
Int. J. Communications, Network and System Sciences, 2013, 6, 497-504
Published Online December 2013 (http://www.scirp.org/journal/ijcns)
http://dx.doi.org/10.4236/ijcns.2013.612053

Open Access IJCNS

Improving Compression of Short Messages

Paul Gardner-Stephen, Andrew Bettison, Romana Challans,
Jennifer Hampton, Jeremy Lakeman, Corey Wallis

Flinders University, Adelaide, Australia
Email: paul@servalproject.org, andrew@servalproject.org, romana@servalproject.org,

corey@servalproject.org, jenny@servalproject.org, jeremy@servalproject.org

Received April 24, 2013; revised May 24, 2013; accepted May 30, 2013

Copyright © 2013 Paul Gardner-Stephen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Compression of short text strings, such as the GSM Short Message Service (SMS) and Twitter messages, has received
relatively little attention compared to the compression of longer texts. This is not surprising given that for typical cellu-
lar and internet-based networks, the cost of compression probably outweighs the cost of delivering uncompressed mes-
sages. However, this is not necessarily true in the case where the cost of data transport is high, for example, where sat-
ellite back-haul is involved, or on bandwidth-starved mobile mesh networks, such as the mesh networks for disaster
relief, rural, remote and developing contexts envisaged by the Serval Project [1-4]. This motivated the development of a
state-of-art text compression algorithm that could be used to compress mesh-based short-message traffic, culminating in
the development of the stats3 SMS compression scheme described in this paper. Stats3 uses word frequency and
3rd-order letter statistics embodied in a pre-constructed dictionary to affect lossless compression of short text messages.
This scheme shows that our scheme compressing text messages typically reduces messages to less than half of their
original size, and in so doing substantially outperforms all public SMS compression systems, while also matching or
exceeding the marketing claims of the commercial options known to the authors. We also outline approaches for future
work that has the potential to further improve the performance and practical utility of stats3.

Keywords: Lossless; Text Compression; Sms; Twitter; Arithmetic Coding; Mobile; Cellular; Mesh Network

1. Introduction

Loss-less compression is a mature field, with a wide va-
riety of methodologies and implementations. However,
compression of short strings is relatively under-explored.
This is perhaps due to the relatively small gains to be
made by compressing strings that are already quite short,
combined with the relative difficulty of compressing
strings that are so short that they have little opportunity
to expose sufficient redundancy to allow for effective
compression.

Thus, even for cellular Short Message Service (SMS)
traffic, where message volumes are enormous, relatively
little effort has been invested. The GSMA did create a
standard for SMS compression, GSM 03.42 [5], but it is
difficult to ascertain whether it has been widely adopted
by carriers, and the standard itself has not been updated
since 1999 apart from being carried forward into the cor-
responding LTE standard [6], even though attractive
compression technologies such as Arithmetic Coding [7-
12] have lapsed from patent encumberance in the mean-

time. Perhaps for mobile telecommunications carriers,
the disinterest is simply commercial; they charge per
message unit of 160 7-bit characters, i.e., 140 8-bit bytes,
and reducing the number of messages required for parties
to communicate would be revenue-negative.

Of course, for consumers, the situation is different,
because consumers pay carriers per message unit. The
impressive cost charged per message unit by mobile tele-
communications carriers, introduces the potential for
SMS compression to be revenue-positive.

Indeed, the cost savings are sufficient. A number of
companies have based their business model around com-
pressed-SMS services [13-15], and claimed reductions in
message sizes of between 30% - 40% [13] and 50% -
55% [14]. However, as commercial solutions, these
claims cannot be easily verified nor are the source code
available to allow meaningful benchmarking against other
options. The advent of two-way satellite SMS services,
such as the deLorme inReach that uses the Iridium con-
stellation, has created further incentive for compression
of messages, as Iridium charges the service providers a

P. GARDNER-STEPHEN ET AL. 498

substantial fee per byte.
The desire to compress SMS and Twitter-like mes-

sages is heightened for systems such as the Serval Project
where communications are encrypted and authenticated
for security, introducing unavoidable and uncompressible
overhead to each message in the form of digital signa-
tures [16]. The Serval Project [2-4] is a mobile ad-hoc
network that provides resilient communications for rural,
remote and disaster situations. In such networks, band-
width is often limited, and clusters of nodes may be iso-
lated from one another, and satellite SMS services may
be the backhaul of last resort.

