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Abstract 
With the deployment of modern infrastructure for public transportation, several stu-
dies have analyzed movement patterns of people using smart card data and have 
characterized different areas. In this paper, we propose the “movement purpose hy-
pothesis” that each movement occurs from two causes: where the person is and what 
the person wants to do at a given moment. We formulate this hypothesis to a synthe-
sis model in which two network graphs generate a movement network graph. Then 
we develop two novel-embedding models to assess the hypothesis, and demonstrate 
that the models obtain a vector representation of a geospatial area using movement 
patterns of people from large-scale smart card data. We conducted an experiment 
using smart card data for a large network of railroads in the Kansai region of Japan. 
We obtained a vector representation of each railroad station and each purpose using 
the developed embedding models. Results show that network embedding methods 
are suitable for a large-scale movement of data, and the developed models perform 
better than existing embedding methods in the task of multi-label classification for 
train stations on the purpose of use data set. Our proposed models can contribute to 
the prediction of people flows by discovering underlying representations of geospa-
tial areas from mobility data. 
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1. Introduction 

As location-based sensor devices and networks have been widely spread, a large 
amount of mobility data of users, which can be potentially used for several research 
purposes, has been accumulated [1] [2]. In addition to such sensor devices, the dep-
loyment of recent infrastructure for public transit such as automated fare collection 
(AFC) systems with smart cards has supported the collection of large volumes of mo-
bility data including people’s activities with detailed time and space information [3]. 

Researchers have used such large amount of mobility data for the purpose of loca-
tion-based recommendation such as personalization point of interest (POI) [4]. More 
recently, several studies have used the mobility data for regional development [5], urban 
planning [6], and policymaking [7]. One of key questions in those studies is how to model 
and predict people flow in a specific area where the mobility data have been collected. 

Modeling and predicting people flow in a specific area results in understanding the 
characteristics or roles of the area by combining activity patterns of people with exter-
nal information about the area [8]. Recent studies have analyzed transition patterns of 
people from one area to another using smart card data and characterized the areas or 
identified the segmentation of the areas [9] [10]. These studies solely assume that an 
area falls into some pre-defined demographics based on people flow in the area. How-
ever, if we regard massive transition patterns of people on an area as the context of its 
area, we can notice that the characteristics or roles of the area are dynamically changing 
according to its context of how people move on the area and for what purpose people 
visit the area. In other words, if two areas have similar characteristics or roles, they 
should have common underlying representation of areas that can be defined by such 
context. If we can obtain such latent representation of areas, it contributes to modeling 
and predicting people flow with massive mobility data more effectively and precisely. 

The basic notion of representation learning [11] is that two entities are semantically 
similar if they are sharing common contexts; this is known as a distributional hypothe-
sis in linguistics, which states that words that occur in similar contexts tend to have 
similar meanings [12]. That idea of representation learning has been recently expanded 
to a network embedding method [13] [14] [15] that tries to solve the problem of em-
bedding networks into low-dimensional vector spaces by assuming that two nodes are 
similar if they are closely connected in a network. In the case of finding latent repre-
sentation of geographical areas, if we consider areas as nodes and transition patterns of 
people between areas as links, we can formalize the problem of finding such representa-
tion as an extension of studying the embedding of a network. Intuitively, transition 
patterns of people in a business district are different from those in a residential district. 
Therefore, we can distinguish those different types of geospatial areas by embedding a 
people transition network in our low-dimensional vector spaces. 

In this research, we aim to find latent representation of geographical areas using the 
representation learning technique. Such representation can be used for urban planning 
and regional development by revealing potential roles of geographical areas and their 
relations, which cannot be always observed from superficial information in mobility 
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data. We can employ the notion of existing network embedding methods to find such 
representation from massive people flow data. However, one cannot simply apply ex-
isting embedding methods to our problem of embedding geospatial areas. For people 
movement in a large network of transportation systems such as railroads, several geo-
graphical constraints exist on their movement. For example, I, who live in Tokyo, do 
not go to Osaka to shop for daily necessities; I always buy daily necessities nearby and I 
don’t go all the way to far away with trivial things. Therefore we can assume that people 
usually tend to minimize their movements depending on their activities, given some 
available means of transportation at their current location. We define such geographical 
constraints as the “movement purpose hypothesis.” If we consider geospatial areas as 
a network connected with links of people with movement patterns between areas, and if 
we then try to embed the network in a low-dimensional vector space to obtain repre-
sentations of areas, we have to consider such geographical constraints on movement of 
people in the real world. 

