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ABSTRACT 

The maximum satisfiability problem (MAX-SAT) refers to the task of finding a variable assignment that satisfies the 
maximum number of clauses (or the sum of weight of satisfied clauses) in a Boolean Formula. Most local search algo-
rithms including tabu search rely on the 1-flip neighbourhood structure. In this work, we introduce a tabu search algo-
rithm that makes use of the multilevel paradigm for solving MAX-SAT problems. The multilevel paradigm refers to the 
process of dividing large and difficult problems into smaller ones, which are hopefully much easier to solve, and then 
work backward towards the solution of the original problem, using a solution from a previous level as a starting solution 
at the next level. This process aims at looking at the search as a multilevel process operating in a coarse-to-fine strategy 
evolving from k-flip neighbourhood to 1-flip neighbourhood-based structure. Experimental results comparing the mul-
tilevel tabu search against its single level variant are presented. 
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1. Introduction 

The satisfiability problem which is known to be NP- 
complete [1] plays a central role problem in many appli-
cations in the fields of VLSI Computer-Aided design, 
Computing Theory, and Artificial Intelligence. Generally, 
a SAT problem is defined as follows. A propositional  

formula 
1

m
jj

C   with m clauses and n Boolean  

variables is given. Each Boolean variable,  , 1,ix i n  , 
takes one of the two values, True or False. A clause, in 
turn, is a disjunction of literals and a literal is a variable or 
its negation. Each clause jC  has the form: 
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where  , 1Ij Ij n  , Ij Ij   and ix  denotes the 
negation of ix . The task is to determine whether there 
exists an assignment of values to the variables under 
which  evaluates to True. Such an assignment, if it 
exists, is called a satisfying assignment for , and  is 
called satisfiable. Otherwise,  is said to be unsatisfi-
able. Most SAT solvers use a Conjunctive Normal Form 
(CNF) representation of the formula . In CNF, the 
formula is represented as a conjunction of clauses, with 
each clause being a disjunction of literals. The maximum 
satisfiability problem which is the optimization variant of 

SAT plays a fundamental role to many practical problems 
in computer science. More formally, let i denote the 
weight of clause i . Then expression (1) is the objective 
function to be maximized, with  equals to 1 when  
is true and 0 otherwise, 
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There exist two important variations of the MAX-SAT 
problem. The weighted MAX-SAT problem is the Max- 
SAT problem in which each clause is assigned a positive 
weight. The goal of the problem is to maximize the sum of 
weights of satisfied clauses. The unweighted MAX-SAT 
problem is the MAX-SAT problem in which all the weights 
are equal to 1 and the goal is to maximize the number of 
satisfied clauses. Efficient methods that can solve large 
and hard instances of MAX-SAT are eagerly sought. Due 
to their combinatorial explosion nature, large and complex 
MAX-SAT problems are hard to solve using systematic 
algorithms based on branch and bound techniques [2]. 
One way to overcome the combinatorial explosion is to 
give up completeness. Local search algorithms are tech-
niques which use this strategy and gained popularity due 
to their conceptual simplicity and good performance. 
However, most local search algorithms including tabu 
search algorithm rely on the 1-flip neighbourhood struc-
ture for which two truth value assignments are neighbours 
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if they differ in the truth value of exactly one variable. A 
typical local search starts with any given assignment, and 
then repeatedly changes (flips) the assignment of a vari-
able that leads to the largest decrease in the total number 
of unsatisfied clauses. Some attempts have been made to 
extend to consider r-flip neighbourhood structure. The 
quality of solutions improves if larger neighbourhood is 
used; however the computational time to search such 
neighbourhood increases exponentially with r [3]. The 
work proposed in [4] uses a multi-flip procedure to gen-
erate the next assignment based on simultaneously flip-
ping the value of multiple variables. The approach was 
able to provide better results compared to 1-flip neigh- 
bourhood on problem instances with up to 150 variables. 
In this paper, a tabu search combined with the multilevel 
paradigm is introduced. The core of the proposed algo-
rithm involves looking at the search as a multilevel proc-
ess operating in a coarse-to-fine strategy evolving from a 
k-flip neighbourhood to 1-flip neighbourhood-based stru- 
cture enabling tabu search to take long leaps in the search 
space. This work is motivated by the recent results pre-
sented in [5] where the multilevel paradigm was capable 
of improving the asymptotic convergence of memetic 
algorithms dramatically on large industrial instances. The 
question we intend to answer in this work is whether the 
multilevel paradigm improves the asymptotic conver-
gence of TS. To this end, the focus is restricted to for-
mulas in which all the weights are equal to 1 i.e. un-
weighted MAX-SAT) using a offset of industrial problem 
instances. 

