
Int. J. Communications, Network and System Sciences, 2012, 5, 105-110
http://dx.doi.org/10.4236/ijcns.2012.52014 Published Online February 2012 (http://www.SciRP.org/journal/ijcns)

105

Research on User Permission Isolation for Multi-Users
Service-Oriented Program

Li Yu1,2,3, Jiang Wei1,2,3*, Lin Li1, Zhan Jing1,4, Liang Peng1, Yingxu Lai1, Shupo Bu5
1College of Computer Science and Technology, Beijing University of Technology, Beijing, China

2State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Information and Network Security, 3rd Research Institute, Ministry of Public Security, Shanghai, China

4Key Lab of Network Security and Cryptology, Fujian Normal University, Fuzhou, China
5Department of Electronic Engineering, Suzhou Insititue of Industrial Technology, Suzhou, China

Email: *j8w8@sohu.com

Received November 30, 2011; revised January 14, 2012; accepted January 26, 2012

ABSTRACT

For the super user privilege control problem in system services, a user permission isolation method is proposed. Based
on virtualization technology, the permission limited environments are constructed for different users. According to
privilege sets, the users, mapping relations are built among users, isolated domains and program modules. Besides, we
give an algorithm for division of program permissions based on Concept Lattices. And the security strategies are de-
signed for different isolated domains. Finally, we propose the implications of least privilege, and prove that the method
eliminates the potential privileged users in system services.

Keywords: Least Privilege; Virtualization; Isolation; Privileged User; Domain; System Service

1. Introduction

Currently, most of the operating systems (OSs) use iden-
tity-based authorization mechanism, and super user has
all the permissions of the whole OS [1]. Once intruders
get the identity of super user, they will get complete con-
trol of OS [2,3]. For example, a flaw in SENDMAIL
prohibits the setuid operation, which results in the revo-
cation of root privileges fails and intruders may use the
flaw [3].

In OS, users access resources through processes.
However, the system services have the specificity of
running in the privileged kernel space. Once there are
security vulnerabilities in service programs, the guest
users will gain access to the privileged kernel space
through system services. As a result, guest users will be
able to access all system resources. In this case, guest
becomes a potential super user. According to statistics,
there will be a vulnerability at least per thousand lines of
codes, so the potential super user is inevitable  .

For potential super user problem, a user permission
isolation method is proposed in the paper. The permis-
sion limited environments are constructed for users with
different permissions. Then we give a formal security
policies and an algorithm for division of program per-
missions. Finally, we propose the implications of least

privilege, and prove that the method eliminates the po-
tential super users in system services.

The rest of the paper is organized as follows. Section 2
introduces the basic definition of the system. Section 3
presents user space isolation model (USIM), designs se-
curity policies and the algorithm for division of program
permissions. Section 4 analyzes the proposed method.
Section 5 describes related work. Finally, conclusions
and future work are presented in the last section.

2. Basic Definitions

The basic formal definitions are as follows.
Definition 1 A system M is composed of

 a set S of states, with an initial state s0.
 a set U of users, with an user is not only the OS user,

but also the application’s user. For example, Samba,
Remote Desktop, etc. The super user is denoted as

RU , while guest user is denoted as RU .
 a set P of processes.
 a set A of actions.
 a set O of objects.
 together with the functions host and pri :
 host :  host   , if P  , then the parent proc-

ess of  is  or user  starts process  . If
O  , then the owner of  is  .

 pri :  ,s
ppri A   , said in state s , from the view

of the process p P , the subject has the permission *Corresponding author.

Copyright © 2012 SciRes. IJCNS

L. YU ET AL. 106

A to access the object O  . The set of permis-
sions for processes is denoted as  pri p , while the
user’s is denoted as  pri u .

Together with the relation : 

f

f

host p

host p

 P

 

  denote the permission inheritance relation:

   
   

 ,

 ,

pri u pri p U

pri q pri P

   
 

, i

, ip

U 

,

u u

q p q


 



 

When a user u starts a process p, p inherits the permis-
sions from u. When a process q forks a child process p, p
inherits the permissions from parent process q.

