same spec-
tral resolution was used to compute the topographic and 
bathymetric (ocean density contrast) stripping gravity 
corrections. These two gravity corrections were com-
puted from the DTM2006.0 coefficients (Pavlis et al. 
[26]). The global topographic/bathymetric model DTM- 
2006.0 was released together with EGM2008 by the US 
National Geospatial-Intelligence Agency EGM devel-
opment team. The average density of the upper conti-
nental crust 2670 kg/m3 (cf. Hinze [27]) was adopted for 
defining the topographic and reference crustal densities. 
The bathymetric stripping gravity correction was com-
puted using the depth-dependent seawater density model 
(see Tenzer et al. [28]). This empirical ocean density 
model was developed by Gladkikh and Tenzer [29] based 
on the analysis of oceanographic data of the World 
Ocean Atlas 2009 (WOA09) and the World Ocean Cir- 
culation Experiment 2004 (WOCE04). WOA09 oceano- 
graphic products are made available by NOAA’s Na- 
tional Oceanographic Data Center (Johnson et al. [30]). 
The WOCE04 datasets are provided by the German Fed-
eral Maritime and Hydrographic Agency (Gouretski and 
Koltermann [31]). Tenzer et al. [32] acquired, based on 
the comparison of the experimental and theoretical sea-
water density values, that this empirical model approxi-
mates the actual seawater density distribution with the 
maximum relative error better than 0.6%, while the cor-
responding average error is about 0.1%. For the adopted 
value of the reference crustal density 2670 kg/m3 and 
surface seawater density 1027.91 kg/m3 (cf. Gladkikh and 
Tenzer [29]) the nominal ocean density contrast (at zero 
depth) equals 1642.09 kg/m3. The parameters of the 
depth-dependent ocean density term in Equation (9) are: 

  kg/m3, 1 0.7595a   m–1, and 

2
64.3984 10a     m–2 (cf. Tenzer et al. [28]). The 5 × 

5 arc-min continental ice-thickness data derived from 
Kort and Matrikelstyrelsen ice-thickness data for Green- 
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land (Ekholm [33]) and from the updated ice-thickness 
data for Antarctica assembled by the BEDMAP project 
were used to generate the coefficients of the global 
ice-thickness model. These coefficients combined with 
the DTM2006.0 topographic coefficients were then used 
to compute the ice density contrast stripping gravity cor-
rection with a spectral resolution up to degree/order 180. 
For the adopted values of the reference crustal density 
2670 kg/m3 and the density of glacial ice 917 kg/m3 (cf. 
Cutnell and Kenneth [34]) the ice density contrast equals 
1753 kg/m3. The 2 × 2 arc-deg CRUST2.0 data of the 
soft and hard sediment thickness and density were used 
to generate the coefficients of global sediment model 
with a spectral resolution complete to degree/order 90. 
This spectral resolution is compatible with a 2 × 2 
arc-deg spatial resolution of CRUST2.0. The sediment 

density contrast was taken relative to the reference crus-
tal density of 2670 kg/m3. 

The gravity disturbances computed on a 1 × 1 arc-deg 
surface grid are shown in Figure 1. They vary globally 
between −303 and 293 mGal, with a mean of −1 mGal 
and a standard deviation is 29 mGal. The topographic 
correction is shown in Figure 2. It varies globally within 
−696 and 9 mGal, with a mean of −70 mGal and a stan-
dard deviation is 102 mGal. The values of the bathymet-
ric stripping gravity correction are shown in Figure 3. 
This correction is everywhere positive and varies within 
119 and 750 mGal, with a mean of 333 mGal and a stan-
dard deviation is 165 mGal. The ice density contrast 
stripping gravity correction is shown in Figure 4. It var-
ies within –3 and 175 mGal, with a mean of 11 mGal and 
a standard deviation is 29 mGal. The sediment density  

 

 

Figure 1. The gravity disturbances computed globally on a 1 × 1 arc-deg surface grid using the EGM08 coefficients complete 
to degree 180 of spherical harmonics. Values are in mGal. 
 

 

Figure 2. The topographic gravity correction computed globally on a 1 × 1 arc-deg surface grid using the DTM2006.0 
coefficients complete to degree/order 180. Values are in mGal. 
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Figure 3. The bathymetric stripping gravity correction computed globally on a 1 × 1 arc-deg surface grid using the 
DTM2006.0 coefficients complete to degree/order 180. Values are in mGal. 
 

