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Abstract 
The performance of multi-channel Compressive Sensing (CS)-based Direc-
tion-of-Arrival (DOA) estimation algorithm degrades when the gains between 
Radio Frequency (RF) channels are inconsistent, and when target angle in-
formation mismatches with system sensing model. To solve these problems, a 
novel single-channel CS-based DOA estimation algorithm via sensing model 
optimization is proposed. Firstly, a DOA sparse sensing model using sin-
gle-channel array considering the sensing model mismatch is established. Se-
condly, a new single-channel CS-based DOA estimation algorithm is pre-
sented. The basic idea behind the proposed algorithm is to iteratively solve 
two CS optimizations with respect to target angle information vector and 
sensing model quantization error vector, respectively. In addition, it avoids 
the loss of DOA estimation performance caused by the inconsistent gain be-
tween RF channels. Finally, simulation results are presented to verify the effi-
cacy of the proposed algorithm. 
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1. Introduction 

Compressive Sensing (CS) theory, deduced from signal processing and informa-
tion theories [1] [2] [3], has been widely applied in radar, image processing, 
wireless communication and many other engineering fields [4] [5] [6] [7] [8]. 
The CS theory indicates that the solution of a norm optimization problem can 
rebuild a sparse signal with comparatively high accuracy by adopting finite 
nonadaptive random projected measure value [9]. 

The strong scatter centers of target in interested area only occupy finite angle 
resolution cells and the target is sparse in space-domain, so that CS theory has 
been widely applied in Direction-of-Arrival (DOA) estimation [10]-[19]. A ma-
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jor advantage of CS-based algorithms over conventional super-resolution algo-
rithms [10] is that the CS-based algorithm can offer higher resolution with re-
duced antenna elements and Radio Frequency (RF) channels. For example, [11] 
presents a CS-based DOA estimation method, which reduces the sampling 
number by making use of the sparsity of radar echo signals to perform compres-
sive sampling in time-domain. [12] adopts an array element randomly distri-
buted antenna to perform compressive sampling in space domain to reduce the 
number of RF channels of the system. However, these two algorithms treat the 
over-complete based matrices as the redundant dictionaries, obtained from the 
angle interval of uniform quantization interested area, which cannot ensure that 
the corresponding sensing matrix meets the Restricted Isometry Property (RIP) 
condition [13]. [14] uses random Gauss matrix to perform compressive sam-
pling in space-domain and adopts Regularized Multi-vectors Focal Undeter-
mined System Solver (RMFOCUSS) algorithm to achieve high-resolution DOA 
estimation. However, the algorithm has computational complexity increasing 
dramatically with the increasing of snapshots, while at the same time is unsuita-
ble for low signal-to-noise ratio (SNR) situations. Furthermore, the authors in 
[15] investigate the CS-based DOA estimation in the presence of sensing model 
mismatching errors, proving that the performance of CS-based DOA estimation 
algorithm degrades dramatically in the presence of sensing model mismatching. 
[16] [17] [18] present a DOA estimation model under sensing model mismatch-
ing, and then use Bayesian method to realize DOA estimation. [19] proposes a 
joint Least-Absolute Shrinkage and Selection Operator (LASSO) algorithm to 
achieve DOA estimation in the presence of mismatching. 

In addition, all the aforementioned algorithms utilize multi-channel data so 
that the estimation performance degrades seriously in the presence of inconsis-
tent gain between RF channels of the array. 

In this paper, we derive a single-channel CS-based DOA estimation algorithm 
via sensing mode optimization to solve the above mentioned problems. Firstly, a 
DOA estimation model is set up considering mismatch error between system 
sensing model and target angle information. Secondly, a single-channel array 
system, which can avoid gain inconsistency between RF channels, is introduced. 
Meanwhile, it can be proved that the sensing matrix of the single-channel array 
system meets the RIP condition. Finally, on the basis of Robust Smooth L0 
(RSL0) algorithm [20] and LASSO algorithm [21], a new DOA estimation algo-
rithm is presented to achieve high resolution DOA estimates. 

The paper is organized as follows. Section II formulates the problem of inter-
est. Section III develops the proposed algorithm. Section IV provides the simula-
tion results that demonstrate the efficacy of the proposed algorithm. Section V 
concludes the paper. 

2. Signal Model 
2.1. Space Signal Model 

Consider K far-field narrow-band signals impinging upon a uniform linear array 
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(ULA) of L elements. The receive signal can be represented as 

( ) ( ) ( ) ( )
1

K

k k
k

t s t tθ
=

= +∑x α e                     (1) 

where ( ) ( ) T2 2 11, , ,k kj f j L f
k e eθ θπ πθ − = ⋅ ⋅ ⋅ α  is steering vector of the kth signal, 

sin
k kf dθ θ λ= , d is the distance between two adjacent elements, λ  is the 

wavelength of carrier wave, ( ) ( ) ( ) ( ) T
1 2, , , Lt e t e t e t= ⋅ ⋅ ⋅  e  is array noise vec-

tor, and ( )ks t  is waveform of the kth signal. 