In this paper, we propose a novel embedding method to obtain a vector representa-
tion of a geospatial area using movement patterns of people from large-scale smart card 
data. Our proposed method consists of two embedding models, which are the “conca-
tenating model” and the “internally dividing model,” based on the movement pur-
pose hypothesis. We conducted an experiment using massive smart card data in a large 
network of railroads in the Kansai region of Japan. We obtained a vector representation 
of each railroad station using the proposed embedding models and evaluate it in the 
task of multi-label classification for railroad stations. We demonstrate that our pro-
posed models work well on actual massive mobility data from smart cards of the rail 
roads. Our proposed method can identify stations in a large network of railroads, which 
are geographically distributed but share similar characteristics or roles in the region. 
Therefore, we can support a city planner, a marketer, and a policy maker to design their 
strategies or implement their policies for regional development by providing potential 
characteristics of geographical areas and their relations. 

Our contributions in this paper are four-fold:  
1) We propose the movement purpose hypothesis and develop novel-embedding 

models to obtain a vector representation of a geospatial area using movement patterns 
of people.  

2) We demonstrate that our developed models work well using actual large-scale 
mobility data from smart cards of the railroads in Japan.  

3) We also demonstrate that our proposed models can successfully identify stations, 
which are geographically distributed but share similar characteristics or roles.  

4) According to the results of parameter estimation of our proposed embedding model, 
we find that the purpose of visit for a station is 1.1 times more important than the geo-
graphical distance between stations for people movement in a large network of railroads.  

2. Related Works 

Our work is mainly related to mobility data analysis and network-embedding learning. 
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In this section, we discuss our research position and novelty in relation to existing re-
lated works.  

2.1. Modeling Characteristics of Geographical Areas  
Using Mobility Data 

Recent sensor networks and infrastructures for public transit such as automated fare 
collection (AFC) systems with smart cards have supported the collection of large vo-
lumes of mobility data including people’s activities with detailed time and space infor-
mation. In particular, mobility data from the AFC systems are currently used for sever-
al purposes such as visualization [16], disaster prevention [17], and service manage-
ment [18]. 

Moreover, aiming at several applications for location-based services including a per-
sonalized point of interest (POI) recommendation for users [4], regional development 
[5], urban planning [6], and policymaking [7], several studies have addressed a ques-
tion of how to model people flow in a specific area and understand the characteristics of 
the are with such large amount of mobility data. 

Recent studies have analyzed movement patterns of people from one area to 
another using smart card data and have characterized the areas or have enabled seg-
mentation of the areas [9] [19]. These studies solely assume that an area falls into 
some pre-defined demographics based on people flow in the area. However, if we re-
gard massive transition patterns of people on an area as the context of its area, we can 
notice that the characteristics or roles of the area are dynamically changing according 
to its context of how people move on the area and for what purpose people visit the 
area. In this paper, we aim at obtaining common underlying representation of areas 
that can be defined by such context using a embedding method. When understanding 
the characteristics or roles of the area, previous studies require pre-defined demo-
graphics of areas like shopping area or business district [6] [20]. On the other hand, 
our proposed models can learn such information from a few tagged areas using a 
semi-supervised learning. 

2.2. Embedding of Network Data 

In this research, we aim to find latent representation of geographical areas using the 
representation learning technique. We can employ the notion of existing network em-
bedding methods to find such representation from massive people flow data. The net-
work embedding method comes from graph theory and linguistics word embedding 
methods. In the context of the graph theory, adjacency matrix factorization techniques 
like singular value decompositon (SVD) and non-negative matrix factorization (NMF) 
are the prototype [21]. On the other hand, word embedding methods have been re-
cently advanced. The basic notion of word embedding is that two entities are semanti-
cally similar if they share common contexts; this is known as distributional hypothesis 
in linguistics, which states that words that occur in similar contexts tend to have similar 
meanings [12] [22]. Some works tried embedding network graph structure directly [13] 
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[14] [15]. These network-embedding methods are useful in many tasks such as visuali-
zation, node classification, and link prediction [23]. 