The Serval Project offers SMS-like short messaging
and Twitter-like social networking services [3]; thus the
motivation for identifying effective compression schemes
that can be effective on SMS-length messages of the kind
was commonly observed on Twitter.

The remainder of this paper briefly explores: technical
challenges to compressing short messages; a survey of
existing compression schemes appropriate for use on
SMS-length messages; an introduction to our new stats3
SMS compression scheme, including a comparison with
the existing state-of-the-art, showing that our scheme
substantially outperforms all public SMS compression
systems, and matches or outperforms the unverified
marketing claims of the commercial offerings. Finally,
we outline several areas for future work that we believe,
which have the potential to further improve the perform-
ance of stats3.

2. Challenges of Compressing of Short
Messages

The longer a message, the more likely it is to contain
sufficient redundancy to allow a compression scheme to
encode it in a manner that results in a reduction in size.
There are several reasons why compressing short mes-
sages is particularly difficult.

First, many compression schemes are adaptive, that is,
they build a model of the statistics of a message as they
go along, which is then used to feed a predictor that es-
timates the probability of following bits or bytes. Most
such predictors require hundreds of characters to be
processed before they are able to begin usefully to model
the message, and thus begin to save space.

Second, many compression schemes, whether adaptive
or not, use a dictionary that provides initial context to the
predictor, precisely to avoid the slow convergence that
can result from purely adaptive compression schemes.
However, this introduces a substantial overhead to the
beginning of the message, which for SMS-length mes-
sages may be larger than whole uncompressed message.

As a result, most compression algorithms that perform
well on bulk data, e.g., gzip [17], bzip2 [18,19] and PAQ

[20], all perform poorly on short messages, as illustrated
in Table 1 where the performance of each of those com-
pressors on the individual messages of the SMAZ sample
messages of Table 2 is shown.

Table 1. Uncompressed and compressed sizes of the SMAZ
sample message set for several high-performance compres-
sion schemes. Smallest size for each message is underlined.

Message # Original Size gzip-9 bzip2-9 paq8l

1 23 41 62 28

2 7 27 45 11

3 8 28 48 12

4 21 41 63 26

5 37 57 71 41

6 82 87 101 71

7 53 70 83 54

8 53 69 85 52

9 33 53 66 37

10 69 82 91 64

11 23 41 62 26

12 44 64 80 46

13 20 40 58 25

14 18 38 57 22

15 30 50 68 33

16 43 63 77 45

17 32 52 74 36

Table 2. SMAZ sample message set, as extracted from
SMAZ source code.

Text

1 This is a small string

2 foobar

3 the end

4 not-a-g00d-Exampl333

5 Smaz is a simple compression library

6
Nothing is more difficult, and therefore more precious,
than to be able to decide

7 this is an example of what works very well with smaz

8 1000 numbers 2000 will 10 20 30 compress very little

9 and now a few Italian sentences:

10
Nel mezzo del cammin di nostra vita, mi ritrovai in
una selva oscura

11 Mi illumino di immenso

12 L’autore di questa libreria vive in Sicilia

13 try it against urls

14 http://google.com

15 http://programming.reddit.com

16 http://github.com/antirez/smaz/tree/master

17 /media/hdb1/music/Alben/The Bla

Open Access IJCNS

P. GARDNER-STEPHEN ET AL. 499

3. Existing Short Message Compression
Schemes

The logical solution to the challenge of compressing
short strings such as SMS messages is to pre-compute a
dictionary that then does not need to be embedded in
each compressed message. This is indeed the approach
taken by many extant SMS compression schemes, of
which the following are perhaps the most prominent. The
non-dictionary shortBWT scheme and several commer-
cial SMS compression systems are added for complete-
ness.

3.1. GSM TS03.42

Between 1997 and 1999 the GSM Association (GSMA)
developed Technical Standard (TS) 03.42 [5,6], a stan-
dard for compression of SMS messages. At the time
Arithmetic Coding was possibly patent encumbered, and
perhaps for that reason and the relatively higher compu-
tation demands of that scheme, TS03.42 uses Huffman
Coding [21-25], in return for a reduction in the compres-
sion possible. They begin with a language-specific fre-
quency table and common word list to provide initial
context. The frequency table is optionally evolved as a
message is compressed providing some adaptability, al-
though the word list is fixed.