The paper is organized as follows: Section 2 provides a 
short survey of algorithms for MAX-SAT. Section 3 de-
scribes the TS algorithm implemented in this work. Sec-
tion 4 introduces TS combined with the multilevel para-
digm. Section 5 presents the experimental results while 
finally Section 6 provides a conclusion of the the papers 
with future work. 

2. Related Work 

The simplicity of MAX-SAT combined with its wide ap- 
plicability made several researchers eager to develop ef- 
ficient algorithms for solving large MAX-SAT problems. 
Stochastic Local search algorithms (SLS) are amongst the 
many different approaches proposed to deal with MAX- 
SAT. They are based on what is perhaps the oldest opti-
mization method trial and error. Typically, they start with 
an initial assignment of values to variables randomly or 
heuristically generated. During each iteration, a new so-
lution is selected from the neighbourhood of the current 
one by performing a move. Choosing a good neighbour-
hood and a method for searching it is usually guided by 
intuition, because very little theory is available as a guide. 
All the methods usually differ from each other on the 

criteria used to flip the chosen variable. One of the earliest 
local search for solving SAT is GSAT. The GSAT algo-
rithm operates by changing a complete assignment of 
variables into one in which the maximum possible number 
of clauses are satisfied by changing the value of a single 
variable. Another widely used variant of GSAT is the 
WalkSAT based on a two stage selection mechanism 
originally introduced in [6]. Other algorithms [7,8] have 
emerged using history-based variable selection strategy in 
order to avoid flipping the same variable. Numerous other 
methods have also such as Simulated Annealing [9], Evo- 
lutionary Algorithms [10] and Greedy Randomized Adap- 
tive Search Procedures [11] have also been proposed. 
Lacking the theoretical guidelines while being stochastic 
in nature, the deployment of several SLS involves exten-
sive experiments to find the optimal noise or walk prob-
ability settings. To avoid manual parameter tuning, new 
methods have been designed to automatically adapt pa-
rameter settings during the search [12,13] and results have 
shown their effectiveness for a wide range of problems. 
The work conducted in [14] introduced Learning Auto-
mata (LA) as a mechanism for enhancing SLS based SAT 
solvers, thus laying the foundation for novel LA-based 
SAT solvers. Finally, a new recent strategy based on an 
automatic procedure for integrating selected components 
from various existing solvers have been devised in order 
to build new efficient algorithms that draw the strengths of 
multiple algorithms [15,16]. 

3. Tabu Search 

Tabu Search algorithm (TS) was proposed by Glover [17]. 
The main feature of the algorithm is the ability to avoid 
returning in a previous state by keeping a trace of the 
optimization history. In this section, the tabu search al-
gorithm used in this work is described in Algorithm 1. 
First, an initial solution of the problem is introduced (line 
2). Then during each pass of the algorithm, given the 
current solution, one examines its corresponding neigh- 
bourhood and choose to move to the solution that most 
improves the objective function. At the end of each pass, 
the literal with the highest gain is selected (line 10) (ran-
domly). To avoid getting stuck in a local minimum, his-
torical information from the last k iterations is used. The 
value k may be fixed or a variable that depends on the 
search. The set of moves determined by this information 
forms a tabu list. Hence, the method has a short term 
memory remembering which trajectories have been re-
cently explored. To prevent the method from cycling be- 
tween the same solutions, one forbids the reverse of any 
move contained in the tabu list. The algorithm proceeds 
by choosing a random unsatisfied clause (line 5). There-
after, a non tabu and unvisited literal is chosen randomly 
and flipped (lines 6, 7 and 8). The tabu list is updated be- 
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fore the start of every new pass (line 11). The selected literal 
during each pass is inserted into the tabu list with a value k 
that will determine the number of iterations it will remain 
tabu. During each pass, the value k assigned to each tabu 
literal is decremented by 1. When the value k reaches the 
value 0, its corresponding literal becomes non tabu. 