Network embedding has been further developed for time series analysis [24] and for 
heterogeneous network [25]. The predictive text embedding (PTE) method for hetero-
geneous network embedding, which can embed words, documents, and labels to a 
low-dimensional vector space. The PTE method embeds these three different hetero-
geneous networks to a same vector space and obtain vectors with a semi-supervised 
learning style. Our proposed models also use three heterogeneous networks, but it em-
beds them to two different vector spaces, the geospatial vector space and the role vector 
space. We describe this in more detail in the following section. 

3. Method 

This section first describes the “Movement Purpose Hypothesis” which the people 
flow is caused from geolocation and purpose. Next we explain how the network form 
from massive people flow and the necessity of label propagation on the network. We 
extend propagating labeled network embedding model for massive people flow data. 
Finally, we propose models based on the hypothesis and explain precisely.  

3.1. Movement Purpose Hypothesis 

We propose the “movement purpose hypothesis,” as shown in Figure 1 for people flow 
data such as the GPS data, the cell phone base station data, the train travel data, etc. We 
apply the train travel records as the people flow data on the Japan Kansai region ex-
tracted from the smart card system in this paper. So, we represent an area as a station in 
the figure. This hypothesis presumes that a person moves somewhere to accomplish a 
purpose that the person cannot accomplish there. In other words, the movements of 
people (People flow) are represented as the sum of the geographical proximities be-
tween areas (Geographical constraints) and the role of the area (Purpose proximity). 
This model describes that people move to a nearby location, which means a destination 
to realize their purposes, from the present location. As accumulating thus people’s loca-
tion and desire, the people flow network is shaped (Figure 1 right). On the other hand, 
we propose that the people flow regards as the sum of the amount of geolocation data 
and the amount of purpose data. In Figure 1, we illustrate that two networks (the geo-
graphical constraints network and the purpose network) generate the massive people 
flow network. And we think that thus three networks’ relationship depends on the dis-
tance on the latent vector representation. 

There are three graphs that do not mutually share their vectors, the people flow 
graph ( ssG ), the geographical constraints graph ( scG ), and the purpose proximity 
graph ( srG ). More specifically, a vector representation in each graph is the following: 

ss
iu  for all vertices i ssv G∈ , sc

iu  for all vertices i scv G∈ , and sr
iu  for all vertices 

i srv G∈ . The model shown in the Figure 1 hypothesis leads to the following equation, 
which is established among vectors.  

ss sc sr
i i iu u u= +
                              (1) 
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Figure 1. Schematic showing the “movement purpose hypothesis” and proposed models. 
 

We interpret this equation as two types: “concatenating model” and “internally di-
viding model.” For the “concatenating model,” we interpret the operator “+” as con-
necting two vectors and producing a new vector with dimensions that are twice as nu-
merous as the number of dimensions of each vector, not that we add each element in 
the two vectors (Figure 1, concatenating model). Furthermore, for the “internally di-
viding model,” we interpret the Equation (1) as the people flow graph node ( ss

iu ) lo-
cates between the geographical constraints graph node ( sc

iu ) and the purpose proximity 
graph node ( sr

iu ) (Figure 1, internally dividing model). We explain these two models 
more in the following subsections.  

3.2. Concatenating Model 

Based on the concatenating model, vector representations are acquired by the learning 
algorithm shown in Table 1. This algorithm needs the geographical constraints net-
work ( scG ), the purpose proximity network ( srG ), the people flow network ( ssG ), the 
number of sampling (T), the initial learning rate ( 0ρ ), the number of negative sampling 
(K), and the dimension of the embedding (d) as input. We apply the network embed-
ding model called the “LINE (2nd) model” proposed by Tang et al. [15]. This model 
approximates second-order proximity between two vertices, optimizing each represen-
tation vector. The objective function is as follows:  

( )
( )