The technical standard itself is accompanied by three
sample SMS messages (see Table 3) and their com-
pressed forms, giving some idea of the compression lev-
els that it can achieve, which is summarised in Table 4.

If the sample messages are a reliable guide, the GSMA
seemed to assume SMS being used for carrying longer
email-like messages, and apparently by pedants for
spelling and grammar, somewhat amplifying the apparent
effectiveness of their scheme. Empirical examination of
SMS and Twitter traffic suggests that those assumptions
are flawed, and that in practice, TS03.42 would be likely
to offer poorer compression than suggested by their un-
representative, if well meaning, examples.

A more fundamental issue is that TS03.42 does not an-
ticipate that users of SMS and Twitter-like services al-
ready employ an ad-hoc form of compression in their
messages, using various forms of short hand to fit their
messages into the confines of the medium, e.g., shorten-
ing words such as “before” to “b4” and “tomorrow” to
“2moro”, and in doing so likely limiting the ability of
TS03.42 to achieve any significant degree of compres-
sion.

Further assessment of the performance of TS03.42 is
not possible without obtaining or creating an implemen-
tation of the relatively intricate specification, which are
outside the scope of this paper. Thus assigning an esti-
mation of the performance of TS03.42 on real SMS and
Twitter traffic is difficult, with performance not likely to

Table 3. GSMA TS03.42 Example SMS Messages. Note that
the apparently erroneous repetition of 021 appears in the
file downloaded from the GSMA.

1

Please call me no later than 07:30 on Wednesday morning so
that we can discuss the project before the meeting. I will be at
the hotel from Tuesday afternoon so if convenient for you we
could arrange to have dinner there. If anything urgent comes up
before then remember you can always call me on my mobile or
send me a short message. Speak to you soon, Peter
David, I’m on my way to the airport for the 9 o’clock flight to
Paris. I’ll be out of the office until tomorrow so please
postpone the lunch appointment with Steven and Julie.
I contacted the supplier yesterday and they should confirm
delivery of the following products by the weekend.

AFP/956/A: 5000 units

ANF/234/S: 100 units

XXL/00789: 9000 units

UXB/11008: 7500 units

If you need more information call their sales department and
quote order reference ST009/678.

2

Best regards, Carol

Thank you for your enquiry. The following services are
currently available:

001 - International news headlines

002 - Local news headlines

011 - Sport - Football

012 - Sport - Cricket

013 - Sport - Racing

014 - Sport - Other

021 - Stock quotes A-F

021 - Stock quotes G-M

021 - Stock quotes N-T

021 - Stock quotes U-Z

031 - Traffic reports

032 - Train timetables

033 - Flight information

041 - Weather - local reports

042 - Weather - local forecasts

043 - Weather - national outlook

051 - Account information

052 - Change password

053 - Set preferences

061 - Send Fax

062 - Send Email

3

063 - Review inbox

Open Access IJCNS

P. GARDNER-STEPHEN ET AL. 500

Table 4. Uncompressed and GSM TS03.42 and SMAZ com-
pressed sizes of the TS03.42 example messages. Percentages
are versus original size (lower is better).

Uncompressed TS03.42 SMAZ

1 358 146 (40.7%) 196 (55.7%)

2 491 249 (50.7%) 375 (76.3%)

3 601 380 (63.2%) 577 (96%)

be better than reducing message sizes to 50% of original
size on average. Relative performance can be inferred by
comparing the relative performance on the three TS03.42
sample SMS messages. For example, Table 4 gives us
reason to believe that TS03.42 outperforms SMAZ by a
considerable margin.

3.2. SMAZ

SMAZ [26] is the only other open-source short-message
compression library known to the authors. SMAZ is re-
markable in that its complete implementation is less than
200 lines of code—which includes the code book of
common character sequences that performs the role of
the pre-computed dictionary. The README file for
SMAZ claims average reduction in message length to
50% - 60% of original size, with English text compress-
ing better.

The performance of SMAZ on the three English text
TS03.42 sample messages suggests that the claim of re-
ducing messages to an average of 50% - 60% of original
size may not hold true for SMS-type traffic. As the im-
plementation of SMAZ is freely available it is possible to
test this claim.

