
Int. J. Communications, Network and System Sciences, 2013, 6, 497-504 
Published Online December 2013 (http://www.scirp.org/journal/ijcns) 
http://dx.doi.org/10.4236/ijcns.2013.612053  

Open Access                                                                                          IJCNS 

Improving Compression of Short Messages 

Paul Gardner-Stephen, Andrew Bettison, Romana Challans, 
Jennifer Hampton, Jeremy Lakeman, Corey Wallis 

Flinders University, Adelaide, Australia 
Email: paul@servalproject.org, andrew@servalproject.org, romana@servalproject.org,  

corey@servalproject.org, jenny@servalproject.org, jeremy@servalproject.org 
 

Received April 24, 2013; revised May 24, 2013; accepted May 30, 2013 
 

Copyright © 2013 Paul Gardner-Stephen et al. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

Compression of short text strings, such as the GSM Short Message Service (SMS) and Twitter messages, has received 
relatively little attention compared to the compression of longer texts. This is not surprising given that for typical cellu-
lar and internet-based networks, the cost of compression probably outweighs the cost of delivering uncompressed mes-
sages. However, this is not necessarily true in the case where the cost of data transport is high, for example, where sat-
ellite back-haul is involved, or on bandwidth-starved mobile mesh networks, such as the mesh networks for disaster 
relief, rural, remote and developing contexts envisaged by the Serval Project [1-4]. This motivated the development of a 
state-of-art text compression algorithm that could be used to compress mesh-based short-message traffic, culminating in 
the development of the stats3 SMS compression scheme described in this paper. Stats3 uses word frequency and 
3rd-order letter statistics embodied in a pre-constructed dictionary to affect lossless compression of short text messages. 
This scheme shows that our scheme compressing text messages typically reduces messages to less than half of their 
original size, and in so doing substantially outperforms all public SMS compression systems, while also matching or 
exceeding the marketing claims of the commercial options known to the authors. We also outline approaches for future 
work that has the potential to further improve the performance and practical utility of stats3. 
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1. Introduction 

Loss-less compression is a mature field, with a wide va-
riety of methodologies and implementations. However, 
compression of short strings is relatively under-explored. 
This is perhaps due to the relatively small gains to be 
made by compressing strings that are already quite short, 
combined with the relative difficulty of compressing 
strings that are so short that they have little opportunity 
to expose sufficient redundancy to allow for effective 
compression. 

Thus, even for cellular Short Message Service (SMS) 
traffic, where message volumes are enormous, relatively 
little effort has been invested. The GSMA did create a 
standard for SMS compression, GSM 03.42 [5], but it is 
difficult to ascertain whether it has been widely adopted 
by carriers, and the standard itself has not been updated 
since 1999 apart from being carried forward into the cor-
responding LTE standard [6], even though attractive 
compression technologies such as Arithmetic Coding [7- 
12] have lapsed from patent encumberance in the mean- 

time. Perhaps for mobile telecommunications carriers, 
the disinterest is simply commercial; they charge per 
message unit of 160 7-bit characters, i.e., 140 8-bit bytes, 
and reducing the number of messages required for parties 
to communicate would be revenue-negative. 

Of course, for consumers, the situation is different, 
because consumers pay carriers per message unit. The 
impressive cost charged per message unit by mobile tele-
communications carriers, introduces the potential for 
SMS compression to be revenue-positive. 

Indeed, the cost savings are sufficient. A number of 
companies have based their business model around com-
pressed-SMS services [13-15], and claimed reductions in 
message sizes of between 30% - 40% [13] and 50% - 
55% [14]. However, as commercial solutions, these 
claims cannot be easily verified nor are the source code 
available to allow meaningful benchmarking against other 
options. The advent of two-way satellite SMS services, 
such as the deLorme inReach that uses the Iridium con-
stellation, has created further incentive for compression 
of messages, as Iridium charges the service providers a 
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substantial fee per byte. 
The desire to compress SMS and Twitter-like mes-

sages is heightened for systems such as the Serval Project 
where communications are encrypted and authenticated 
for security, introducing unavoidable and uncompressible 
overhead to each message in the form of digital signa-
tures [16]. The Serval Project [2-4] is a mobile ad-hoc 
network that provides resilient communications for rural, 
remote and disaster situations. In such networks, band-
width is often limited, and clusters of nodes may be iso-
lated from one another, and satellite SMS services may 
be the backhaul of last resort. 