Definition 2 ,  

   , , M
sspace a O  pri     

In state s, from the view of M, space represent set of
objects which subject  has non-empty permissions to
access. We call it permission space (PS). In the classical
Windows or Linux OS, PS can be divided into two cate-
gories, one is privileged space RSP

  cf

ACE

 cf U

, which users
and processes have all privileges to access all system
resources, the other is non-privileged user-space SPACER,
where the permission is limited and privileged operations
are forbidden.

Definition 3 , . ,U

 

classify
We classify the users U into several sets according to

the rule . If   pri cf1 
cf



2



pri cf
cf

, we call cf2 domi-
nates cf1, denoted as . 2 1

Definition 4 The inclusion relation :
If   pri pri  , then    espace spac 

 ,o

.
That is, the permission space must satisfy the inclusion

relation if two subjects meet the inheritance relation. Ob-
viously, the permissions of a process must inherit from
the parent process or the user who starts it.

Theorem 1 If satisfies u p
spri u  ,

,   0ho p ust 0 Ru U , then   P Rspace

 pri p

u SP ACE .
Proof: According to permission inheritance relation,

, since 0  0 0hos p u pri u    t Ru U ,
then , since Definition 4, we have  Rpri U pri  p

   R Rspace p  spac

sp 

 

e U 

ace u 

SPACE

s p space

 (1)

Since Definition , we have 

   ,ppri u o p  (2)

Hence, we get P Rspace u SPA CE

u
u

u

. The proof is
completed.

The theorem indicates that if user has access to a
program which runs in privileged space, elevates the
privileges of his own. In this case, if is a guest user,
he will become a potential super user. The theorem proved
that the potential super user does exist. Similarly, a guest
user who has less permissions can get more authority
from the guest user which has more permissions through
penetration into the program.

In proof of theorem 1, if 0 Ru U does not hold, the
conclusion will not hold. Hence, we get a new idea that
we can create a copy of the program which runs in un-
privileged space. And the user access to the program will
be redirected to the copy; the potential super user prob-
lem will be solved. That is the core idea of this paper.

3. User Isolation Method

Multi-user remote logon procedure in Linux OS is as
follows. First, login process authenticates users’ identity.
Then, login process creates the shell for different users.
Based on remote login procedure, this section gives the
user space separation model (USIM).

3.1. User Space Separation Model

As shown in Figure 1, USIM is divided into three layers:
basic function layer, isolation management layer, virtual
execution layer.

As the basis of division of the system program, USIM
constructs isolated domains for different categories of
users and provides security management functions. The
functions of three layers in USIM are as follows.

1) Basic function layer
Basic function layer processes the access request first,

for example, the user identity authentication. Then, encap-
sulate the layer-related security context information. At
last, send the information to isolation management layer.

2) Isolation management layer
This layer is responsible for context management, vir-

tualization management and policy management. It is
mainly to address how to construct user isolated domains
which does not interfere each other, and to ensure the
user’s permissions are restricted in the domain.
 Context Management

Context Management maintains current context in-
formation about active users, manages the mapping rela-
tion between the users and isolated domains. Moreover,

Figure 1. User space separation model.

Copyright © 2012 SciRes. IJCNS

L. YU ET AL. 107

it encapsulates the necessary security context again, and
sends to the virtualization layer.
 Virtualization Management

Virtualization Management is responsible for manag-
ing the virtual environment. In a virtual environment,
three main aspects should be considered, including the
executive program virtualization management, network
connectivity reconstruction management and resources
management. The three mechanisms are discussed in
another paper, which are not the focus of the paper.
 Policy Management

Policy Management is responsible for policy formula-
tion and configuration, including the permission set of
users and programs, the communication policy and secu-
rity policy adjustment.

