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ABSTRACT 

Basic resources for communication satellites are communication radio-frequencies and satellite orbits. An orbit is the 
trajectory followed by the satellite. The communication between the satellite and a ground station is established only 
when the satellite is consolidated in its own orbit and it is visible from the ground station. Different types of orbits are 
possible, each suitable for a specific application or mission. Most used orbits are circular, categorized as low, medium 
and geosynchronous (geostationary) orbits based on the attitude above the Earths surface. The launching process head-
ing the satellite in geostationary orbit, by the first step places the satellite in a transfer orbit. The transfer orbit is ellipti-
cal in shape with low attitude at perigee, and the apogee of the geostationary orbit attitude. The apogee of the parking 
orbit depends on the injection velocity applied at perigee. Simulation approach of injection velocity at perigee to attain 
different apogees, considering an incremental step is presented in this paper. 
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1. Introduction 

The satellite systems dedicated for global coverage are 
comprised of constellations of low Earth orbit (LEO) and 
geostationary Earth orbit (GEO) satellites [1]. The satel-
lite’s launching process toward geostationary orbit be-
cause of too large distance form the Earth, takes few 
steps. In the first step the satellite is injected into a low 
Earth circular orbit (LEO). In the second step, the satel-
lite’s orbit is transformed from the low Earth orbit into 
an elliptical transfer orbit by maneuvers at perigee, in 
order to attain the apogee equal to geostationary (GEO) 
orbit’s radius. Finally, the satellite is placed from the 
elliptical transfer orbit to the final destination, as geosta-
tionary orbit [2,3]. The geostationary orbit is unique 
faced with too close proximity of satellites in this orbit. 
To avoid mutual interferences and collision, a method of 
multi-satellites separation has to be applied [4]. 

This paper is concerned about the second phase of 
launching process; concretely the simulation of the trans-
formation process from a low Earth orbit to an elliptical 
transfer orbit considering different low Earth orbit atti-
tudes is given. Through analysis and simulation it is cal-
culated what injection velocity has to be applied at low 
Earth orbit in order to attain the apogee which corre-
sponds to the radius of final planned orbit.  

Firstly, the parameters of elliptical orbit are given, 
then the relationship between the injection velocity at 

perigee and apogee incremental step is concluded. This 
mathematical relationship is further applied for simula-
tion model, and finally simulation results are provided. 

2. Elliptical Orbits 

The path of the satellite’s motion is an orbit. Generally, 
the orbits of communication satellites are ellipses laid on 
the orbital plane defined by space orbital parameters. 
These parameters (Kepler elements) determine the posi-
tion of the orbital plane in space, the location of the orbit 
within orbital plane and finally the position of the satel-
lite in the appropriate orbit [5-7]. The exactly know posi-
tion of the satellite in space enables the communication 
between the satellite and ground stations (users) [8].  

The communication between the satellite and a ground 
station is established only when the satellite is stabilized 
in its own orbit. Thus, permanent attitude control is 
mandatory. In terms of attitude control performance the 
satellite reaction wheel’s configuration plays also an im-
portant role in providing the attitude control torques [9]. 
Different algorithms are applied and active control means 
are generally added to assure accurate attitude stabiliza-
tion, keeping the attitude errors within permitted limits, 
consequently keeping the quality of communication [10, 
11]. 

The elliptical orbit is determined by the semi-major 
axis which defines the size of an orbit, and the eccentric-
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ity which defines the orbit’s shape. Orbits with no eccen-
tricity are known as circular orbits. The elliptical orbit 
shaped as an ellipse, with a maximum extension from the 
Earth center at the apogee (ra) and the minimum at the 
perigee (rp) is presented in Figure 1. 

Figure 2 provides different orbits related to the Earth. 
Three of them are circular orbits (geosynchronous and 
medium) and the forth one is the well known Russian 
Molniya elliptical orbit. Too low perigee and too high 
apogee of elliptical orbit are obvious at Figure 2. The 
large difference between apogee and perigee causes high 
eccentricity. 