The Serval Project offers SMS-like short messaging 
and Twitter-like social networking services [3]; thus the 
motivation for identifying effective compression schemes 
that can be effective on SMS-length messages of the kind 
was commonly observed on Twitter. 

The remainder of this paper briefly explores: technical 
challenges to compressing short messages; a survey of 
existing compression schemes appropriate for use on 
SMS-length messages; an introduction to our new stats3 
SMS compression scheme, including a comparison with 
the existing state-of-the-art, showing that our scheme 
substantially outperforms all public SMS compression 
systems, and matches or outperforms the unverified 
marketing claims of the commercial offerings. Finally, 
we outline several areas for future work that we believe, 
which have the potential to further improve the perform-
ance of stats3. 

2. Challenges of Compressing of Short 
Messages 

The longer a message, the more likely it is to contain 
sufficient redundancy to allow a compression scheme to 
encode it in a manner that results in a reduction in size. 
There are several reasons why compressing short mes-
sages is particularly difficult. 

First, many compression schemes are adaptive, that is, 
they build a model of the statistics of a message as they 
go along, which is then used to feed a predictor that es-
timates the probability of following bits or bytes. Most 
such predictors require hundreds of characters to be 
processed before they are able to begin usefully to model 
the message, and thus begin to save space. 

Second, many compression schemes, whether adaptive 
or not, use a dictionary that provides initial context to the 
predictor, precisely to avoid the slow convergence that 
can result from purely adaptive compression schemes. 
However, this introduces a substantial overhead to the 
beginning of the message, which for SMS-length mes-
sages may be larger than whole uncompressed message. 

As a result, most compression algorithms that perform 
well on bulk data, e.g., gzip [17], bzip2 [18,19] and PAQ 

[20], all perform poorly on short messages, as illustrated 
in Table 1 where the performance of each of those com-
pressors on the individual messages of the SMAZ sample 
messages of Table 2 is shown. 
 
Table 1. Uncompressed and compressed sizes of the SMAZ 
sample message set for several high-performance compres-
sion schemes. Smallest size for each message is underlined. 

Message # Original Size gzip-9 bzip2-9 paq8l 

1 23 41 62 28 

2 7 27 45 11 

3 8 28 48 12 

4 21 41 63 26 

5 37 57 71 41 

6 82 87 101 71 

7 53 70 83 54 

8 53 69 85 52 

9 33 53 66 37 

10 69 82 91 64 

11 23 41 62 26 

12 44 64 80 46 

13 20 40 58 25 

14 18 38 57 22 

15 30 50 68 33 

16 43 63 77 45 

17 32 52 74 36 

 
Table 2. SMAZ sample message set, as extracted from 
SMAZ source code. 

# Text 

1 This is a small string 

2 foobar 

3 the end 

4 not-a-g00d-Exampl333 

5 Smaz is a simple compression library 

6
Nothing is more difficult, and therefore more precious, 
than to be able to decide 

7 this is an example of what works very well with smaz 

8 1000 numbers 2000 will 10 20 30 compress very little 

9 and now a few Italian sentences: 

10
Nel mezzo del cammin di nostra vita, mi ritrovai in  
una selva oscura 

11 Mi illumino di immenso 

12 L’autore di questa libreria vive in Sicilia 

13 try it against urls 

14 http://google.com  

15 http://programming.reddit.com 

16 http://github.com/antirez/smaz/tree/master 

17 /media/hdb1/music/Alben/The Bla 
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3. Existing Short Message Compression 
Schemes 

The logical solution to the challenge of compressing 
short strings such as SMS messages is to pre-compute a 
dictionary that then does not need to be embedded in 
each compressed message. This is indeed the approach 
taken by many extant SMS compression schemes, of 
which the following are perhaps the most prominent. The 
non-dictionary shortBWT scheme and several commer-
cial SMS compression systems are added for complete-
ness. 