3) Virtual execution layer
It constructs the executive subject for the isolated do-

main. Each domain is corresponding to an active process
in OS. It realizes the users’ rights isolation through the
isolated processes.

We give the formal definition of the isolated domain
as follows.

Definition 5 A user isolated domain is com-
posed of

DOM

 ID is the unique identifier of a domain,
 a set CONTEXT of security context information, in-

cluding user credentials, sessions, etc.
 a set PRI of permissions, which denotes

  , pri DOM
 a set C of program modules,
 a set RES of resources in the domain.
together with the function communicate: communicate
function denotes the communication among different
DOMs. Communicate (SourceDOM, TargetDOM) = {TRUE,
FALSE} indicates whether the two domains communica-
tion is permitted.

Before constructing a DOM, in the actual application
process, we classify the users to several sets according to
user categories. For example, we do

 operation to classify the users in
accordance with user role. We give the algorithm for
constructing a DOM as shown in Figure 2.

  ,classify U R cf 

3.2. Security Policy

Information flow among domains may elevate the privi-
leges. However, normal information flow does exist to
complete the task. This section gives the security policies
to prevent the privilege elevation.

Rule 1 Inter-domain communication rule

1 2,dom dom DOM 
 1 1pri dom cf pri d

, , if
, , Then

1 2dom dom
 2 2om cf

  1 2
1 2

, if
,

, else

TRUE cf cf
communicate dom dom

FALSE


 


Dom DomConstruct()
{

//get the security context
get(CONTEXT);
//get user information in context
UserID = getUid(CONTEXT);
//get user’s permissions
cfi = search({cf}, UserID);
//search whether the target exists
for each domi

if (pri(cfi) == pri(domi))
return domi;

ComCluster = null;
//solving the modules set according to the permissions
for each ci

if (   i ipri c pri cf)

insert(ComCluster);
// encapsulate the modules to program
P = encapsulate(ComCluster);
//start the process using identity UserID
dom = fork(UserID, P);
return dom;

}

Figure 2. DOM constructing algorithm.

Inter-domain communication is permitted only if the
source DOM’s permission set dominate the target set.
The communication initiated by target DOM which is
dominated, may result in the privilege elevation, so must
be forbidden.

Rule 2 Communication rule between DOM and unre-
lated process

If C dom , , C p C p   , , p p 
C dom  , then .  dom , FALSEcommunicate dom

That is, communication between DOM and unrelated
process should be prohibited.

Rule 3 Access rule to DOM
dom DOM  , if u U  , u satisfies
 ,dom

spri u o  , then .m CONTEXTu do .
The rule limits the users’ access range in the corre-

sponding DOM. In addition, inverse negative proposition
shows that, except the users in DOM, other users are
prohibited from access to DOM.

Definition 6 Resources in a DOM are

DOM PUB PRI CALLRES RES RES RES  

 a set PUBRES of public resources, which are ac-
cessed by all DOMs in service program, such as files
corresponding to FTP program.

 a set PRIRES of private resources, which are created
in running process, such as temporary files, etc.

 a set CALLRES of resources, which are called in host
OS during the run-time, such as dynamic link librar-
ies in Windows OS.

Rule 4 Resource access control rules
1) If C dom , , C p PUBres RES  ,

PUBRES domRES , p P  and , p′ satisfies p p 
 ,p resM

spri   .

Copyright © 2012 SciRes. IJCNS

L. YU ET AL. 108

Public resources PUB only can be accessed by the
corresponding process, while other processes are refused.

RES

2) , , ,dom dom DOM  dom dom
PRIRES res , PRIRES 

 ,dom res
domRES , res satisfies

P
spri   .

Only users in DOM can access the private resources

PRIRES in the same DOM.
3)  PUB PRI CALLes RES RES RES   

, .dom C p  P
spri dom

r ,
, dom satisfies dom  , res  .

Except public resources, private resources and called
resources, any resource can be accessed by the corre-
sponding DOM.