See Table 5 for a summary of SMAZ performance on
a variety of inputs. Attempt was made to include the Na-
tional University of Singapore (NUS) SMS corpus, the
largest public SMS corpus known to the authors. The
NUS corpus custodians did not respond in time for inclu-
sion of the NUS corpus in this comparison. SMS SPAM
Collection v.1 [27] consists of (at the time) approxi-
mately 37% of the NUS corpus. All NUS SMS corpus
derived corpora will be necessarily biased because the
majority of messages were obtained from students at the
NUS.

The Private Twitter Corpus is a collection of Twitter
messages collected in several episodes during October
and November 2012. Collection occurred using the
Twitter statuses/sample API that returns a random sam-
pling of public Twitter status messages1, and filtered to
exclude all messages containing unicode characters, as
efficient handling of unicode messages is beyond the
scope of the work described in this paper. Nonetheless,

Table 5. SMAZ compression performance for various in-
puts: compressed size as percentage of original size (lower is
better).

Corpus Type Messages Avg. Length SMAZ

Pie Floater* English 28 171 60.6%

SMAZ
README file

English 71 44 64.1%

British English
SMS Corpus [28]

SMS 450 80 64.8%

SMS SPAM
Collection v.1 [27]

SMS 5,547 82 71.6%

Private Twitter
Corpus

Twitter 348,994 54 81.4%

*The text from http://en.wikipedia.org/wiki/Pie_floater.

the corpus contains messages in many languages and of a
wide variety of forms. Twitter’s terms of use appear to
prevent the release of any public corpus of Twitter mes-
sages, and even the TREC community is only able to
distribute a list of tweets, rather than the tweets them-
selves2. Benchmarking against the 93 million message
TREC Twitter Corpus [29] is beyond the scope of this
paper, as such a large corpus is not necessary to obtain
meaningful statistics about composition and compressi-
bility of Twitter messages.

Overall for SMAZ, observed average compressed mes-
sage lengths were all worse than the claimed range for
English text, and in the case of Twitter messages much
worse, with average compressed message lengths of
81.4% of the uncompressed message length. Thus, while
effective in many instances, SMAZ elegantly small dic-
tionary-based approach is not sufficiently robust in the
face of Twitter type traffic.

3.3. ShortBWT

The shortBWT [30] scheme is included as a counter-
point, based on the remarkable properties of the Bur-
rows-Wheeler transform [18], and can be generally un-
derstood as the equivalent of bzip2 [19] for short strings.
In contrast with SMAZ and TS03.42, shortBWT does not
use a precomputed dictionary of words or word parts, but
rather uses precomputed statistics for the relative diver-
sity and abundance of characters in a message.

As shortBWT does not appear to be publicly avaiable,
its performance can only be estimated by examining
Constantinescu et al. (2004) [30]. That paper suggests
shortBWT is capable of compressing strings of 200
characters to an average of around 55% of their original
size. Performance on shorter strings is impossible to dis-
cern from their paper, but there is no reason to believe
that performance would be any better on shorter strings,
as shorter strings make it more difficult for the Bur-

1http://dev.twitter.com/docs/streaming-apis/streams/public; on-line; ac-
cessed 15 November 2012.

2http://trec.nist.gov/data/tweets/; on-line; accessed 15 November 2012.

Open Access IJCNS

P. GARDNER-STEPHEN ET AL. 501

rows-Wheeler transform to find the redundancy neces-
sary to effect compression.

3.4. Commercial Short Message Compression
Systems

There are several commercial SMS compression schemes
available, e.g. [13-15]. As closed-source proprietary of-
ferings, there is limited information as to their operation.
However, for the purposes of this paper our focus is on
compression performance. The two commercial offerings
which make claims about the compression performance
of their products make claims of reductions in message
sizes to between 60% - 70% [4] and 45% - 50% [14] of
the original message length. Assuming that their claims
are not exaggerated, this implies similar performance to
shortBWT. However, as with SMAZ, it is likely that ei-
ther limited testing or other processes have resulted in a
claim that is not sustained when faced with realistic SMS
or Twitter traffic.

3.5. Summary

The state of the art of short message compression can be
summarised as the various solutions offering compressed
message sizes which are, on average, at least 45% of the
uncompressed message size, although, as previously ex-
plained, there is reason to doubt that performance is in
fact that good. SMAZ is the only openly available scheme,
and it performs much more poorly than the best claims
among the closed systems. Thus there is, in the very least,
the opportunity to match, or beat, the best closed systems
through the creation of a new open-source short message
compression scheme. The following section describes the
process by which we achieved this goal, culminating in
the implementation of the stats3 short-message compres-
sion scheme.