For CS processing, the angle field-of-view of the interested area is sampled 
uniformly at 1 2, , , Nθ θ θ⋅ ⋅ ⋅   . Denoting 1 2, , , Nθ θ θ = ⋅ ⋅ ⋅ θ     as angle information 
vector, where nθ , 1, 2, ,n N= ⋅ ⋅ ⋅  is defined as quantization angle, N is the 
length of vector θ , and 2 1ϕ θ θ= −   is the angle resolution cell, then if target 
angle kθ  matches with one of the quantization angles, Equation (1) can be re-
written as 

( ) ( ) ( ) ( )t A t t= +x θ s e                       (2) 

where ( ) ( ) ( ) ( ) T
1 2, , , Nt s t s t s t= ⋅ ⋅ ⋅  s  is denoted as the target waveform in-

formation vector, and ( ) ( ) ( ) ( )1 2, , , Nθ θ θ = ⋅ ⋅ ⋅ A θ α α α     is the steering vector 
matrix of all sampled angles. In practical, targets in interested area only occupy 
finite angle resolution cells, so that ( )

0
t K N=s  , with 

0
 denoting 0L  

norm. Therefore, the receive signal vector ( )tx  is K sparse signal, ( )A θ  is 
the sparsity based matrix, and K is the sparsity of target angle information vec-
tor. 

2.2. DOA Estimation Model under Sensing Model Mismatching 

Obviously, since N is finite, the target angle kθ  might not match exactly with 
one of the quantization angles. This phenomenon is called mismatching between 
sensing model and target angle information. According to CS theory, sensing 
model mismatching will lead to the angle information vector failing to represent 
target angle precisely, increasing the estimation error of target angles through 
conventional CS-based DOA estimation method. 

Let [ ], 1, 2, ,
kn kn Nθ ∈ ∈ ⋅ ⋅ ⋅θ   be the quantization angle that is nearest to the 

target angle kθ . Approximating the steering vector of the kth target ( )kθa  by 
its first-order Taylor series expansion with respect to the variable kθ , about 

knθ , we have 

( ) ( ) ( ) ( )k k kk n n k nθ θ θ θ θ≈ + −a a b                  (3) 

where ( ) ( )( )d

d
k

k
k
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θ
θ

θ
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





. Expressing in matrix form, we have 

( ) ( ) ( )= +Ω θ A θ B θ Λ                             (4) 

where ( ) ( ) ( ) ( )1 2, , , Nθ θ θ = ⋅ ⋅ ⋅ B θ b b b    , ( )diag=Λ β , [ ]T1 2, , , Nβ β β= ⋅ ⋅ ⋅β  is 
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a vector representing the sensing model mismatching errors, and 

[ ], 1, 2, ,

0              otherwise
kk n k

n

n n k Kθ θ
β

 − = ∈ ⋅ ⋅ ⋅= 




               (5) 

is denoted as angular quantization error. 
Considering the quantization error, Equation (2) can be modified as 

( ) ( ) ( )( )t t tθ= +x Ω s e                         (6) 

3. Proposed Model and Algorithm 
3.1. Compressive Sensing Model Based on RF Single-Channel  

Array 

The introduced RF single-channel array is shown in Figure 1. Because the array 
has only one RF channel, it is characterized by low-power and small-size com-
pared with those RF multi-channel arrays. Moreover, the RF single-channel ar-
ray can effectively avoid gain inconsistency between RF channels along with the 
influence on subsequent signal processing caused by imbalance of amplitude and 
phase, and hence, it plays an important role in practical applications [22]. 

Unlike previously developed multi-channel CS-based algorithms, this paper 
will, for the first time, derive a single-channel CS based algorithm for DOA es-
timation. First, a 0 / π  phase shifter is connected to each array element and 
random sampling in space-domain is accomplished through randomly adjusting 
the phase of phase shifters. Second, an L-combiner is used to combine the sig-
nals from L paths through phase-shifter to one signal. Finally, the digital signal 

( )sy t  is obtained through single RF channel and A/D converter. The channel 
output signal can be expressed as 

( ) ( ) ( ) ( ) ( )sy t t t t = = + ψx ψ Ω θ s e               (7) 

where [ ]1 2, , , Lψ ψ ψ= ⋅ ⋅ ⋅ψ  denotes random weighting vector, which is gener-
ated by L sets of 0 / π  phase shifters. The value of iψ  is either +1 or −1 for 

1, 2, ,i L= ⋅ ⋅ ⋅ . 