3.3. Module Partition Based on Concept Lattice

Information flow among domains may elevate the privi-
leges. However, normal information flow does exist to
complete the task. This section gives the security policies
to prevent the privilege elevation.

A few existing researches have provided some meth-
ods for constructing an environment to prevent privilege
elevation. For example, Price [4] used the way that di-
rectly running a copy of the program in the virtual envi-
ronment. However, the above method is not suitable to
multi-user services programs, such as FTP. First, each
user runs the same program; some users will get more
permissions than necessary. Second, several copies of the
program run simultaneously will result in performance
lost in OS. Hence, the paper proposes the division
method for program permissions based on Concept Lat-
tice. It is the premise of building a virtual environment.

Concept lattice is a conceptual hierarchy according to
binary relation between objects and properties. We de-
fine a program fragment as the object in concept lattice,
the property as permission. By looking for the same per-
missions in program fragments, we achieve the division
aim. The basic concepts of concept lattice are as follows
[5].

Definition 7 Permission context is a triple  , ,I PRI R .
I is the set of program fragments which are composed
of one or more functions. is the relation between R I
and . PRI

    , ,I pri pri PRI i I i pri R      .

 is the public permissions set in fragments.

    , ,PRI i i I pri PRI i pri R      .

 is the public program fragments set in permissions.
Definition 8 If  I PRI  and  PRI I  does

not hold, then is called a concept.  ,C I PRI 
denotes the top concept, and  denotes the bottom
concept.

Partial order relation between concepts:
, ,

1 2 1 2 2 1


2 2 , 1 1 1,c I PRI  2c I PRI

c c I I PRI PRI   
c

. 1 is called sub-con-
cept, 2 is called parent concept.

c
 cchild c is the

function seeking the sub-concept, and  cparent c is the
function seeking the parent concept.

L :  ,C  is called a concept lattice.
Definition 9 If  1 1,c I PR 1I , ,…,  2RI2 2 ,c I P

 ,n n nc I PRI
1

n

j
j

, they satisfy I I

 , and

 j kI I j k 
D

, the set of C is called a Concept Di-
vision .

A concept corresponds to a program module which is
composed of fragments. Hence, concept division is also
bound to the corresponding to module partition. There-
fore, to achieve a reasonable program partition, we
should just find the concept division. Algorithm for
module partition is as shown in Figure 3.

The solution based on the above algorithm is often not
unique. Each concept division corresponds to a module
partition. Reference [6] gives a method to distinguish
which partition method is more targeted, and we will not
go further on this issue.

4. Security Analysis

Buyens [6] gives a standard to test whether a program
design meets the principle of least privilege (PLP), that is
if and only if each component meets PLP. DOM is the

Figure 3. Algorithm for module partition.

Void SubPartition (C Cf, D M)
//recursive algorithm
{

if  fC 

return;
for each i fc C
{

//get parent concept
c’ = cparent(ci);
//replace the parent concept with its //sub-concepts
Cf’= Cf + c’ –cchild(c’)；

if  fC D 

insert Cf’ into M ;
//calculate recursively
SubPartition (Cf’, M);

}
}
Void Partition (D M)
//solving concept division
{

ent conc//get par ept set of ↓
Cj = cparent(↓);

if  jC D

Insert Cj into M ;
SubPartition (Cj, M);

}

Copyright © 2012 SciRes. IJCNS

L. YU ET AL. 109

basic unit of service programs, so we think it should in-
clude three aspects in PLP.

1) Isolation Requirements. Users complete their task in
an isolated environment, and the information exchange
between internal and external environment must be con-
trolled.

2) Permissions Limited. The users’ permissions are
necessary, and there are no more authorizations than
necessary.

3) Resource Access Restricted. Resources in isolated
environment should be protected to prohibit external ac-
cess. In addition, users in isolated environment can not
access resources outside to prevent privilege elevation.