constructed from 0  by merging literals. The merging 
is computed using a randomized algorithm similar to [20]. 
The literals are visited in a random order. If a literal i  
has not been matched yet, then a randomly unmatched 
literal jl

l
 is selected, and a new literal kl  (a cluster) 

consisting of the two literals i  and jl  is created. Un-
merged literals are simply copied to the next level. The 
new formed literals are used to define a new and smaller 
problem and recursively iterate the reduction process 
until the size of the problem reaches some desired thre-
shold (lines 3,4 and 5 of Algorithm 2). This process is 
graphically illustrated in Figure 1 using an example with 
12 literals. The coarsening phase uses two levels to 
coarsen the problem down to three clusters. 0  
corresponds to the original problem. The random coars-
ening procedure is used to merge randomly the literals in 
pairs leading to a coarser problem with 5 clusters. This 
process is repeated leading to the coarsest problem with 3 
clusters. An initial solution is generated where the clus-
ters are assigned randomly the value of true or false. The 
figure shows an initial solution where one cluster is as-
signed the value of true and the remaining two clusters 
are assigned the value false. Thereafter, the computed 
initial solution is then improved with WalkSAT. As soon 
as the convergence criteria is reached at 2 , the 
ucoarsen- ing phase takes the assignment reached at 

2  and then extends it so that it serves as an initial 
assignment for the parent level 1  and then proceed 
with a new round of TS. This iteration process ends when 
TS rea- ches the stop criteria that is met at . 

4. Multilevel Tabu Search 

Multilevel techniques have already been introduced for a 
limited number of combinatorial optimization problems. 
They were first introduced when dealing with the graph 
partitioning problem (GCP) [18-23] and have proved to 
be effective in producing high quality solutions. The tra- 
veling salesman problem (TSP) was the second combi-
natorial optimization problem to which the multilevel 
technique was applied [24,25] and has shown a clear im- 
provement in the asymptotic convergence of the solution 
quality. However, the results obtained when the multi- 
level paradigm was applied to the graph coloring prob-
lem [26] did not seem to be in line with the general trend 
observed in GCP and TSP as its ability to enhance the 
convergence behavior of the local search algorithms. 
Graph drawing is another area where multilevel tech-
niques gave a better global quality to the drawing and is 
suggested to both accelerate and enhance force drawing 
placement algorithms [27]. A recent survey over existing 
multilevel techniques is given in [28,29]. The implemen-
tation of the multilevel paradigm requires four basic 
components: a coarsening algorithm, an initialization al- 
gorithm, an extension algorithm (which takes the solu-
tion on one problem and extends it to the parent problem), 
and a refinement algorithm. This section describes all 
these components which are necessary to derive a tabu 
algorithm operating in a multilevel context. 

Level

Level

Level
Level

0Level

P

4.2. Initial Solution 

The reduction phase ceases when the problem size shrinks 
to a desired threshold. Initialization is then trivial and 
consists of generating an initial solution for the population 
of the problem m  using a random procedure. The clus- 
ters of every individual in the population are assigned the 
value of true or false in a random manner (line 7 of Algo- 
rithm 2). 

4.1. Reduction Phase 

Let 0  (the subscript represents the level of problem 
scale) be the set of literals. The next coarser level  is  
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Algorithm 2. Multilevel tabu search. 
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Figure 1. The various phases of the multilevel paradigm combined with TS. 
 
4.3. Projection Phase 

The Projection phase refers to the inverse process fol-
lowed during the reduction phase. Having improved the 
assignment on 1m , the assignment must be extended 
on is parent m . The extension algorithm is simple; if 
a cluster 1i m  is assigned the value of true then the 
merged pair of clusters that it represents, 

Level
Level

c S
jc c S, k m  are 

also assigned the true value (line 9 of Algorithm 2). 

4.4. Improvement Phase 

The idea behind the improvement phase is to use the 
projected assignment at 1mLevel   as the initial assigment 

for m  for further refinement using TS described in 
Section 3. Even though the assignment at the 1m

Level
Level   is 

at a local minimum, the projected assignment may not be 
at a local optimum with respect to m . The projected 
assignment is already a good solution leading WalkSAT 
to converge quicker to a better assignment (line 10 of 
Algorithm 2). 

Level

5. Experimental Results 

Test Suite & Parameter Settings 

The performance of MLV-TS is evaluated against TS 
using a set of real industrial problems taken from SAT03 
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benchmark website  
(http://www.informatik.tu-darmstadt.de/AI/SATLIB). Due 
to the randomization nature of both algorithms, each 
problem instance was run 100 times with a cut-off para- 
meter (max-time) set to 60 minutes. The symbols V  and 
C  denote respectively the number of variables and the 

number of clauses. 
The tests were carried out on a DELL machine with 800 

MHz CPU and 2 GB of memory. The code was written in 
C++ and compiled with the GNU C compiler version 4.6. 
The following parameters have been fixed experimentally 
and are listed below: 
 Stopping criteria for the reduction phase: The reduc-

tion process stops as soon as the size of the coarsest 
problem reaches 100 variables (clusters). 