The orbit’s eccentricity is defined as the ratio of dif-
ference to sum of apogee (ra) and perigee (rp) radii as 
Equation (1) [5-7]. 
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Applying geometrical features of ellipse yield out the 
relations between semi major axis, apogee and perigee:  
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both, rp and ra are considered from the Earth’s center. 
Earth’s radius is E  km. Then, the attitudes 
(highs) of perigee and apogee are: 
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                (5) 

                (6) 

3. Injection Velocity and Orbits 

Different methods are applied for satellite injection mis-
sions. Goal of these methods is to manage and control the 
satellite to safely reach the low Earth orbit, and then 
transfer elliptical orbit and finally geostationary orbit [12- 
14]. 

The specific orbit implementation depends on satel-
lite’s injection velocity. The orbit implementation proc-
ess on the best way is described in terms of the cosmic 
velocities. Based on Kepler’s laws, considering an ellip-
tical orbit, the satellite’s velocity at the perigee and apo-
gee point, respectively are expressed as [2]: 
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Figure 1. Major parameters of an elliptical orbit. 
 

 

Figure 2. Satellite orbits. 
 

53.986 10m G      km3/s2. G is the Earth’s gravita-
tional constant and m is Earth’s mass.   represents an 
angle between a satellite vector r and local horizon at 
satellite point. For orbit with no eccentricity (e = 0), apo-
gee and perigee distances are equal (ra = rp = a), thus 
orbit becomes circular with radius a and orbital velocity 
as [2]: 

1v
a


                 (10) 

By definition this is called the first cosmic velocity, 
enabling the satellite to orbit circularly around the Earth 
at uniform velocity according to Equation (10). If the 
injection velocity happens to be less than the first cosmic 
velocity, the satellite follows a ballistic trajectory and 
falls back to Earth [2]. The second cosmic velocity is 
defined as: 
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Under the second cosmic velocity at perigee, the apo-
gee distance ra infinitely increases, so the satellite es-
capes Earth’s gravitational pull. The trajectory is a pa-
rabola and eccentricity is equal to 1. For injection veloc-
ity rp at perigee more than the first cosmic velocity and 
less than the second cosmic velocity, the orbit is elliptical 
with an eccentricity in between 0 and 1. This is expressed 
as: 

1 2pv v v 

0 1e 

               (12) 

                (13) 

The satellite injection point is at perigee, and the apo-
gee distance attained in the elliptical orbit depends upon 
the injection velocity. The higher the injection velocity at 
perigee, the greater is the apogee distance, as schemati-
cally is presented in Figure 3. For the same perigee dis-
tance rp, if under the injection velocity vp1 at perigee it is 
attained an apogee distance ra1, and under velocity vp2 it 
is attained an apogee distance ra2, then applying Equation 
(7) yields the relationship between velocities at perigee 
and respective attained distances at apogee (Equation 
(14)). 
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By definition, the apogee distance is always larger 
than the perigee distance, thus it can be expressed as: 

               (15) 

where  represent the distance of how much it is in-
tended to achieve larger apogee compared with perigee 
of the orbit. This is defined as apogee incremental step. 
Applying Equation (15) at Equations (1) and (7) yield out 
Equations (16) and (17).  
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Equation (16) expresses how the eccentricity changes 
with , respectively how the eccentricity changes with 
the apogee incremental step keeping the fixed perigee. 
The Equation (17) tells us, which injection velocity rp 
has to be applied at perigee point in order to attain apo-
gee for  larger than in advance defined perigee. For 

, the orbit is circular, (e = 0) and according to 
Equation (17) orbital velocity is the first cosmic velocity.  

 

Figure 3. Injection velocity and attained apogee. 