4. Overview of the Stats3 Short Message
Compression Scheme

It was decided that the most promising approach was to
model the statistics of a corpus of representative Twitter
messages and use that as a basis for a non-adaptive com-
pression scheme, using arithmetic coding for the back
end.

4.1. Character Statistics Generation & Encoding
of Mono-Case Textual Characters

A corpus of Twitter messages was obtained as previously
described in this paper. A program was written to analyse
those messages at the character level to determine the
probability of the first letter of a message being either
upper or lower case, and to compute the 1st, 2nd and 3rd
order statistics for:

1) the probability of the 69 most commonly occurring
characters, treating all letters as lower case;

2) the probability of the first letter in a word being
upper or lower case, based on the case of the previous
word(s) as appropriate;

3) the probability of each letter in a word being upper
or lower case, based on the case of the previous letters in
the word.

4) the probability of messages being of any particular
length between 0 and 1,024 characters, the maximum
length of short message supported by stats3.

Messages were stripped of all letter-case information
and non-textual characters and then encoded according to
the 3rd order statistics. The length of the uncompressed
message was encoded according to the message length
statistics. The case of letters was compressed by, for each
letter in a message, using the 3rd-order case statistics
gathered to predict the case of that letter.

4.2. Dictionary Generation

In addition, word-level analysis was performed, using all
characters other than a - z and 0 - 9 to indicate a word
break. All words occurring less than five times were dis-
carded. Whenever a word was discarded, it was attempted
to assign the frequency to another word sharing the longest
common prefix with the discarded word. For example,
discarding four instances of “bakfietsen” would result in
the recorded frequency of “bakfiets” to increase by four.

The entropy of the each word remaining in the list was
modelled using the 3rd order statistics previously com-
puted, resulting in an estimate of the number of bits re-
quired to encode the word as a sequence of characters.
This represents the saving possible by encoding the word
as a single token  potentialS .

The number of instances of all remaining words was
calculated, as was the total number of word breaks in the
corpus. From this it was possible to compute the prob-
ability of a word substitution occurring at any single
word break, and from that the entropy, and hence the bit
cost of either substituting or not substituting. Substitution
occurred with 0.5p  , thus a no-substitution event
could be encoded in less than one bit. For the same rea-
son, each word substitution event must incur a cost per
substitution  sub

subC

C

potential

 of ≥1 bit. That cost must be de-
ducted from the savings possible by substituting each
word. The cost of encoding any given word can
be computed from the relative frequency of that word in
the training corpus. Thus the overall saving per word
when substituted could be estimated according to

 tokenC 

actualS S Ctoken   .

actual was calculated for each word remaining in the
list. Any words where were discarded from
the list, and

S
0actualS 

subC was then recalculated. This process

Open Access IJCNS

P. GARDNER-STEPHEN ET AL. 502

was repeated until no further words were removed from
the list. A side effect of this process is that the word list
contains no low-entropy words, as they are more effi-
ciently encoded directly using the 3rd order statistics. For
example, “the” is not in the list despite its high frequency,
while words such as “tomorrow” (and numerous mis-
spellings thereof) are in the list, because of the higher
entropy of that word. From a corpus of 203,661 of Twit-
ter messages a list of 13,179 substitutable words was
produced.

4.3. Rare & Non-Text Characters

Characters that were not in the 69 common characters
that are covered by the predictive model were exception-
ally rare. While a more refined method is possible, the
current implementation encodes those characters in a two
part process. First, an interpolative coder [31] using an
arithmetic coding back-end was used to efficiently en-
code the positions of the characters in the message. The
actual characters were then recorded using arithmetic
coding.

4.4. Model Selection

In addition to the model described above, two simpler
models were also included for instances where the
pre-computed statistics resulted in the compressed mes-
sage being longer than the uncompressed message.

First, if no rare or non-textual characters were present
in the message, the entire message was encoded using
radix-69. Case information was still encoded as for the
statistical model. Selection of this model versus the sta-
tistical model is via a single decision with 0.05p  ,
resulting in a cost of 0.074 bits to use the statistical
model and a cost of 4.322 bits to use this non-statistical
model. A more accurate assessment would place ,
but would also result in a substantially higher bit cost to
use the non-statistical model, without offering any sig-
nificant reduction in cost overall.

