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ABSTRACT 

The paper presents a model of fractal parametric oscillator. Showing that the solution of such a model exists and is 
unique. A study of the solution with the aid of diagrams Stratton-Ince. The regions of instability, which can occur pa-
rametric resonance. It is suggested that this solution can be any signal, including acoustic. 
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1. Introduction 

It is known that the natural medium (geological medium) 
may have fractal properties. These properties charac- 
terize the spatial-temporal nonlocality or “memory” of 
the medium, which in turn is determined by the power 
laws. 

Usually geological medium with fractal properties de- 
scribed in terms of fractional calculus [1] by equations 
with fractional parameters, which depend on the fractal 
dimension of the geomedium. This fact allows us to 
make extensive use of mathematical constructions of 
fractional calculus in a variety of fields, such as the de- 
velopment of new methods of vector-phase acoustic di- 
agnostic of plasticity geological medium [2].  

In this paper the nonlinear parametric oscillatory pro- 
cess in the geological medium with fractal properties. 
Feature of this process is that the displacement of the 
points geomedium a result of its stress-strain of the state 
of can occur with increasing amplitude due to changes in 
the parameters of the medium itself. 

Through this process may be described cracks in the 
avalanche geomedium, which in most cases is preceded 
by seismic activity in the region (Kamchatka), which can 
be used in prediction of strong earthquakes.  

2. Statement of the Problem 

The geomedium formed loose deposits of rocks. Assume 
that this medium has fractal properties. Then the problem 
of displacement geomedium points in time  can be 
stated as follows:  
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The Equation (1) is a generalization of parametric 
resonance the classical Mathieu’s equation in a case 
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, then Equation (1) is 
known as equation of fractional oscillator, which is in- 
vestigated in study [4].  

Since Equation (1) is considered first, then call it a 
fractal equation parametric oscillator.  

3. Solution 

In study [5] have shown that the solution of equation 
Cauchy problems (1) and (2) can be represented in the 
form the Volterra integral equation of the second kind:  

t K t x g t    x          (3) 

The kernel of the Equation (3) 
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 in solution (3), it is the solution of the 
fractional oscillator  
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Solve the Equation (3), use the composite trapezoidal 
quadrature formula. Take a grid t h  with step 
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The denominator of (7) must satisfy ,1 0 i j . 
This condition can be achieved by changing the step . 
Trapezoidal quadrature formula on the interval  1k k  
has an error , and the total error in the segment- 
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0, k  .  
The numerical solution of (7) allows the study of fractal 

parametric oscillator in particular can make the visuali- 
zation of calculation results.  

4. Numerical Modeling 

Numerical simulation of (1) and (2) was realized using a 
mathematical software MAPLE. First there was the case 
when in (1)   

0 1

. It’s the classical Mathieu equa- 
tion. It is known that solution of the Cauchy problem (1)- 
(2), taking 2  and C     can be written in terms 
of the Mathieu function. The MAPLE gives the follow- 
ing result: 
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The solution (8), will used as a test for the analysis of 

the numerical solution obtained by the method (7). The 
simulation results for    

2

 of the method (7) and 
formula (8) are shown in Figure 1. 

In Figure 1(a) shows that the solution (7) coincides 
with the solution (8). Amplitude of the oscillations in- 
creases Figure 1(b), due to the effect of parametric reso- 
nance.  

Figure 2 is shown results of simulation when   , 
1 2  0.5,   , 0.02 , ; .  1 2

According to this diagram, it’s impossible to deter- 
mine at what values of parameters A and m parametric 
resonance occurs, for example when A = m = 1 paramet- 
ric resonance occurs in Figure 1(b). 
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2In Figure 3 is shown results of simulation when   , 
1 2 0.5A, 0.02m  ,  , ; . 0 1u  0 0u 
 

 
(a) 

 
(b) 

Figure 1. The calculated curves based on formula (7) (blue 
curve) and the exact solution (8) (red curve) for the left 
image parameters: ξ = 0.02, δ = 0.01: C1 = 1; C2 = 0, for the 
right picture settings: ξ = δ = 1: C1 = 1; C2 = 0.  
 

 

Figure 2. Strutt-Ince diagram stability (S) and instability (U) 
areas for the classical Mathieu equation.  
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Figure 3. The calculated curves are plotted depending on 
the values β at a fixed value α = 2, curve 1: β = 2, curve 2: β 
= 1.8; curve 3: β = 1.6, curve 4: β = 1.4.  
 