4. The Simulation and Results 

For the simulation purposes it is considered fixed perigee. 
Four fixed perigee distances are considered as: 7000 km, 
7200 km, 7400 km and 7600 km. Considering Equation 
(5), and Earth’s radius Er  km, these perigee 
distances correspond to highs above Earths surface (atti-
tudes) approximately of 600 km, 800 km, 1000 km and 
1200 km, which are usually the attitudes of low Earth 
orbits at the first step of launching process. The apogee 
increase is considered by n steps, as: 

6400

2000 kmn r n            (18)   

0,1,2n   . For n = 0, the orbit is circular with low at-
titude, and for n = 19 the apogee distance achieves ap-
proximately the radius of geostationary orbit. In between 
these two cases fall medium attitudes for medium orbit 
satellites. Based on this approach firstly it is analyzed the 
eccentricity variation because of apogee increment, pre-
sented in Figure 4 and confirming eccentricity increment 
with apogee increase. It is too low eccentricity’s varia-
tion for different perigees, since the considered perigees 
are too close to each other. Finally, the goal of the paper 
is to conclude about the required velocity at injection 
perigee point as a function of the apogee increment. For 
this purpose it is applied Equation (17), and results are 
presented in Table 1 and Figure 5. 

Figure 5 shows four curves for different perigee val-
ues, respectively corresponding to low Earth orbit atti-
tudes of 600 km, 800 km, 1000 km and 1200 km. For 
attitude of 600 km (perigee of 7000 km) the injection 
velocity at perigee point is 7.55 km/s and for attitude of 
1200 km (perigee of 7600 km) the injection velocity at 
perigee is 7.24 km/s. As higher perigee (higher attitude) 
the lower injection velocity is required at perigee point. 
Obviously, for defined low Earth orbit the higher velocity  
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Table 1. Injection velocity [km/s]. 

Perigee highs rp [km] Apogee Increment 
Step ∆r [km] 7000 7200 7400 7600 

0 7.55 7.44 7.34 7.24 

2000 8.00 7.88 7.76 7.65 

4000 8.34 8.21 8.08 7.96 

6000 8.60 8.46 8.33 8.20 

8000 8.81 8.67 8.53 8.40 

10,000 8.98 8.83 8.69 8.56 

12,000 9.12 8.97 8.83 8.69 

14,000 9.24 9.09 8.95 8.81 

16,000 9.34 9.19 9.05 8.91 

18,000 9.43 9.28 9.13 8.99 

20,000 9.51 9.36 9.21 9.07 

22,000 9.58 9.42 9.28 9.14 

24,000 9.64 9.48 9.34 9.20 

26,000 9.69 9.54 9.39 9.25 

28,000 9.74 9.59 9.44 9.30 

30,000 9.79 9.63 9.48 9.34 

32,000 9.83 9.67 9.52 9.38 

34,000 9.86 9.71 9.56 9.42 

36,000 9.90 9.74 9.59 9.45 

 

 

Figure 4. Eccentricity variation. 
 
is required at perigee in order to attain larger apogee. For 
an in advance determined apogee, from Figure 5 can be 
found out what is required velocity at perigee point to 
attain respective apogee. 

Let us consider this relation from the point of view of 
different low Earth orbit attitudes. For example, in order  

 

Figure 5. Injection velocity and attained apogee. 
 
to attain an apogee of 42400 km (corresponds to geosta-
tionary attitude) from the low earth orbit with a perigee 
of 7400 km (low earth attitude of 1000 km) the applied 
velocity at perigee must be 9.59 km/s. In order to attain 
the same apogee from the higher low earth orbit of atti-
tude of 1200 km (perigee of 7600 km) the lower velocity 
is required to be applied at perigee point, concretely as 
9.45 km/s. This means, in order to attain the geostation-
ary attitude less velocity has to be applied at higher low 
Earth orbit attitude.  

5. Conclusion  

The satellite’s launching process toward geostationary 
orbit takes few steps. The first one positions the satellite 
at low Earth orbit. At the second step of this process the 
satellite is positioned at highly elliptical transfer orbit. 
For the fixed perigee of the elliptical transfer orbit, the 
attained apogee depends on injection velocity at perigee 
point. The greater injection velocity from the first cosmic 
velocity, the greater is the apogee distance attained. 
Curves provided can be applied to find out the attained 
apogee high for a given value of injection velocity at the 
perigee point, or on the other hand for required apogee 
what injection velocity has to be applied. It is confirmed, 
that in order to attain apogees of (7000 - 42,400) km the 
injection velocity to be applied at perigee point ranges at 
(7.24 - 9.90) km/s. The transformation process from 
transfer elliptical orbit to the final orbit, it is not treated 
within this paper. 
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