3.1. GSM TS03.42 

Between 1997 and 1999 the GSM Association (GSMA) 
developed Technical Standard (TS) 03.42 [5,6], a stan-
dard for compression of SMS messages. At the time 
Arithmetic Coding was possibly patent encumbered, and 
perhaps for that reason and the relatively higher compu-
tation demands of that scheme, TS03.42 uses Huffman 
Coding [21-25], in return for a reduction in the compres-
sion possible. They begin with a language-specific fre-
quency table and common word list to provide initial 
context. The frequency table is optionally evolved as a 
message is compressed providing some adaptability, al-
though the word list is fixed. 

The technical standard itself is accompanied by three 
sample SMS messages (see Table 3) and their com-
pressed forms, giving some idea of the compression lev-
els that it can achieve, which is summarised in Table 4. 

If the sample messages are a reliable guide, the GSMA 
seemed to assume SMS being used for carrying longer 
email-like messages, and apparently by pedants for 
spelling and grammar, somewhat amplifying the apparent 
effectiveness of their scheme. Empirical examination of 
SMS and Twitter traffic suggests that those assumptions 
are flawed, and that in practice, TS03.42 would be likely 
to offer poorer compression than suggested by their un-
representative, if well meaning, examples. 

A more fundamental issue is that TS03.42 does not an-
ticipate that users of SMS and Twitter-like services al-
ready employ an ad-hoc form of compression in their 
messages, using various forms of short hand to fit their 
messages into the confines of the medium, e.g., shorten-
ing words such as “before” to “b4” and “tomorrow” to 
“2moro”, and in doing so likely limiting the ability of 
TS03.42 to achieve any significant degree of compres-
sion. 

Further assessment of the performance of TS03.42 is 
not possible without obtaining or creating an implemen-
tation of the relatively intricate specification, which are 
outside the scope of this paper. Thus assigning an esti-
mation of the performance of TS03.42 on real SMS and 
Twitter traffic is difficult, with performance not likely to  

Table 3. GSMA TS03.42 Example SMS Messages. Note that 
the apparently erroneous repetition of 021 appears in the 
file downloaded from the GSMA. 

1

Please call me no later than 07:30 on Wednesday morning so  
that we can discuss the project before the meeting. I will be at  
the hotel from Tuesday afternoon so if convenient for you we  
could arrange to have dinner there. If anything urgent comes up 
before then remember you can always call me on my mobile or 
send me a short message. Speak to you soon, Peter 
David, I’m on my way to the airport for the 9 o’clock flight to  
Paris. I’ll be out of the office until tomorrow so please  
postpone the lunch appointment with Steven and Julie. 
I contacted the supplier yesterday and they should confirm  
delivery of the following products by the weekend. 

AFP/956/A: 5000 units 

ANF/234/S: 100 units 

XXL/00789: 9000 units 

UXB/11008: 7500 units 

If you need more information call their sales department and  
quote order reference ST009/678. 

2

Best regards, Carol 

Thank you for your enquiry. The following services are  
currently available: 

001 - International news headlines 

002 - Local news headlines 

011 - Sport - Football 

012 - Sport - Cricket 

013 - Sport - Racing 

014 - Sport - Other 

021 - Stock quotes A-F 

021 - Stock quotes G-M 

021 - Stock quotes N-T 

021 - Stock quotes U-Z 

031 - Traffic reports 

032 - Train timetables 

033 - Flight information 

041 - Weather - local reports 

042 - Weather - local forecasts 

043 - Weather - national outlook 

051 - Account information 

052 - Change password 

053 - Set preferences 

061 - Send Fax 

062 - Send Email 

3

063 - Review inbox 

Open Access                                                                                          IJCNS 



P. GARDNER-STEPHEN  ET  AL. 500 

Table 4. Uncompressed and GSM TS03.42 and SMAZ com- 
pressed sizes of the TS03.42 example messages. Percentages 
are versus original size (lower is better). 