For isolation requirements, any two different DOMs
belong to two different processes, so OS realizes the iso-
lation of DOM. Communication between different DOMs
relies on rules 1 and rule 2 to prevent external interfer-
ence. Therefore, USIM achieves the isolation require-
ments.

For permissions limited, USIM realizes program parti-
tion based on concept lattice. First, , c C  C dom ,
c satisfies , hence the set C must sat-
isfy . Second, the permissions of a
user u in DOM satisfy

   ipri c pri cf
   iC pri cfpri

 u  icf

 

pri
.C u

   pri dom 

. Third, in DOM,
, according to inheritance relation we

get , hence
dom
pri u

host
 pri upri dom 

if
.

Since , holds.
Therefore, users, DOMs and program modules are inter-
connected by the set of permissions cfi. As a result, USIM
just gives the user the appropriate permissions, and it
achieves the Permissions Limited requirement.

   iu pri cf  pripri   pri c dom

For Resource Access Restricted requirement, security
policies prohibit external users accessing resources in
DOM. Besides, rules 3 and rule 4 ensure that users in
DOM can only access resources corresponding to DOM.
Therefore, USIM meets the resource access restricted
requirement.

Finally, USIM meets the requirements of PLP, and
therefore can eliminate the potential super users in a ser-
vice program.

However, in order to realize the program partition, we
have to clear the source codes of the program, which is a
limitation of USIM.

5. Related Work

Least privilege is the classic method to achieve permis-
sions restriction [7,8]. Chen proposed a check method for
against PLP [9]. It achieves policy compliance checks by
intercepting system call. However, in OS, the user in
process context is the one who starts the process. For the
case multiple users process a system service, it is impos-
sible to distinguish the different users through users’
identity.

Privilege separation is a privilege restricted method by
partitioning the program into several modules [10].
Douglas proposed an idea that partitioning an application
into two parts [11], a privilege server and the main ap-
plication without privilege respectively. However, it is
difficult to develop appropriate partitioning strategy. Da-
vid inherited the idea, and partitioned the program into
the privilege monitor and slave without privilege [12].

Virtualization provides each user a runtime environ-
ment by virtualization technology. Jail [13,14] provides
an operating system virtualization layer technology for
FreeBSD. The access is limited to Jail, and the informa-
tion flow inside and outside of Jail is forbidden. However,
it is a full-virtualization technology, for each Jail must
have a copy of system resources. It reduces the efficiency
of the OS. Similarly, Solaris Zone [4] took this idea.
FVM [15] is a feather-weight Windows based virtual
machine. It achieves the isolation by the namespace vir-
tualization. However, these studies can not solve users’
permissions isolation in the same program problem.

6. Conclusion and Future Work

For potential super user problem, the paper introduces a
user permission isolation method. Based on Concept Lat-
tices, the algorithm for division of program permissions
is proposed. Using virtualization technology, USIM con-
structs the permission limited environments for different
users. Besides, we develop security strategies for USIM.
Finally, we prove that USIM meet the principle of least
privilege, and the method eliminates the potential privi-
leged users in system services.

7. Acknowledgements

This research is funded by 863 National High Tech Re-
search and Develop Plan Project (2009AA01Z437), 973
National Key Fundamental Research Development Plan
Project (2007CB311100), Opening Project of State Key
Laboratory of Information Security (Institute of Software,
Chinese Academy of Sciences) (No. 04-04-1), Opening
Project of Key Lab of Information Network Security,
Ministry of Public Security (No. C11610) the program
“Core Electronic Devices, High-End General Purpose
Chips and Basic Software Products” in China (No.
2010ZX01037-001-001), Funds of Key Lab of Fujian
Province University Network Security and Cryptology
(2011009) and Doctor Launch Fund in Beijing Univer-
sity of Technology (X00700054R1764), the natural sci-
ence foundation of No. X0007211201101 Beijing City
under Grant No. 4123093, National Soft Science Re-
search Program (No. 2010GXQ5D317), Opening Project
of Jiangsu Province Web TV Research and Development
Center for Engineering Technology (No. SIIT111002).