In this case the solutions haven’t a property of periodic, 
and have a decaying character. These solutions are char- 
acteristic of media with dissipation, in particular for in- 
homogeneous, fractal mediums. 

In Figure 4 shows the calculated curves for fixed val-
ues of the parameters 1.8  , 0.5  , 0.02  1 1C,  , 

 and they are depend of the parameter 2 0C   . 
Curves are also damped character at short times be- 

have the same, while at large time intervals is regrouping 
of curves in the reverse order. 

5. Strutt-Ince Diagram 

Indeed the values of parameters ξ and δ are entered the 
so-called zone of instability that can be constructed using 
of diagrams Strutt-Ince [6]. 

In Figure 5 is shown a Strutt-Ince diagram stability (S) 
and instability (U) areas for the classical Mathieu equa- 
tion.  

According to this diagram, it’s impossible to deter- 
mine at what values of parameters ξ and δ parametric re- 
sonance occurs, for example when 1  

2

 parametric 
resonance occurs in Figure 1(b).  

Consider the differential Equation (1) and fractional 
derivatives for    and 1  :  

 0 cost x
          0t x t          (9) 

Define the conditions under which there is a paramet- 
ric resonance in (9). To do this, in the    plane must 
construct diagrams Strutt-Ince. As a rule, there is a re- 
gion of instability, parametric resonance, which leads to 
an increase in the amplitude of oscillations  

Usually in the area of instability exists parametric re- 
sonance, which leads to an increase in amplitude. Esti- 
mate the parameters δ. 

Consider the derivative of fractional order on the left 
side of (9):  

   

 

Figure 4. The calculated curves plotted according of the 
parameter values α for a fixed value β = 1.8: α = 2—curve 1, 
α = 1.8—curve 2, α = 1.6—curve 3, α = 1.4—curve 4. 
 

 

Figure 5. Strutt-Ince diagram for the mathieu equation. 
The letter U indicated the region of instability, when possi- 
ble parametric resonance, S—the region of stability. 
 

Use the method of harmonic balance for Equation (9), 
its solution formed of a harmonic series [7]: 
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For the first resonance take the first harmonic (11), i.e. 
  and substitute (9) in view of the representation 

(10). After some transformations go to the following re- 
sult: 
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If in (12) to put   , get the known relation for the 
first classical parametric resonance Mathieu 

1

4 2


               (13)   

In Figure 6, as an example, is built Strutt-Ince dia- 
gram according to the expression (13). 

It can be noted that in (12) imposes constraints on the 
parameters  . The value must satisfy the following in- 
equality:  
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Figure 6. Strutt-Ince diagram for expression (13). 
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Figure 7 shows the area of parameter values   ac- 
cording to (14). 

Spend the visualization of the results of research solu- 
tions of (9). According to the above analysis, it was the 
expression (12). Below is its visualization:  

Figure 8 shows that a decrease in the parameter   
changes of the curves, i.e., change the boundaries of the 
stability and instability. Instability area is narrowed for 
the values of 1 

, ,

, so the effect of parametric reso- 
nance is reduced. 

Figure 9 shows the surface constructed according to 
(12), depending on the parameters    . There is an 
area on the surface, where the values of parameter   is 
not defined, it is caused by the expression (14). 

Analysis of the solution of Equation (1) shows that 
when the parameter   narrows the field instability, 
also the parameter   has restrictions (14).  

The boundaries of the stability and instability in the 
Strutt-Ince diagram can be improved if consider the solu- 
tion (11) for the harmonics , but it will lead to 
some computational difficulties. 

1n 

0

6. Conclusions 

The paper presents a model of fractal parametric oscillator. 
This model generalizes previously known models: the 
classical oscillator (  , 2   ), a parametric os- 
cillator ( 2   2) and fractal oscillator (  ,   , 

0  ). 
The solutions of the Cauchy problem (1.2) using nu- 

merical methods (7), showed a good agreement of the  

 

Figure 7. Curve defining limits at the parameter ξ. 
 

1

4 2

  
1

4 2

  

 

Figure 8. Ince-Strutt diagram for expression (12). Curves 
are plotted a function of the parameter on parametr β and α 
= 2: 1) β = 1.8; 2) β = 1.6; 3) β = 1.2. 
 

 

Figure 9. α − δ − ξ surface constructed according expression 
(12). 
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