,
ln |ij j i

i j E
O w p v v

∈

= − ∑                        (2) 

In this equation, ijw  indicates the empirical edge weight from the vertex iv  to the 
vertex jv . ( )|j ip v v  which is the transition probability from iv  to jv  is estimated 
using the embedding vector iu  of the vertex iv  and the context vector ju′  of the 
vertex jv  as following:  

( ) ( )
( )

T

T

exp
|

exp
j i

j i
k i

k V

u u
p v v

u u′
′∈

′ ⋅
=

′ ⋅∑

 

 

                      (3) 

We set this objective function for three networks individually and derive update  
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Table 1. Learning algorithm of the concatenating model. 

1: Input: 0, , , , , ,sc sr ssG G G T K dρ . 

2: Output: , ,sc sr ssu u u   . 

3: Initialize each vector , ,sc sr ssu u u   , , ,sc sr ssu u u′ ′ ′   . 

4: for = 1t  to T  

5: Sample an edge sc
ije  from scG . 

6: Load sc
iu  and sc

ju′  from the corresponding part of ss
iu  and ss

ju′ . 

7: Update sc
iu  and sc

ju′  using the objective function scO . 

8: Overwrite the corresponding part of ss
iu  and ss

ju′  with sc
iu  and sc

ju′ . 

9: Sample an edge sr
ije  from srG . 

10: Load ,sr sr
i ju u′ 

 from the corresponding part of ss
iu  and ss

ju′ . 

11: Update sr
iu  and sr

ju′  using the objective function srO . 

12: Overwrite the corresponding part of ,ss ss
i ju u′ 

 with ,sr sr
i ju u′ 

. 

13: Sample an edge ss
ije  from ssG . 

14: Update ss
iu  and ss

ju′  using the objective function ssO . 

15: END 

 
equations by differentiating them with respect to the each vertex vector ( iu ) and the 
each context vector ( iu′ ). We acquire vertex vector sequentially (Lines 7, 11 and 14) based 
on the concatenating model (Lines 8 and 12) using this SGD style learning algorithm.  

3.3. Internally Dividing Model 

For the “internally dividing model,” the node vector in the people flow graph ( ss
iu ) lo-

cates between the geographical constraints graph node vector ( sc
iu ) and the purpose 

proximity graph node vector ( sr
iu ) as the following equation.  

( )1ss sc sr
i i iu u uα α= + −
                           (4) 

This equation models that people decide the destination place in consideration of 
both the physical place relation and the purpose they want to accomplish there. 

We set the objective function as in the Equation (2) for each graph. However, when 
updating the vector ss

iu  in ssG , the vector ss
iu  depends on the vector sc

iu  and the 
vector sr

iu  through the Equation (4). Therefore, it is necessary to derive new update 
rules for the vectors and the parameter α . For the objective function ssO  with the 
people flow graph ( ssG ), we carefully differentiate all dependent variables  
( , , ,sc sr sc sru u u u′ ′    ) and parameter (α ). We can derive the following update rules for the 
people flow graph. Due to the lack of space, we show the updating equations about ver-
tex vectors and α .  

( )
1

1
K

ij ss ss
j i i k i isc

ki

O
u u

u
σ α σ α′ ′

=

∂
= − −

∂ ∑ 



                    (5) 
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( )( ) ( )
1

1 1 1
K

ij ss ss
j i i k i isr

ki

O
u u

u
σ α σ α′ ′

=

∂
= − − − −

∂ ∑ 



               (6) 

( ) ( ) ( ){ }
( ) ( ){ }

T T

T T

1

1ij sc sr ss ss sc sr
j i j j i j i i

K
sc sr ss ss sc sr

k i k k i k i i
k

O
u u u u u u

u u u u u u

σ
α

σ

′

′
=

∂
′ ′ ′= − − ⋅ − ⋅ −

∂

′ ′ ′− − ⋅ − ⋅ −∑

     

     

            (7) 

In these equations, ( )( )1 1 exp T
j i j iu uσ ′ ′= + ⋅

 

. We also apply the joint training style 
same as the PTE (joint) method [25]. 