# Uncompressed TS03.42 SMAZ 

1 358 146 (40.7%) 196 (55.7%) 

2 491 249 (50.7%) 375 (76.3%) 

3 601 380 (63.2%) 577 (96%) 

 
be better than reducing message sizes to 50% of original 
size on average. Relative performance can be inferred by 
comparing the relative performance on the three TS03.42 
sample SMS messages. For example, Table 4 gives us 
reason to believe that TS03.42 outperforms SMAZ by a 
considerable margin. 

3.2. SMAZ 

SMAZ [26] is the only other open-source short-message 
compression library known to the authors. SMAZ is re-
markable in that its complete implementation is less than 
200 lines of code—which includes the code book of 
common character sequences that performs the role of 
the pre-computed dictionary. The README file for 
SMAZ claims average reduction in message length to 
50% - 60% of original size, with English text compress-
ing better. 

The performance of SMAZ on the three English text 
TS03.42 sample messages suggests that the claim of re-
ducing messages to an average of 50% - 60% of original 
size may not hold true for SMS-type traffic. As the im-
plementation of SMAZ is freely available it is possible to 
test this claim. 

See Table 5 for a summary of SMAZ performance on 
a variety of inputs. Attempt was made to include the Na-
tional University of Singapore (NUS) SMS corpus, the 
largest public SMS corpus known to the authors. The 
NUS corpus custodians did not respond in time for inclu-
sion of the NUS corpus in this comparison. SMS SPAM 
Collection v.1 [27] consists of (at the time) approxi-
mately 37% of the NUS corpus. All NUS SMS corpus 
derived corpora will be necessarily biased because the 
majority of messages were obtained from students at the 
NUS. 

The Private Twitter Corpus is a collection of Twitter 
messages collected in several episodes during October 
and November 2012. Collection occurred using the 
Twitter statuses/sample API that returns a random sam-
pling of public Twitter status messages1, and filtered to 
exclude all messages containing unicode characters, as 
efficient handling of unicode messages is beyond the 
scope of the work described in this paper. Nonetheless,  

Table 5. SMAZ compression performance for various in-
puts: compressed size as percentage of original size (lower is 
better). 

Corpus Type Messages Avg. Length SMAZ

Pie Floater* English 28 171 60.6%

SMAZ  
README file 

English 71 44 64.1%

British English  
SMS Corpus [28] 

SMS 450 80 64.8%

SMS SPAM 
Collection v.1 [27] 

SMS 5,547 82 71.6%

Private Twitter 
Corpus 

Twitter 348,994 54 81.4%

*The text from http://en.wikipedia.org/wiki/Pie_floater. 

 
the corpus contains messages in many languages and of a 
wide variety of forms. Twitter’s terms of use appear to 
prevent the release of any public corpus of Twitter mes-
sages, and even the TREC community is only able to 
distribute a list of tweets, rather than the tweets them-
selves2. Benchmarking against the 93 million message 
TREC Twitter Corpus [29] is beyond the scope of this 
paper, as such a large corpus is not necessary to obtain 
meaningful statistics about composition and compressi-
bility of Twitter messages. 

Overall for SMAZ, observed average compressed mes-
sage lengths were all worse than the claimed range for 
English text, and in the case of Twitter messages much 
worse, with average compressed message lengths of 
81.4% of the uncompressed message length. Thus, while 
effective in many instances, SMAZ elegantly small dic-
tionary-based approach is not sufficiently robust in the 
face of Twitter type traffic. 