 

Figure 4. The ice density contrast stripping gravity correction computed globally on a 1 × 1 arc-deg surface grid using the 
DTM2006.0 topographic and ice-thickness coefficients complete to degree/order 180. Values are in mGal. 
 
contrast stripping gravity correction was computed indi-
vidually for the CRUST2.0 soft and hard sediments. The 
results are shown in Figures 5(a) and (b). The soft sedi-
ment stripping gravity correction globally varies within 7 
and 144 mGal, with a mean of 33 mGal and a standard 
deviation is 21 mGal. The corresponding correction due 
to the hard sediment density contrast is within –7 and 89 
mGal, with a mean of 11 mGal and a standard deviation 
is 13 mGal. The complete sediment density contrast 
stripping gravity correction is everywhere positive and 
varies within 14 and 125 mGal, with a mean of 35 mGal 
and a standard deviation is 20 mGal. 

The refined gravity disturbances obtained after apply- 
ing the topographic and stripping gravity corrections due 
to the ocean, ice and sediment density contrasts are 
shown in Figure 6. These refined gravity data globally 
vary between −498 and 760 mGal, with a mean of 320 
mGal and a standard deviation is 196 mGal. Whereas the 

gravity disturbances globally vary mostly within ±300 
mGal, the application of topographic and stripping grav- 
ity corrections changed the gravity field significantly. 
The range of refined gravity disturbances (of 1258 mGal) 
is more than twice as large as the range of uncorrected 
gravity disturbances (of 596 mGal). The largest gravity 
changes over continents are due to applying the topog- 
raphic gravity correction especially in mountainous re- 
gions. The application of the bathymetric striping gravity 
correction changed substantially the gravity field over 
oceans. The ice density contrast stripping gravity correc- 
tion changed the gravity field in central Greenland and 
Antarctica. Less substantial changes in gravity field were 
found after applying the sediment density contrast strip- 
ping gravity correction. The maxima of these changes are 
along the continental margins and in polar areas with the 
largest sediment deposits. The global gravity field ob- 
tained after step-wise application of these corrections     
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(a) 

 
(b) 

Figure 5. The soft (a) and hard (b) sediments density contrast stripping gravity corrections computed globally on a 1 × 1 
arc-deg surface grid using the coefficients of global sediment model complete to degree/order of 90 generated from the 
CRUST2.0 density and thickness data of soft and hard sediments. Values are in mGal. 
 

 

Figure 6. The refined gravity disturbances obtained after applying the topographic and stripping gravity corrections due to 
the ocean, ice and sediment density contrasts. The gravity data were computed on a 1 × 1 arc-deg grid of surface points. 
Values are in mGal. 
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were shown in Tenzer et al. [35,36]. 

5. Isostatic Moho Recovery 

The refined gravity data (which have a maximum corre- 
lation with the Moho geometry) shown in Figure 6 were 
further utilized in definition of the isostatic gravity dis- 
turbances (in Equation (10)). The gravitational contribu- 
tion of crustal compensation masses was computed ap- 
proximately using the expression in Equation (17) for the 
nominal compensation attraction. The isostatic gravity 
disturbances were then used to determinate the Moho 
depths on a 1 × 1 arc-deg global grid. The computation 
was carried out based on solving the VMM inverse 
problem of isostasy (see Section 3). The result is shown 
in Figure 7. The Moho depths globally vary between 2.1 
and 61.5 km, with a mean of 22.9 km and a standard de- 
viation is 12.1 km. 

The Moho depths computed and presented in Section 5 
were compared with CRUST2.0 seismic data. The dif- 
ferences between the VMM and CRUST2.0 Moho depths 
are within –25.8 and 26.4 km, the mean and RMS of 
these differences are 0.1 and 5.3 km respectively. We 
further repeated the whole computation using the isostat-
ic gravity anomalies. The comparison of this result, not 
shown herein, with CRUST2.0 Moho depths showed that 
the mean and RMS of differences between them are –3.4 
and 7.0 km respectively. The range of differences is 
within –26.6 and 28.0 km. The result based on using the 
isostatic gravity disturbances thus better agrees with the 
CRUST2.0 Moho depths by means of the RMS fit. A 
significant improvement was also achieved by minimiz- 
ing the systematic bias between these solutions.  