4. Data Description and Input Arrangement 

As described in this paper, our proposed models need three networks: the people flow 
network, the geographical constraints network and the purpose proximity network. To 
arrange these three networks as input, we apply three datasets for the experiment. In 
this section, we explain these three datasets and the arrangement.  

Getting on and off dataset for the people flow network: This dataset includes 
massive smart card data for the Japan Kansai region (southwestern half of Japan, in-
cluding Osaka). This dataset has passenger’s smart card log provided by six railway 
companies. The providers have anonymized this dataset. The dataset contents mainly 
consist of six elements: each user of the gender, age, getting on and off date and time, 
and boarding and destination station. The summary of this dataset is shown in Table 2. 
We make the people flow network using this dataset, which is people getting on and off 
a train between two stations. This is a directed graph and the weight of each edge is 
P(destination station|boarding station). We select only weekday morning movement 
data from 7 AM to 10 AM in April, 2013 to capture the purpose of going to work in the 
morning.  

Train route map dataset for the geographical constraint: This time, we apply the 
train network information as geographic proximity information obtained through the 
Japan train line API1. We construct the train route map through this. The graph is un-
directed and the weights of all edges are equal and the route map is shown in Figure 1 
left (geographical constraints).  

Purpose of use dataset for the purpose proximity network: This paper is intended 
to estimate each station’s role. As described herein, we produce a dataset using the re-
sults of the person trip survey. In Japan, the Ministry of Land, Infrastructure and 
Transport takes a nationwide survey through questionnaire from many persons every 
decade. We apply the 2010 results2 to our experiment, which includes how much people 
come to each station for what purpose. The purposes of the getting off each station are 
“commuting to work”, “commuting to school”, “going home”, “on business”, and “oth-
ers”. A summary of this dataset is shown in Table 3. We make the station-purpose 
graph as the purpose proximity network from this dataset which presents a probability 
distribution of purposes to go to a station. This graph is undirected. When making the  

 

 

1http://www.ekidata.jp/.  
2https://www.kkr.mlit.go.jp/plan/pt/data/pt_h22/index.html.  

http://www.ekidata.jp/
https://www.kkr.mlit.go.jp/plan/pt/data/pt_h22/index.html
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Table 2. Overview of the getting on and off dataset. 

Starting date April 01, 2013 

Ending date April 30, 2013 

Total number of records 68,763,457 

Number of unique users 3,679,251 

Number of station varieties 672 

Number of railway companies 6 

 
Table 3. Summary of the purpose of use dataset. 

Purpose Number of users 

Commuting to work 1,278,288 

Commuting to school 349,234 

Going home 2,192,826 

On business 358,891 

Others 1,313,767 

Total 5,493,006 

Number of stations 599 

 
people flow network, we select only weekday morning data. So, we do not use the a 
“going home” purpose in this dataset and use the remaining four purposes, because we 
think that most people do not return home in the morning. 

5. Experiment and Results 

In this section, we evaluate the effectiveness of the developed models for geospatial da-
ta. For this purpose, we compare various algorithms and conduct an experiment. As 
reported below, we describe the results.  

5.1. Experimental Procedure 

As described in this paper, we conducted a multi-label classification experiment be-
cause the purposes of dropping off passengers at a station are plural. To be exact, pur-
poses will differ from person to person. We regard a station as a probability distribu-
tion of some purposes and estimate it in the experiment. 

The experimental procedure is the following. First, obtaining the vector representa-
tion using the listed methods in Section 5.2. Second, the training classifier for each ex-
periment using training labeled data set made from a part of the purpose of use dataset. 
Finally, we conduct a prediction evaluation using test data produced from the rest of 
the dataset and evaluate the obtained result using some measurements. 

For multi-label classification, we use a multiclass logistic regression classifier. We use 
the LIBLINEAR package3 as the classifier. We use three measurements for the mul-

 

 

3https://www.csie.ntu.edu.tw/~cjlin/liblinear/.  

https://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/
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ti-label classifications, which are the “KL divergence”, the “Mean Reciprocal Rank” 
(MRR), and the “Mean Average Precision” (MAP). For this experiment, the number of 
classes is four described in Section 4. We evaluate the method accuracy using two cross- 
validations randomized five times repeatedly. In other words, we use all the getting on 
and off data for obtaining vector representations, but we use only half of the stations in 
the purpose of use dataset for obtaining vector representations and classifier training. 
We use the rest to evaluate the classifier accuracy. We repeat this experiment procedure 
five times by randomizing the purpose of use dataset. 