 Convergence during the refinement phase: If there is 
no observable improvement of the function value 
during 1000 consecutive iterations, TS is assumed to 
have reached convergence and moves to a higher level. 

 Tabu length: The length of tabu list is set to be equal to: 
0.01875 × n + 2.8125 as proposed in [30] where n is 
the number of variable in the problem. 

Figures 2-4 show the development of the mean satis-
fied clause for both algorithms. Both algorithms start from 
nearly identical initial solutions. The plots show immedi-
ately the dramatic improvement obtained using the  

 

 
 

 

Figure 2. MLV-TS vs TS: (above) alu4mul.mi-ter.Shuffled-as.sat03-344.cnf: V  = 4736 C  = 30,465 (below) c3540mul. 

miter.shuffled-as.sat03-345: V  = 5248 C  = 33191. Evolution of the mean satisfied clause over time. 
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Figure 3. MLV-TS vs TS: (above) 6288mul.miter. shuffled-as.sat03-346.cnf: V  = 9540 C  = 61421 (below) dalumul.miter. 

shuffled-as.sat03-349.cnf: V  = 9426 C  = 59,991. Evolution of the mean satisfied clause over time. 

 
multilevel paradigm. The curves show no crossover im-
plying that MLV-TS dominates TS. The mean number of 
unsatisfied clause improves rapidly at first and continues 
to improve before it flattens off as we mount the plateau as 
in the Figure 2, marking the start of the second phase. The 
plateau spans a region in the search space where flips 
typically leave the best assignment unchanged, and occurs 
more specifically once the refinement reaches the finest 
level. Comparing the multilevel version with the single 
level version, MLV-TS is far better than TS, making it the 

clear leading algorithm. The key success behind the effi-
ciency of MLV-TS relies on the multilevel paradigm. 
MLV-TS uses the multilevel paradigm and draw its 
strength from coupling the refinement process across dif- 
ferent levels. This paradigm offers two main advantages 
which enables TS to become much more powerful in the 
multilevel context. During the refinement phase, TS ap-
plies a local a transformation (i.e. a move) within the 
neighbourhood (i.e. the set of solutions that can be rea- 
ched from the current one) of the current solution to gen- 
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erate a new one. The coarsening process offers a better 
mechanism for performing diversification (i.e., the ability 
to visit many and different regions of the search space) 
and intensification (i.e., the ability to obtain high quality 
solutions within those regions). By allowing TS to view a 
cluster of variables as a single entity, the search becomes 
guided and restricted to only those configurations in the 
solution space in which the variables grouped within a 
cluster are assigned the same value. 

As the size of the clusters varies from one level to an-
other, the size of the neighbourhood becomes adaptive 
and allows the possibility of exploring different regions in 
the search space while intensifying the search by ex-

ploiting the solutions from previous levels in order to reach 
better solutions. Tables 1 and 2 show the results of com-
paring MLV-TS against TS). The table shows that MLV- 
TS showed a better asymptotic convergence compared to 
TS in 32 cases out of 50 with an improvement lying within 
9%. The cases where TS gave better results than MLV-TS, 
the difference in quality does not exceed 2%. Finally the 
plot depicted in Figure 5 shows the variations in quality 
between the two algorithms as the size of the problem 
increases. For problems with a number of clauses less than 
20,000, there seems to be no advantage in using the mul-
tilevel paradigm as the difference in quality is very small 
while tending in favour of TS. As the size of the problem  

 

 
 

 

Figure 4. MLV-TS vs TS: (above): i10mul.miter.shuffled-as. sat03-353.cnf V  = 12,998 C  = 77,941 (below) i8mul.miter. 

shuffled-as.sat03-354.cnf V  = 14,524 C  = 91,139. Evolution of the mean satisfied clause over time. 
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Table 1. Comparison of MLV-TS against TS. 