As seen from these results, relatively small differences 
between the gravity disturbances and gravity anomalies 

correspond to relatively large differences between the 
Moho results obtained based on using these two gravity 
data types. The differences between the EGM08 gravity 
disturbances and gravity anomalies computed with a 
spectral resolution complete to degree 180 of spherical 
harmonics are shown in Figure 8. These differences are 
within –33 and 26 mGal, the mean and RMS of these 
differences are –0.2 mGal and 9 mGal respectively. The 
corresponding differences between the Moho depths 
computed using these two gravity data types are shown 
in Figure 9. These differences are within –1.5 and 9.3 
km, the mean and RMS of these differences are 2.3 km 
and 3.3 km respectively. 

6. Discussion 

The refined gravity disturbances used as the input gravity 
data for finding the Moho depths should (optimally) 
comprise only the gravitational signal of the Moho ge- 
ometry. The global (absolute) correlation between these 
refined gravity data and the Moho geometry was con- 
firmed to be 0.98. The currently available global models 
of the Earth’s gravity field, topography, ice and bathym- 
etry have a relatively high resolution and accuracy. The 
computation of the gravity data which are corrected for 
the gravitational contributions of these density compo- 
nents can thus be done with a sufficient accuracy. Large 
inaccuracies are, however, to be expected due to uncer- 
tainties of the currently available global crustal models. 
The current datasets of the spatial density distribution of 
sediment and consolidated (crystalline) crust have a low 
accuracy as well as resolution. As consequence, the 
computation of respective gravity corrections and cor- 
rected gravity data is still restricted. Tenzer et al. [16] 
estimated that the relative errors can reach as much as 

 

 

Figure 7. The Moho depths determined based on solving the VMM inverse problem of isostasy using the gravity disturbances 
corrected for the gravitational contributions of topography and density contrasts due to ocean, ice and sediments. Values are 
in km. 
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Figure 8. The differences between the gravity disturbances and gravity anomalies computed from the EGM08 coefficients 
compete to degree 180 of spherical harmonics. Values are in mGal. 
 

 

Figure 9. The Moho depth differences computed using the isostatic gravity disturbances and corresponding gravity anomalies. 
Values are in m. 
 
10% in the refined gravity data. Moreover, the gravita-
tional signals of the mantle lithosphere and sub-litho- 
spheric structure (including the core-mantle geometry) 
are still presented in these refined gravity data. In the 
absence of reliable global models of mantle structures 
these gravitational contributions might be treated in the 
spectral domain by subtracting a long-wavelength part of 
gravity spectra (to a certain degree of spherical harmon-
ics). This can be done while assuming that the subtracted 
long-wavelength gravity contribution is attributed mainly 
to the mantle structure and the core-mantle boundary. 
However, the current knowledge about the spatial mantle 
density structure is restricted by the lack of reliable glob-
al data. A possible way how to estimate the maximum 
degree of long-wavelength spherical harmonics which 
should be removed from the refined gravity field was 
given by Eckhardt [37]. The principle of this procedure is 
based on finding the representative depth of gravity sig-
nal attributed to each spherical harmonic degree term. 

The spherical harmonics which have the depth below a 
certain limit (chosen, for instance, as the maximum Mo-
ho depth) are then removed from the gravity field. Non-
etheless, the complete subtraction of the mantle gravity 
signal using this procedure is still questionable due to the 
fact that there is hardly any unique spectral distinction 
between the long-wavelength gravity signal from the 
mantle and the expected higher-frequency signal of the 
Moho geometry. Tenzer et al. [16] demonstrated the 
presence of significant correlation (>0.6) between the 
mantle gravity signal and the Moho geometry at the me-
dium gravity spectrum (between 60 and 90 of spherical 
harmonics degree terms). On the other hand, the gravity 
signal of the core-mantle boundary and deep mantle 
structures could almost completely be subtracted from 
the refined gravity data as it is mainly attributed to the 
long-wavelength part of gravity spectra. 