0.05p

Second, if rare or non-textual characters were present,
and the MSB of the first character was zero, the message
was encoded as the identical of the input string. This re-
use of the MSB of the first character is appropriate for
the intended use case of sending text messages via Irid-
ium SMS, which transmits 8-bit characters. For tradi-
tional SMS carriage, one additional byte would be nec-
essary.

The source code for the stats3 program can be found at
https://github.com/servalproject/smac and is distributed
under the GNU General Public License v2.

5. Results & Conclusions

Table 6 presents a summary of the performance of the

stats3 scheme described above against the various cor-
pora and example messages associated with the existing
short message compression schemes, and compares this
with the performance of the other schemes where data
are available or could be produced. The stats3 statistics
were generated by processing 203,661 messages of the
private Twitter corpus. The remaining 145,333 messages
were used for the actual test, for both stats3 and SMAZ
to provide comparability. Table 7 compares the speed of
stats3 with SMAZ on the private Twitter corpus.

It is clear that stats3 is much slower than SMAZ, but
that in return, stats3 easily outperforms both TS03.42 and
SMAZ on all inputs. Nonetheless, stats3 is still able to
process tens of thousands of messages per second on a
single modern CPU, and is more than fast enough to run
on a mobile telephone handset or similar embedded de-
vice connected to a satellite SMS module. The memory
use of stats3 is less than 2 MB, including the statistical
model and dictionary. While larger than the approxi-
mately 10 KB required for SMAZ, it remains small

Table 6. Compressed message sizes as a percentage of un-
compressed size (lower numbers are better).

 Messages TS03.42 SMAZ stats3

GSM sample
message 1

1 40.7% 55.7% 32.8%

GSM sample
message 2

1 50.7% 76.3% 43.8%

GSM sample
message 3

1 63.2% 96% 48.8%

SMAZ sample
message set

17 - 64.1% 49.6%

Pie Floater 28 - 60.6% 40.6%

SMAZ
README file

71 - 64.1% 45.6%

British English
SMS Corpus

450 - 64.8% 41.4%

SMS SPAM
Collection v.1

5,547 - 71.6% 44.1%

Private
Twitter Corpus

145,333 - 80.7% 46.64%

Table 7. Speed comparison of SMAZ and stats3 (Mac Book
Pro, OSX 10.7.3, 2.7 GHz Intel Core i7, 16 GB 1333 MHz
DDR3).

 stats3 SMAZ

Compression
(messages/second)

31,389 324,988

Compression
(MB/second)

1.65 17.08

Decompression
(messages/second)

29,212 1,705,926

Decompression
(MB/second)

1.54 89.68

Open Access IJCNS

P. GARDNER-STEPHEN ET AL. 503

enough to be comfortably included in a smart-phone or
smart-phone application.

The difference in compression performance between
SMAZ and stats3 for the more SMS and Twitter-like
messages is particularly striking, providing evidence for
what is already intuitively apparent, i.e., that SMS and
Twitter messages differ substantially in composition
from normal language. This also suggests that TS03.42
requires substantial revision if it is to remain relevant in
the light of realistic message composition.

Focusing on the two largest SMS corpora as being the
most likely to be predictive of the performance of stats3
on SMS messages in the general case, stats3 achieved a
message-weighted average compressed message length
of just 43.9% of uncompressed message length, outper-
forming all short message compression schemes sur-
veyed in this paper. For more “English like” language,
such as the GSM sample message 1 and the Pie Floater
text, performance is even better, around 40% of uncom-
pressed message size. Thus we suggest that through stats3,
the state of the art in short message compression has
been advanced, particularly for the compression of SMS
and Twitter messages.