Finally, we evaluate geographical locations around each purpose vector. The evalua-
tion metric is the average value of the standard deviation of the actual geolocation of 
stations near the purpose label vector. Because, when the average of the standard devia-
tion of the nearby station of the purpose label is large, the station group is extracted for 
the purpose of the station without geographical constraints.  

5.2. Compared Algorithms 

We use the following methods to compare algorithms.  
1) Weighted random: random sampling from a discrete probability distribution. In 

advance, we calculate each purpose distribution from a training dataset. When predict-
ing the purpose of dropping off at a station in test data, the method predicts it by se-
lecting a purpose randomly according to the arbitrary distribution.  

2) Word2Vec [12]: Word2Vec is an efficient word embedding model that learns the 
representation of each word in a large corpus. We simply use the Skip-gram model in 
this experiment.  

3) GloVe [26]: GloVe is another efficient word embedding model. The method uses 
global word-word co-occurrence statistics from a corpus to learn word representation 
vectors.  

4) DeepWalk [14]: DeepWalk is the first network embedding method which can 
learn the representation of networks. This model only works for an unweighted graph. 
For each vertex, truncated random walk is used to translate the graph structure into li-
near sequences.  

5) LINE [15]: LINE is the other network embedding method. LINE defines the first 
proximity and the second proximity between vertices using edge weight information. It 
obtains the representation by approximating the inner product value between the ver-
tex and context vector to each proximity (LINE(1st) and LINE (2nd)). The LINE will 
achieve the best performance when concatenating the representation the first proximity 
and the second proximity (LINE(concat)).  

6) PTE [25]: PTE is the network embedding method for a heterogeneous network. 
This method applies to three different networks which are the word-word, word-  
document, and word-label networks. They propose two learning styles, which are “pre- 
train” and “joint” learning style. We select “joint” learning style, which is slightly better 
than pre-train learning style in their report (PTE(joint)). This method can embed ver-
tices in three network graphs to same vector spaces. The same node in different graphs 
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has the same vector representation among all graphs.  
7) Proposed: Our proposed models are all for learning geospatial area embedding 

through large-scale mobility data from smart cards. We offer two models based on the 
“Movement Purpose Hypothesis” described in the Section 3.1, which is the concatenat-
ing model (“concat”) and the internally dividing model (“divide”). Our proposed mod-
els can embed vertices in three network graphs to different vector spaces. A single node 
in different graphs has different vector representations with each graph ( , ,sc sr ssu u u   ).  

Word2Vec and GloVe are necessary for sentences as input information because of 
word embedding methods. We regard the sequence of stations which is history of each 
user getting on and off as a sentence. Word2Vec, GloVe, DeepWalk, and LINE me-
thods are unsupervised style learning. Therefore, we merely apply user information re-
lated to getting on and off at different stations for training. PTE and our proposed 
models are semi-supervised style learning. We set the people flow network as the word- 
word network, the geographical constraints network as the word-document network, 
and the purpose proximity network as the word-label network. On all method, the di-
mension of the node vector is set as 200, but in the proposed concatenating model, 

,ss ss
i iu u′   has twice the number of dimensions: 400.  

5.3. Results 

This section presents the performance and characteristics of our proposed models.  

5.3.1. Performance of Multi-Label Classification 
Table 4 shows the performance of multi-label classification. One can start with a com-
parison of weighted random with others. Except for weighted random, all other me-
thods are embedding word or node to vector space. In the KL divergence metric, all 
other methods are superior to the weighted random method. In other metrics, all other 
method results are equal to or better than the weighted random method. Therefore, ap-
plying embedding method to the people flow data is reasonable and efficient to extract 
the purpose distribution for each station. 