As seen from the functional model in Section 3, the 
errors in computed gravity data propagate proportionally 
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to the Moho depth errors. The expected relative uncer-
tainties in gravity data thus cause the errors of about 10% 
in the estimated Moho depths. Čadek and Martinec [38] 
estimated the uncertainties of Moho depths in their glob-
al crust thickness model to be about 20% (5 km) for the 
oceanic crust and of about 10% (3 km) for the continen-
tal crust. The results of more recent seismic and gravity 
studies, however, revealed that these error estimates are 
too optimistic. Grad et al. [39] demonstrated that the 
Moho uncertainties (estimated based on processing the 
seismic data) under the Europe regionally exceed 10 km 
with the average error of more than 4 km. Much large 
Moho uncertainties are obviously expected over large 
parts of the world where seismic data are absent or insuf-
ficient. A significant contribution to these Moho uncer-
tainties is expected to be explained by several geophysi-
cal phenomena which are not accounted for in the isos-
tatic functional model. Since the geophysical processes 
which contribute to isostatic imbalance have a different 
regional character, the global model which accounts for 
all these contributions (such as the glacial isostatic ad-
justment or oceanic lithosphere cooling) is difficult to 
establish and solve numerically. A possible method how 
to overcome to some extent these practical limitations 
was proposed and applied by Bagherbandi and Sjöberg 
[40]. They combine the gravity and seismic data in order 
to model and subsequently account for the differences 
between the isostatic and seismic Moho models. The 
application of this method is out of the scope of this 
study. 

7. Summary and Conclusions 

We have redefined the Vening-Meinesz Moritz inverse 
problem of isostasy for the isostatic gravity disturbances 
while adopting the double layer model for defining the 
Moho density interface. The definition of the isostatic 
gravity disturbances was based on the refined gravity 
disturbances which have a maximum correlation with the 
Moho geometry. With reference to results of the correla-
tion analysis by Tenzer et al. [23], the gravity distur-
bances corrected for the gravitational contributions of 
topography and density contrasts due to ocean, ice and 
sediments hold this condition. The application of the ad-
ditional stripping gravity correction accounting for ano-
malous density structures within the crystalline crust was 
not taken into consideration as the currently available 
global data of this crustal component are still unreliable. 
Moreover, the mantle density structures were not mod-
eled too due to the same reason. The methods for a 
spherical harmonic analysis and synthesis were used for 
computing the refined gravity disturbances. A spectral 
representation was also used in definition of the observa-
tion equation for solving the VMM model. The devel-
oped computational schemes were then applied to com-

pute the isostatic gravity disturbances and to determine 
the Moho depths. The numerical experiment was carried 
out globally on a 1 × 1 arc-deg grid. The results were 
validated using the CRUST2.0 Moho depths. 

The global map in Figure 6 revealed the signature of 
gravity signal of which pattern corresponds with a spatial 
geometry of the Moho interface. The negative gravity 
values are prevailing over continents, while oceanic areas 
are dominated by the positive gravity values. The gravity 
minima agree with locations of the maximum continental 
crustal thickness under Himalayas, Tibet Plateau and 
Andes. The corresponding gravity maxima are seen es-
pecially in central Pacific Ocean. The contrast between 
the oceanic and continental lithospheric plate boundaries 
is marked along continental margins by the absolute 
gravity minima. The signature of the mantle lithosphere 
structures is also presented especially along the mid- 
oceanic ridges. 

The Moho depths computed using the isostatic gravity 
disturbances based on solving the VMM model have a 
better agreement with the CRUST2.0 seismic model than 
those computed using the isostatic gravity anomalies. 
The RMS fit of the VMM Moho depths with CRUST2.0 
for the isostatic gravity disturbances was found to be 5.3 
km. This RMS fit is about 24% better than the corre- 
sponding RMS fit of 7.0 km obtained when using the 
isostatic gravity anomalies. The facilitation of the isos- 
tatic gravity disturbances in the VMM model improved 
significantly the systematic bias otherwise found when 
using the isostatic gravity anomalies. The mean of dif- 
ferences between the VMM and CRUST2.0 Moho depths 
obtained after using the isostatic gravity disturbances and 
gravity anomalies was found to be 0.1 and –3.4 km re- 
spectively. The systematic bias was thus almost com- 
pletely eliminated. This numerical improvement is quite 
remarkable as the differences between the gravity ano- 
malies and disturbances are globally mostly within 30 
mGal. A possible explanation for such improvement 
might be due to the fact that the differences between 
these two gravity data types have a long-wavelength 
character. The respective changes in Moho results are 
thus more substantial than those attributed to the changes 
at a high-frequency part of gravity spectra. 
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