 
Figure 1. Single-channel array system. 

L-combiner
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As the target is sparse in space, we assume that the target does not cross angle 
resolution cells within M snapshots. Then, the M snapshots measured value of 
the target can be denoted as 

( ) ( ) ( ) ( ) ( ) ( )s t t t t t = + = + y Ψ Ω θ s e Θs n         (8) 

where 
TT T T

1 2, , , M = ⋅ ⋅ ⋅ Ψ ψ ψ ψ  is M L×  weighting coefficient matrix. Since 
the element of iψ  is randomly generated, the elements of Ψ , are independent 
identically distributed Bernoulli random variables. ( )=Θ ΨΩ θ  is an M L×  
sensing matrix and ( )t=n Ψe  is noise vector. 

By observing (8), we can conclude that sampling of space-domain signals 
through single channel array can be regarded as performing random projection 
of measurement matrix Ψ  on receive signal ( )tx , thus converting the mul-
tiple measurement vectors (MMV) problem to a single measurement vector 
(SMV) problem [23]. In addition, the sensing matrix Θ  is the product of ma-
trix Ψ , whose elements are Bernoulli distributed, and sparsity based matrix 

( )Ω θ , which can be generated by discrete Fourier transform (DFT) matrix of 
space-domain signal. Therefore, Θ  meets the RIP condition with great proba-
bility, thus ensuring the effectiveness and robustness of using compressive sens-
ing reconstruction algorithm to perform DOA estimation. 

3.2. Derivation of the Proposed Algorithm 

It is found from (8) that the influences of measurement noise and sensing model 
mismatching error on DOA estimation can be summed up to two parts: “addi-
tive” disturbance and “productive” disturbance. Conventional CS-based algo-
rithms only have constraint on “additive” disturbance, but do not consider the 
influence of “productive” disturbance on the accuracy of target angle informa-
tion reconstruction. Therefore, these algorithms are not robust in the presence 
of sensing model mismatching since they cannot effectively reduce the effect of 
quantization errors. 

To overcome these problems, we present a novel CS-based DOA estimation 
algorithm using single-channel array. The insight of the proposed algorithm is to 
combine RSL0 algorithm and LASSO algorithm to achieve valid DOA estimates 
by performing alternative iterative optimization separately on target angle in-
formation vector and sensing model quantization error. The basic step of the 
proposed algorithm can be summarized as follows. The parameters to be opti-
mized are separated into two sets: target angle information set and quantization 
error set. Each time, a CS cost function that depends only on one set is mini-
mized. With the solution of this CS problem, the subsequent stages of the pro-
posed algorithm consist of applying the same principle on another set of para-
meter. The algorithm iterates, changing from one set to the next, until the varia-
tion of the cost function or of the parameters is less than a predefined conver-
gence criterion. 

To initiate the algorithm, we set the sensing model quantization error =β 0 . 
Then, according to CS theory, by solving the optimization problem expressed in 
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(8) with 0L  norm optimization, we can obtain the estimate of target waveform 
information vector ˆ( )ts . Mathematically, 

0 2
ˆ( ) arg min ( ) , subject to ( ) ( )st t t t ε= − <s s y Θs           (9) 

where constant ε  is relevant to noise variance. This optimization problem can 
be perfectly solved by RSL0 algorithm. 

Insert the estimate ( )ˆ ts  obtained from (9) into (8), we can get 

( ) ( ) ( ) ( )ˆ[ ]s t t t= +y Ψ Ω θ s e

                     (10) 

( ) ( ) ( ) ( )ˆ t t=ΨΑ θ s +ΨΒ θ Χβ + n                    (11) 

where ( )ˆ( )diag t=Χ s . Equation (11) can be transformed to 

( ) ( )t tν= +f β n                           (12) 

where ( ) ( ) ( ) ( )ˆst t t= −f y ΨA θ s , and ( )ν =ΨB θ Χ . 
From (5), we know that the sensing model quantization error vector β  

should have the same sparsity as that of target waveform information vector 
( )ts . Therefore, Equation (12) can be treated as another CS optimization prob-

lem by considering the sensing model quantization error as sparse signal. This 
CS optimization problem can be donated as 

2

2 1

1ˆ argmin ,  subject to
2

Kν ϕ= − ≤
β

β f β β          (13) 

which can be perfectly solved by LASSO algorithm. 
Finally, inserting the estimate β̂  obtained from (13) into (9), we perform the 

repetition of the above two CS optimization until the difference of two target 
waveform information vectors’ Frobenius norm is less than a certain predefined 
threshold, i.e., 

( ) ( ) ( ) ( ) ( ) ( )1

2 2
ˆ ˆ ˆp p p

t t t
+
− ≤ ∆          s s s             (14) 

where ( ) ( )1ˆ p
t

+
  s  denotes the estimate of the target waveform information 

vector obtained at the pth iteration, and ∆  is a predefined small value. The K 
largest values of ( ) ( )1ˆ p

t
+

  s  give the estimates of the target angles. 