Next, we compare the performance of GloVe with others. GloVe indicates the best 
result at the KL divergence metrics because only GloVe uses global co-occurrence in-
formation in the dataset. The effect of long context co-occurrence information also 
shows the result between LINE (1st) and LINE (2nd). Although LINE (1st) directly ap-
proximates the edge weight between two nodes, LINE (2nd) approximates two hops 
sharing node proximity. This effect appears in the KL divergence and the MRR result. 
These results indicate that using the global graph structure is good for multi-label clas-
sification.  

We compare our proposed models with the PTE (joint) method. Particularly, the 
proposed model of (divide ssu ) is superior to the PTE method in point of the KL di-
vergence and the MRR metrics. Moreover, proposed (concat ssu ) is also superior in 
terms of the KL divergence and the MAP metrics. These results indicate that our pro-
posed models use labeled information more efficiently than PTE (joint) method on the 
people flow data. 
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Finally, we make a comparison of our proposed models. The proposed (divide ssu ) 
is superior to the proposed (concat ssu ) concerning the KL divergence and the MRR 
metrics. This difference derives from the update style difference between the two mod-
els. The concatenating model is updating half of vector element once, but the internally 
dividing model is updating all vector elements. This difference appears to learned vec-
tor representations. We describe this difference in greater detail in the following sec-
tions. In both models, ssu  results are superior to scu  and sru  models results, which 
shows that it is necessary to both the geospatial information and the purpose informa-
tion for the multi-label classification. 

Regarding α  estimation result in the proposed (divide) model, we show the result 
in Table 5. This result indicates that 0.468 0.532ss sc sru u u= +

   , which means that sru  
is more important than scu .  

5.3.2. Geographical Locations around Each Purpose Vector 
Next, it is necessary to unveil the obtained purpose vector characteristics. Therefore, we 
inspect stations around each purpose vector. As described in this paper, we attempt to 
extract purposes of a station to go accurately and the purposes of a station are irrelevant 
to the geospatial location of the station. If so, our proposed method will gather distant 
stations one after another around a purpose vector. We evaluate this hypothesis to  

 
Table 4. Results of multi-label classification. The KL divergence is better if it is a smaller value. 
Other metrics are all better if larger values. 

Method KL div. MRR MAP 

Weighted random 40.734e−2 45.000e−2 74.341e−2 

Word2Vec 38.810e−2 44.973e−2 74.313e−2 

GloVe 36.187e−2 47.802e−2 73.608e−2 

DeepWalk 39.496e−2 45.192e−2 74.176e−2 

LINE(1st) 40.006e−2 45.000e−2 74.341e−2 

LINE(2nd) 37.796e−2 51.209e−2 73.553e−2 

LINE(concat) 37.560e−2 51.071e−2 73.343e−2 

PTE(joint) 39.417e−2 45.192e−2 74.368e−2 

Proposed (concat scu ) 40.425e−2 45.000e−2 74.341e−2 

Proposed (concat sru ) 38.766e−2 45.082e−2 74.341e−2 

Proposed (concat ssu ) 38.933e−2 45.137e−2 74.368e−2 

Proposed (divide scu ) 38.606e−2 45.000e−2 74.341e−2 

Proposed (divide sru ) 39.051e−2 45.852e−2 74.167e−2 

Proposed (divide ssu ) 37.216e−2 51.511e−2 72.610e−2 

 
Table 5. Estimation result of α parmeter. 

Variable Average Std dev. 

α 0.468 0.0153 
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confirm the standard deviation of station geolocation. The result is presented in Table 
6. This table is the standard deviation of station geolocation around each purpose vec-
tor in 10 nearest stations. 

Comparison of the proposed (divide ssu ) model with the PTE(joint) method shows 
that the proposed (divide ssu ) standard deviations are larger than the PTE(joint) one 
for all purposes. This shows that the proposed (divide ssu ) model can gather distant 
stations around each purpose node. The proposed (concat) results have a smaller stan-
dard deviation than other methods have. In the following visualization result section, 
we consider the results in greater detail.  

5.3.3. Visualization of Vector Representation 
Finally, we present an illustrative visualization of each method. We present a visualiza-
tion in Figure 2. Because of space limitations, we select six methods of visualization. In 
the figure, each point represents a station or a purpose. Then they are colored by six 
train companies. In the figure, (a) and (b) are past works and (c)-(f) are our proposed 
method visualizations. 