3.3. ShortBWT 

The shortBWT [30] scheme is included as a counter- 
point, based on the remarkable properties of the Bur- 
rows-Wheeler transform [18], and can be generally un-
derstood as the equivalent of bzip2 [19] for short strings. 
In contrast with SMAZ and TS03.42, shortBWT does not 
use a precomputed dictionary of words or word parts, but 
rather uses precomputed statistics for the relative diver-
sity and abundance of characters in a message. 

As shortBWT does not appear to be publicly avaiable, 
its performance can only be estimated by examining 
Constantinescu et al. (2004) [30]. That paper suggests 
shortBWT is capable of compressing strings of 200 
characters to an average of around 55% of their original 
size. Performance on shorter strings is impossible to dis- 
cern from their paper, but there is no reason to believe 
that performance would be any better on shorter strings, 
as shorter strings make it more difficult for the Bur- 

1http://dev.twitter.com/docs/streaming-apis/streams/public; on-line; ac-
cessed 15 November 2012. 

2http://trec.nist.gov/data/tweets/; on-line; accessed 15 November 2012.

Open Access                                                                                          IJCNS 



P. GARDNER-STEPHEN  ET  AL. 501

rows-Wheeler transform to find the redundancy neces- 
sary to effect compression. 

3.4. Commercial Short Message Compression 
Systems 

There are several commercial SMS compression schemes 
available, e.g. [13-15]. As closed-source proprietary of-
ferings, there is limited information as to their operation. 
However, for the purposes of this paper our focus is on 
compression performance. The two commercial offerings 
which make claims about the compression performance 
of their products make claims of reductions in message 
sizes to between 60% - 70% [4] and 45% - 50% [14] of 
the original message length. Assuming that their claims 
are not exaggerated, this implies similar performance to 
shortBWT. However, as with SMAZ, it is likely that ei-
ther limited testing or other processes have resulted in a 
claim that is not sustained when faced with realistic SMS 
or Twitter traffic. 

3.5. Summary 

The state of the art of short message compression can be 
summarised as the various solutions offering compressed 
message sizes which are, on average, at least 45% of the 
uncompressed message size, although, as previously ex-
plained, there is reason to doubt that performance is in 
fact that good. SMAZ is the only openly available scheme, 
and it performs much more poorly than the best claims 
among the closed systems. Thus there is, in the very least, 
the opportunity to match, or beat, the best closed systems 
through the creation of a new open-source short message 
compression scheme. The following section describes the 
process by which we achieved this goal, culminating in 
the implementation of the stats3 short-message compres-
sion scheme. 

4. Overview of the Stats3 Short Message 
Compression Scheme 

It was decided that the most promising approach was to 
model the statistics of a corpus of representative Twitter 
messages and use that as a basis for a non-adaptive com-
pression scheme, using arithmetic coding for the back 
end. 

4.1. Character Statistics Generation & Encoding 
of Mono-Case Textual Characters 

A corpus of Twitter messages was obtained as previously 
described in this paper. A program was written to analyse 
those messages at the character level to determine the 
probability of the first letter of a message being either 
upper or lower case, and to compute the 1st, 2nd and 3rd 
order statistics for: 

1) the probability of the 69 most commonly occurring 
characters, treating all letters as lower case; 

2) the probability of the first letter in a word being 
upper or lower case, based on the case of the previous 
word(s) as appropriate; 

3) the probability of each letter in a word being upper 
or lower case, based on the case of the previous letters in 
the word. 

4) the probability of messages being of any particular 
length between 0 and 1,024 characters, the maximum 
length of short message supported by stats3. 

Messages were stripped of all letter-case information 
and non-textual characters and then encoded according to 
the 3rd order statistics. The length of the uncompressed 
message was encoded according to the message length 
statistics. The case of letters was compressed by, for each 
letter in a message, using the 3rd-order case statistics 
gathered to predict the case of that letter. 