3.3. Implementation of the Proposed Algorithm 

Assuming that the number of signals is known or correctly estimated, the pro-
posed algorithm can be summarized as follows. 

1) Initialize with 0p =  and ( )0 0=β . 
2) Solve (9) to get the estimate ( ) ( )1ˆ p

t
+

  s . 
3) Solve (13) to get the estimate ( ) ( )1ˆ p

t
+

  s , and then set 1p p= + . 
4) Stop the iteration if expression (14) is satisfied. Otherwise go back to step 

2). 

4. Simulations 

Performance of the proposed algorithm is evaluated by comparing to the 
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CS-based algorithm in [11] [12] [18] and RMFOCUSS algorithm in [14]. A ULA 
with 16L =  elements, separated by 2d λ=  is considered. The angle resolu-
tion cell is set as 1ϕ =  . Three independent narrowband signals are impinge 
upon the array from angles 1 31.5θ =  , 2 43.1θ =   and 3 45.5θ =  . The additive 
noise is assumed to be spatial white complex Gaussian, and the SNR is defined 
relative to each signal. The number of snapshots for each trial is set to be 

200M = . The performance metrics used are the root mean squared error 
(RMSE), which for the unknown target is computed as 

2

1

1 ˆ( )
P

k
RMSE

P =

= Θ −Θ∑                    (15) 

where 500P =  is the number of independent Monte Carlo trials. 
In the first simulation, we study the performance of the proposed algorithm in 

the presence of sensing model mismatching. Figure 2 shows the RMSE of the 
proposed algorithm and its three competitors as functions of SNR varying from 
−15 dB to 10 dB. From the figure, we see that the proposed algorithm has an es-
timation accuracy that is higher than those of the other algorithms. The supe-
riority of the proposed algorithm over the other algorithms is due to the fact that 
the proposed algorithm performs sensing model optimization by taking the 
quantization errors into account. 

Next, we consider the presence of gain inconsistency between RF channels. 
The gains of RF channels are assumed to be of Gaussian distribution with mean 
value 1µ =  and variance 2 0.05σ = . The remaining parameters used are the 
same as those in plotting Figure 2. The RMSE of the algorithms versus SNR are 
shown in Figure 3. It is seen from the figure that the proposed algorithm does 
not suffer from gain inconsistency between RF channels due to the usage of sin-
gle-channel array system, thus, providing better DOA estimation performance 
than the other multi-channel CS-based algorithms. 
 

 
          Figure 2. RMSE angle error performance versus SNR. 
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Figure 3. RMSE angle error performance versus SNR in the presence of in-
consistent gain between RF channels. 

 
Then, we study the performance on randomly generated DOAs. Suppose that 

the directions of the input three signals are uniformly generated within the in-
tervals 10 ,30  

  , the remaining parameters used are the same as those in plot-
ting Figure 2. Figure 4 shows the RMSE of different DOA estimation algorithms 
versus different SNR. From the figure, we see that the performance of the pro-
posed method increases with the decrease of the certain predefined threshold, 
and when the certain predefined threshold 0.05∆ = , the proposed method can 
achieve higher estimation accuracy compared with other off-grid CS-DOA me-
thods. 

In the last simulation, we consider the ability of the proposed method to 
represent the true signals with different angle resolution cells. The angle resolu-
tion cells are set as 1 ,3 ,5  

   . Figure 5 shows the RMSE versus different angle 
resolution cells. It is seen from the figure that the performance of the proposed 
method increases with the decrease of the angle resolution cell. 

5. Conclusion 

We have proposed a novel CS-based DOA estimation algorithm via sensing 
model optimization using single-channel array to solve the problems of sensing 
model mismatching and channel gain inconsistency, from which most conven-
tional multi-channel CS-based algorithms would suffer. The key idea of the 
proposed algorithm is to iteratively solve two CS optimizations with respect to 
target angle information vector and sensing model quantization error vector, 
respectively. Simulation results have also been presented to verify the efficacy of 
the proposed algorithm. 
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Figure 4. RMSE of the DOA estimates versus input SNR. 

 

 
Figure 5. RMSE of the DOA estimates versus input SNR with different an-
gle resolution cells. 
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