The (a) DeepWalk vector forms clusters gathering at each company. In this people 
flow dataset, we found from statistically results that most people usually move in a 
small area and they do not transfer so much. Therefore, the DeepWalk visualization 
result is reasonable because it captures local context information. This result also shows 
(e) proposed (divide scu ). Linearly aligned stations are apparent in the figure, showing 
that these stations are along the same train line.  

In (f) proposed (divide sru ), the visualization result is mixed with six companies 
around purpose vectors. And (d) proposed (divide ssu ) is the sum of (e) proposed (di-
vide scu ) and (f) proposed (divide sru ). By this representation, this method gathers 
distant stations around each purpose vector and achieves a useful purpose estimation 
result in MAP metric on Table 4. 

6. Discussion and Summary 

As described in Section 5.3, our proposed models achieve better results than the PTE 
 
Table 6. Standard deviation of station geolocation around each purpose vector (Nearest@10). 

Method 
“On business” “Others” “To work” “To school” Average 

long SD lat SD long SD lat SD long SD lat SD long SD lat SD long SD lat SD 

PTE (joint) 4.052e−2 6.884e−2 6.283e−2 8.801e−2 4.991e−2 8.412e−2 12.866e−2 9.020e−2 7.048e−2 8.280e−2 

Proposed (concat scu ) 6.516e−2 8.739e−2 4.804e−2 7.941e−2 5.530e−2 8.124e−2 6.399e−2 7.714e−2 5.812e−2 8.129e−2 

Proposed (concat sru ) 6.126e−2 7.224e−2 7.586e−2 7.782e−2 6.912e−2 7.102e−2 10.655e−2 8.183e−2 7.820e−2 7.573e−2 

Proposed (concat ssu ) 3.584e−2 7.897e−2 4.025e−2 7.259e−2 3.498e−2 7.174e−2 7.048e−2 7.869e−2 4.539e−2 7.550e−2 

Proposed (divide scu ) 10.596e−2 9.604e−2 9.551e−2 9.603e−2 9.593e−2 10.133e−2 8.789e−2 8.831e−2 9.632e−2 9.543e−2 

Proposed (divide sru ) 11.701e−2 9.416e−2 14.268e−2 11.357e−2 11.731e−2 11.242e−2 14.934e−2 15.349e−2 13.159e−2 11.841e−2 

Proposed (divide ssu ) 11.701e−2 9.416e−2 14.268e−2 11.357e−2 11.731e−2 11.242e−2 14.934e−2 15.349e−2 13.159e−2 11.841e−2 
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Figure 2. The obtained vector visualization by t-SNE [27] toolkit. It is noteworthy that each point represents a station or a purpose. They 
are colored according to train companies. 
 

method. These results indicate that, for large-scale movement data, which have spatial 
dependence, the proposed models capture the characteristics of the purpose of each 
area better than the PTE method does. People’s moving areas are usually small. They 
live in defined areas. In light of this constraint, our proposed models work better than 
the PTE method. For the multi-label classification task, our proposed models (concat 

ssu


 and divide ssu


) show good results in Table 4. This result underscores the cor-
rectness our proposed “Moving Purpose Hypothesis.” Especially for vector visualization 
results (Figure 2), the proposed (divide) models decompose each area to geolocation 
dependency vectors and purpose vectors. Finally, the α  parameter estimation result is 
impressive. This result means that the purpose is 1.1 times more important than the 
distance. Therefore, people move to distant places when they have a purpose that they 
actively want to complete.  

However, the currently proposed models’ performance is slightly better than unsu-
pervised embedding methods because our proposed models use only two-hop proximi-
ty, and they do not capture the global network structure. As the next step, we should 
consider a graph global structure with the heterogeneous network and how to apply the 
labeled network more efficiently. The graph global structure can be captured by the 
GraRep [13] or GloVe [26]. It is necessary to refer to such approaches for extracting 
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purposes to go to an area. 
We believe that there is considerable research room to representation learning for 

the geospatial network. 
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