4.2. Dictionary Generation 

In addition, word-level analysis was performed, using all 
characters other than a - z and 0 - 9 to indicate a word 
break. All words occurring less than five times were dis-
carded. Whenever a word was discarded, it was attempted 
to assign the frequency to another word sharing the longest 
common prefix with the discarded word. For example, 
discarding four instances of “bakfietsen” would result in 
the recorded frequency of “bakfiets” to increase by four. 

The entropy of the each word remaining in the list was 
modelled using the 3rd order statistics previously com-
puted, resulting in an estimate of the number of bits re-
quired to encode the word as a sequence of characters. 
This represents the saving possible by encoding the word 
as a single token  potentialS . 

The number of instances of all remaining words was 
calculated, as was the total number of word breaks in the 
corpus. From this it was possible to compute the prob-
ability of a word substitution occurring at any single 
word break, and from that the entropy, and hence the bit 
cost of either substituting or not substituting. Substitution 
occurred with 0.5p  , thus a no-substitution event 
could be encoded in less than one bit. For the same rea-
son, each word substitution event must incur a cost per 
substitution  sub

subC

C

potential

 of ≥1 bit. That cost must be de-
ducted from the savings possible by substituting each 
word. The cost of encoding any given word  can 
be computed from the relative frequency of that word in 
the training corpus. Thus the overall saving per word 
when substituted could be estimated according to  

 tokenC 

actualS S Ctoken   . 

actual  was calculated for each word remaining in the 
list. Any words where  were discarded from 
the list, and 

S
0actualS 

subC  was then recalculated. This process 
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was repeated until no further words were removed from 
the list. A side effect of this process is that the word list 
contains no low-entropy words, as they are more effi-
ciently encoded directly using the 3rd order statistics. For 
example, “the” is not in the list despite its high frequency, 
while words such as “tomorrow” (and numerous mis-
spellings thereof) are in the list, because of the higher 
entropy of that word. From a corpus of 203,661 of Twit-
ter messages a list of 13,179 substitutable words was 
produced. 

4.3. Rare & Non-Text Characters 

Characters that were not in the 69 common characters 
that are covered by the predictive model were exception-
ally rare. While a more refined method is possible, the 
current implementation encodes those characters in a two 
part process. First, an interpolative coder [31] using an 
arithmetic coding back-end was used to efficiently en-
code the positions of the characters in the message. The 
actual characters were then recorded using arithmetic 
coding. 

4.4. Model Selection 

In addition to the model described above, two simpler 
models were also included for instances where the 
pre-computed statistics resulted in the compressed mes-
sage being longer than the uncompressed message. 

First, if no rare or non-textual characters were present 
in the message, the entire message was encoded using 
radix-69. Case information was still encoded as for the 
statistical model. Selection of this model versus the sta-
tistical model is via a single decision with 0.05p  , 
resulting in a cost of 0.074 bits to use the statistical 
model and a cost of 4.322 bits to use this non-statistical 
model. A more accurate assessment would place , 
but would also result in a substantially higher bit cost to 
use the non-statistical model, without offering any sig-
nificant reduction in cost overall. 

0.05p

Second, if rare or non-textual characters were present, 
and the MSB of the first character was zero, the message 
was encoded as the identical of the input string. This re-
use of the MSB of the first character is appropriate for 
the intended use case of sending text messages via Irid-
ium SMS, which transmits 8-bit characters. For tradi-
tional SMS carriage, one additional byte would be nec-
essary. 

The source code for the stats3 program can be found at 
https://github.com/servalproject/smac and is distributed 
under the GNU General Public License v2. 

5. Results & Conclusions 

Table 6 presents a summary of the performance of the 

stats3 scheme described above against the various cor-
pora and example messages associated with the existing 
short message compression schemes, and compares this 
with the performance of the other schemes where data 
are available or could be produced. The stats3 statistics 
were generated by processing 203,661 messages of the 
private Twitter corpus. The remaining 145,333 messages 
were used for the actual test, for both stats3 and SMAZ 
to provide comparability. Table 7 compares the speed of 
stats3 with SMAZ on the private Twitter corpus. 