6. Future Work

There are several areas that offer potential for improving
the performance of the stats3 scheme. First, encoding of
rare and non-textual characters, including unicode char-
acters has been left all but unexplored. Second, higher
order statistical modeling of the case of letters in words
is likely to result in some improvements there. However,
the area where the most yield is expected is on improving
the mono-case textual character encoder, which typically
accounts for 90% of the length of a compressed message.
Using fixed-order statistics is suboptimal here, because it
introduces relatively high data storage requirements (ap-
proximately 1.5 MB for 3rd order statistics for a 69-
character alphabet), especially for mobile devices, even
though most of those statistics will be zero. A better ap-
proach is to replace the fixed-order model with a vari-
able-order model that models more deeply where it is
warranted, and less deeply otherwise. This has the poten-
tial to do away with the need for a separate word list al-
together, which both simplifies and potentially improves
the compression and speed performance of the system.
Finally, the variable-order statistical model should be
loadable from a binary file format, rather than be an irre-
placable part of the program, so that the model can be
updated as desired in applications where that would be
useful.

REFERENCES
[1] P. Gardner-Stephen, “The Serval Project: Practical Wire-

less Ad-Hoc Mobile Telecommunications,” 2011.
http://developer.servalproject.org/files/CWN_Chapter_Se
rval.pdf

[2] P. Gardner-Stephen and R. Challans and A. Bettison and
J. Lakeman and C. Wallis, “The Serval Project,” 2012.
http://servalproject.org

[3] P. Gardner-Stephen and J. Lakeman and R. Challans and
C. Wallis and A. Stulman and Y. Haddad, “MeshMS: Ad
Hoc Data Transfer within Mesh Network,” International
Journal of Communications, Network and System Sci-
ences, Vol. 5, No. 8, 2012, pp. 496-504.
http://dx.doi.org/10.4236/ijcns.2012.58060

[4] P. Gardner-Stephen and S. Palaniswamy, “Serval Mesh
Software-WiFi Multi Model Management. Proceedings
of the 1st International Conference on Wireless Tech-
nologies for Humanitarian Relief in ACWR 11, New York,
2011, pp. 71-77.
http://dx.doi.org/10.1145/2185216.2185245

[5] European Telecommunications Standards Institute, “Dig-
ital Cellular Telecommunications System (Phase 2+);
Compression Algorithm for Text Messaging Services
(GSM TS 03.42 Version 7.1.1 Release 1998),” 1999.

[6] European Telecommunications Standards Institute, “Dig-
ital Cellular Telecommunications System (Phase 2+);
Universal Mobile Telecommunications System (UMTS);
LTE; Compression Algorithm for Text Messaging Services
(3GPP TS 23.042 version 11.0.0 Release 11),” 2012.

[7] P. G. Howard and J. S. Vitter, “Arithmetic Coding for
Data Compression,” Proceedings of IEEE, Vol. 82, No. 6,
1994, pp. 857-865. http://dx.doi.org/10.1109/5.286189

[8] P. G. Howard and J. S. Vitter, “Analysis of Arithmetic
Coding for Data Compression,” Information Processing
and Management, Vol. 28, No. 6, 1992, pp. 749-764.
http://dx.doi.org/10.1016/0306-4573(92)90066-9

[9] G. G. Langdon Jr., “An Introduction to Arithmetic Cod-
ing,” IBM Journal of Research and Development, Vol. 28,
No. 2, 1984, p. 135.
http://dx.doi.org/10.1147/rd.282.0135

[10] J. Rissanen and G. G. Langdon, “Arithmetic Coding,”
IBM Journal of Research and Development, Vol. 23, No.
2, 1979, pp. 149-162.
http://dx.doi.org/10.1147/rd.232.0149

[11] A. Sanko, “Five Cents on Arithmetic Coding,” Technical
Report, 2005. http://www.codeguru.com

[12] I. H. Witten and Radford M. Neal and J. G. Cleary. “Ari-
thmetic Coding for Data Compression,” Communications
of the ACM, Vol. 30, No. 6, 1987, pp. 520-540.
http://dx.doi.org/10.1145/214762.214771

[13] CleverTexting, myMobile Ergonomics.
http://clevertexting.com

[14] SMSzipper, Acticom GmbH. http://smszipper.com

[15] Panini Keypad, Luna Ergonomics Private Ltd.
http://www.paninikeypad.com

[16] T. M. Mahmoud and B. A. Abdel-latef and A. A. Ahmed
and A. M. Mahfouz and T. M. Mahmoud and B. A. Ab-
del-latef and A. A. Ahmed and A. M. Mahfouz, “Hybrid
Compression Encryption Technique for Securing SMS,”
International Journal of Computer Science and Security,