Instances |V| |C| TS MLV-TS 

aim-200-3_4-yes1-2 200 680 673 663 

alu4mul.miter.shuffled-as.sat03-344 4736 30,465 28,698 29,613 

am4-4.shuffled-as.sat03-360 433 1458 1457 1404 

am5-5.shuffled-as.sat03-361 1076 3677 3610 3544 

am6-6.shuffled-as.sat03-362 2269 7814 7589 7493 

am7-7.shuffled-as.sat03-363 4264 14,751 14,032 14,055 

am8-8.shuffled-as.sat03-364 7361 25,538  22,416 23,249 

am9-9.shuffled-as.sat03-365 11,908 41,393 35,318 35,933 

bw-large.c 3016 50,457 46,631 50,450 

bw-large.d 6325 131,973 107,713 118,272 

c3540mul.miter.shuffled-as.sat03-345 5248 33,199 30,958 31,734 

c6288mul.miter.shuffled-as.sat03-346 9540 61421 54,941 55,752 

c7552mul.miter.shuffled-as.sat03-347 11,282 69,529 62,258 62,450 

cnt10.shuffled-as.sat03-418 20,470 68,561 58,204 58,683 

comb1.shuffled-as.sat03-419 5910 16,804 14,653 15,505 

comb3.shuffled-as.sat03-421 4774 16,331 14,968 15,556 

c880mul.miter.shuffled-as.sat03-348 21,800 118,607 104,713 104,835 

dalumul.miter.shuffled-as.sat03-349 9426 59,991 54,188 54,940 

ewddr2-10-by-5-1 21,800 118,607 104,713 10,4835 

f2clk40.shuffled-as.sat03-424 27,568 80,439 63,674 64,028  

ferry8.shuffled-as.sat03-384 1918 12,311 12,306 12,116 

ferry8u.shuffled-as.sat03-385 1875 11,915 11,909 11,728 

ferry9.shuffled-as.sat03-386 2410 16,209 16,197 15,954 

ferry9u.shuffled-as.sat03-387 2342 15,747 15,735 15,502 

ferry10.shuffled-as.sat03-378 2958 20,791 20,768 20,410 

 
Table 2. Comparison of MLV-TS against TS. 

Instances V  C  TS MLV-TS 

ferry11.shuffled-as.sat03-380  3562 26,105  25355 25,656 

ferry12u.shuffled-as.sat03-383 4133 31,515 30,069 30,866 

frg1mul.miter.shuffled-as.sat03-351 3230 20,575 20,360 20,103 

frg2mul.miter.shuffled-as.sat03-352 10,316 62,943 56,680 57,198 

gripper13u.shuffled-as.sat03-395 4268 38,965 37,229 38,337 

gripper14.shuffled-as.sat03-396 4758 45,056 42,412 43,167 

gripper14u.shuffled-as.sat03-397 4584 43,390 40,967 42,688 

homer17.shuffled-as.sat03-428 286 1742 1738 1731 

homer18.shuffled-as.sat03-429 308 2030 2014 2014 

homer19.shuffled-as.sat03-430 330 2340 2332 2313 

homer20.shuffled-as.sat03-431 440 4220 4202 4184 

i8mul.miter.shuffled-as.sat03-354  14,524 91,139 81,541 81,821 

i10mul.miter.shuffled-as.sat03-353 12,998 77,941 69,475 70,332 

k2mul.miter.shuffled-as.sat03-355 11,680 74,581 66,791 67,367 

logistics.d 4713 21,991 19,522 20,952 

mot-comb2-red-gate-0.dimacs.seq.filtered 5484 13,894 11,219 11,391 

motcomb3-red-gate-0.dimacs.seq.filtered 11,265 29,520 23,249 23,460 

qg6-11 1331 49,204 49,104 49,203 

qg6-12 1728 69,931 69,786 69,930 

rotmul.miter.shuffled-as.sat03-356 5980 35,229 32,469 32,819 

term1mul.miter.shuffled-as.sat03-357 3504 22,229 21,809 21,664 

x1mul.miter.shuffled-as.sat03-359 5444 34,509 32,320 32,656 
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Figure 5. Scalability test. 
 
increases the multilevel paradigm appears to provide in 
general better results compared to TS and might be con-
sidered the right tool to use for solve larger problems. 

6. Conclusion 

This paper introduced the first tabu search algorithm com- 
bined with the multilevel paradigm for MAX-SAT. The 
multilevel paradigm is a simple process during which the 
search is carried out through different levels evolving 
from a k-flip neighbourhood to 1-flip neighbourhood- 
based structure enabling tabu search to take long leaps in 
the search space. Thus, in order to get a comprehensive 
picture of the multilevel tabu algorithm’s performance, a 
set of industrial instances has been used. It is obvious from 
the examples above that the multilevel paradigm can aid 
TS to provide better results at a faster rate. The broad 
conclusions that can be drawn from these results are that 
for small problems the multilevel framework does not 
appear to offer any improvement to the convergence of 
tabu search. Further, at least for the examples considered 
in this paper, the multilevel tabu search appears to offer 
better asymptotic convergence and the differences in 
quality becomes apparent as size of the problem increases. 
It would be of great interest to further validate the con-
clusions of this paper by extending the range of bench-
mark problems instances. Obvious further work include 
the use of different coarsening schemes and the design of 
a self-adapting tabu list length since the length of the tabu 
list is a critical parameter that may affect the performance 
of TS. 
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