It is clear that stats3 is much slower than SMAZ, but 
that in return, stats3 easily outperforms both TS03.42 and 
SMAZ on all inputs. Nonetheless, stats3 is still able to 
process tens of thousands of messages per second on a 
single modern CPU, and is more than fast enough to run 
on a mobile telephone handset or similar embedded de-
vice connected to a satellite SMS module. The memory 
use of stats3 is less than 2 MB, including the statistical 
model and dictionary. While larger than the approxi-
mately 10 KB required for SMAZ, it remains small  
 
Table 6. Compressed message sizes as a percentage of un-
compressed size (lower numbers are better). 

 Messages TS03.42 SMAZ stats3 

GSM sample 
message 1 

1 40.7% 55.7% 32.8% 

GSM sample 
message 2 

1 50.7% 76.3% 43.8% 

GSM sample 
message 3 

1 63.2% 96% 48.8% 

SMAZ sample 
message set 

17 - 64.1% 49.6% 

Pie Floater 28 - 60.6% 40.6% 

SMAZ  
README file 

71 - 64.1% 45.6% 

British English 
SMS Corpus 

450 - 64.8% 41.4% 

SMS SPAM 
Collection v.1 

5,547 - 71.6% 44.1% 

Private  
Twitter Corpus 

145,333 - 80.7% 46.64%

 
Table 7. Speed comparison of SMAZ and stats3 (Mac Book 
Pro, OSX 10.7.3, 2.7 GHz Intel Core i7, 16 GB 1333 MHz 
DDR3). 

 stats3 SMAZ 

Compression 
(messages/second) 

31,389 324,988 

Compression 
(MB/second) 

1.65 17.08 

Decompression 
(messages/second) 

29,212 1,705,926 

Decompression 
(MB/second) 

1.54 89.68 
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enough to be comfortably included in a smart-phone or 
smart-phone application. 

The difference in compression performance between 
SMAZ and stats3 for the more SMS and Twitter-like 
messages is particularly striking, providing evidence for 
what is already intuitively apparent, i.e., that SMS and 
Twitter messages differ substantially in composition 
from normal language. This also suggests that TS03.42 
requires substantial revision if it is to remain relevant in 
the light of realistic message composition. 

Focusing on the two largest SMS corpora as being the 
most likely to be predictive of the performance of stats3 
on SMS messages in the general case, stats3 achieved a 
message-weighted average compressed message length 
of just 43.9% of uncompressed message length, outper-
forming all short message compression schemes sur-
veyed in this paper. For more “English like” language, 
such as the GSM sample message 1 and the Pie Floater 
text, performance is even better, around 40% of uncom-
pressed message size. Thus we suggest that through stats3, 
the state of the art in short message compression has 
been advanced, particularly for the compression of SMS 
and Twitter messages. 

6. Future Work 

There are several areas that offer potential for improving 
the performance of the stats3 scheme. First, encoding of 
rare and non-textual characters, including unicode char-
acters has been left all but unexplored. Second, higher 
order statistical modeling of the case of letters in words 
is likely to result in some improvements there. However, 
the area where the most yield is expected is on improving 
the mono-case textual character encoder, which typically 
accounts for 90% of the length of a compressed message. 
Using fixed-order statistics is suboptimal here, because it 
introduces relatively high data storage requirements (ap-
proximately 1.5 MB for 3rd order statistics for a 69- 
character alphabet), especially for mobile devices, even 
though most of those statistics will be zero. A better ap-
proach is to replace the fixed-order model with a vari-
able-order model that models more deeply where it is 
warranted, and less deeply otherwise. This has the poten-
tial to do away with the need for a separate word list al-
together, which both simplifies and potentially improves 
the compression and speed performance of the system. 
Finally, the variable-order statistical model should be 
loadable from a binary file format, rather than be an irre-
placable part of the program, so that the model can be 
updated as desired in applications where that would be 
useful. 
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