Open Access IJCNS

http://developer.servalproject.org/files/CWN_Chapter_Serval.pdf
http://developer.servalproject.org/files/CWN_Chapter_Serval.pdf
http://servalproject.org/
http://dx.doi.org/10.4236/ijcns.2012.58060
http://dx.doi.org/10.1145/2185216.2185245
http://dx.doi.org/10.1109/5.286189
http://dx.doi.org/10.1016/0306-4573(92)90066-9
http://dx.doi.org/10.1147/rd.282.0135
http://dx.doi.org/10.1147/rd.232.0149
http://www.codeguru.com/
http://dx.doi.org/10.1145/214762.214771
http://clevertexting.com/
http://smszipper.com/
http://www.paninikeypad.com/

P. GARDNER-STEPHEN ET AL.

Open Access IJCNS

504

2009.

[17] J. L. Gailly, “Gzip Program and Documentation,” 1993.

[18] M. Burrows and D. J. Wheeler, “A Block-Sorting Loss-
less Data Compression Algorithm,” Technical Report,
124, Digital Equipment Corporation, 1994.

[19] J. Seward, M. Burrows, D. Wheeler, P. Fenwick and A.
Moffat and Radford Neal and Ian Witten, “The BZIP2
Compression Program,” 2001.

[20] M. V. Mahoney, “Adaptive Weighing of Context Models
for Lossless Data Compression,” Technical Report,
CS-2005-16, Florida Institute of Technology CS Depart-
ment, 2005.

[21] T. J. Ferguson and J. H. Rabinowitz. Self-Synchronizing
Huffman Codes. IEEE Transactions on Information The-
ory, Vol. 30, No. 4, 1984, p. 687.
http://dx.doi.org/10.1109/TIT.1984.1056931

[22] R. G. Gallager, “Variations on a Theme by Huffman,”
IEEE Transactions on Information Theory, Vol. IT-24,
No. 6, 1978, pp. 668-674.

[23] D. A. Huffman, “A method for the construction of mini-
mum redundancy codes,” Proceedings of the IRE, Vol. 40,
1952, pp. 1098-1101.
http://dx.doi.org/10.1109/JRPROC.1952.273898

[24] M. Jakobsson, “Huffman Coding in Bit-Vector Compres-
sion,” Information Processing Letters, Vol. 7, No. 6,
1978, pp. 304-307.
http://dx.doi.org/10.1016/0020-0190(78)90023-6

[25] J. van Leeuwen. “On the Construction of Huffman Trees.

Proceedings of 3rd International Colloqium on Automata,
Languages and Programming, 1976, pp. 382-410.

[26] Salvatore Sanfilippo, “SMAZ—Compression for Very
Small Strings,” 2009. https://github.com/antirez/smaz

[27] T. A. Almeida, J. M. G. Hidalgo and A. Yamakami,
“Contributions to the Study of SMS Spam Filtering: New
Collection and Results,” Proceedings of the 11th ACM
Symposium on Document Engineering in DocEng‘11,
New York, 2011, pp. 259-262.
http://dx.doi.org/10.1145/2034691.2034742

[28] M. T. Nuruzzaman, L. Changmoo and C. Deokjai, “Inde-
pendent and Personal SMS Spam Filtering,” 2011 IEEE
11th International Conference on Computer and Informa-
tion Technology (CIT), 2011, pp. 429-435.

[29] R. McCreadie, I. Soboroff, J. Lin, C. Macdonald, I. Ounis,
and D. McCullough, “On Building a Reusable Twitter
Corpus,” Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval in SIGIR ‘12, New York, 2012, pp
1113-1114. http://dx.doi.org/10.1145/2348283.2348495

[30] C. Constantinescu, J. Q. Trelewicz and R. B. Arps, “Nat-
ural Language Insensitive Short Textual String Compres-
sion,” 2004, pp. 1-10.

[31] A. Moffat and L. Stuiver, “Binary Interpolative Coding
for Effective Index Compression,” Information Retrieval,
Vol. 3, No. 1, 2000, pp. 25-47.
http://dx.doi.org/10.1023/A:1013002601898

http://dx.doi.org/10.1109/TIT.1984.1056931
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1016/0020-0190(78)90023-6
https://github.com/antirez/smaz
http://dx.doi.org/10.1145/2034691.2034742
http://dx.doi.org/10.1145/2348283.2348495
http://dx.doi.org/10.1023/A:1013002601898