Copyright © 2012 SciRes. IJCNS

L. YU ET AL.

Copyright © 2012 SciRes. IJCNS

110

REFERENCES
[1] R. Stevens, “Advanced Programming in the UNIX Envi-

ronment,” Addison-Wesley Publishing Company, 1992.

[2] H. Chen, D. Wagner and D. Dean, “Setuid Demystified,”
Proceedings of the 11th USENIX Security Symposium,
San Francisco, 05-09 August 2002, pp. 171-190.

[3] Sendmail Inc. Sendmail Workaround for Linux Capabili-
ties Bug, 2009.
http://www.Sendmail.org/Sendmail.8.10.1.LINUX-SECU
RITY.txt

[4] D. Price and A. Tucker, “Solaris Zones: Operating Sys-
tem Support for Consolidating Commercial Workloads,”
USENIX 18th Large Installation System Administration
Conference (LISA’04), Atlanta, 14-19 November 2004,
pp. 241-254.

[5] C. Lindig and G. Snelting, “Assessing Modular Structure
of Legacy Code Based on Mathematical Concept Analy-
sis,” Proceedings of the 19th International Conference on
Software Engineering, Boston, May 1997, pp. 349-359.

[6] K. Buyens, B. D. Win, and W. Joosen, “Resolving Least
Privilege Violations in Software Architectures,” Pro-
ceedings of the 5th International Workshop on Software
Engineering for Secure Systems, Vancouver, 19 May
2009, pp. 9-16.

[7] T. E. Levin, C. E. Irvine and T. D. Nguyen, “A Least
Privilege Model for Static Separation Kernels,” Technical
Report NPS-CS-05-003, Center of Information Systems
Security Studies and Research, Naval Postgraduate
School, October 2004.

[8] J. H. Saltzer and M. D. Schroeder, “The Protection of
Information in Computer Systems,” Proceedings of the

IEEE, Vol. 63, No. 9, 1975, pp. 1278-1308.
doi:10.1109/PROC.1975.9939

[9] S. Chen, J. Dunagan, C. Verbowski and Y.-M. Wang, “A
Black-Box Tracing Technique to Identify Causes of
Least-Privilege Incompatibilities,” Proceedings of Net-
work and Distributed System Security Symposium, San
Diego, 3-4 February 2005, pp. 42-53.

[10] K. Buyens, R. Scandariato and W. Joosen, “Composition
of Least Privilege Analysis Results in Software Architec-
tures,” Proceeding of the 7th International Workshop on
Software Engineering for Secure Systems, Waikiki, 22
May 2011, pp. 29-35.

[11] D. Kilpatrick, “Privman: A Library for Partitioning Ap-
plications,” Proceedings of Freenix, San Antonio, 12-14
June 2003, pp. 273-284.

[12] D. Brumley and D. Song, “Privtrans: Automatically Parti-
tioning Programs for Privilege Separation,” Proceedings
of the 13th conference on USENIX Security Symposium,
San Diego, 9-13 August 2004, p. 5.

[13] P. H. Kamp and R. N. Watson, “Jails: Confining the Om-
nipotent Root,” 2nd International System Administration
and Network Engineering Conference (SANE’00), Maas-
tricht, 2000, pp. 1-15.

[14] S. Evan, “Securing FreeBSD Using Jail,” System Admini-
stration, Vol. 10, No. 5, 2001, pp. 31-37.

[15] Y. Yu, F.-L. Guo, S. Nanda, L.-C. Lam and T.-C. Chiueh,
“A Feather-Weight Virtual Machine for Windows Appli-
cations,” Proceedings of the Second ACM/USENIX Con-
ference on Virtual Execution Environments (VEE’06),
Ottawa, 14-16 June 2006, pp. 24-34.

http://dx.doi.org/10.1109/PROC.1975.9939

