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ABSTRACT 

In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the 
first part of this series. Missing signal recovery derived from multi-resolution theory is developed. It is shown that 
multi-resolution Fourier analysis enhances dramatically performances of Fourier spectra suffering limitations traced to 
implicit time windowing. Observed frequency resolutions, improvement of frequency estimations, contraction of spec-
tral leakage and recovery of missing parts of finite duration signals are in accordance with theoretical predictions. 
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1. Introduction 

In the first part of this series [1], we proposed multi-re- 
solution Fourier analysis of finite duration signals. We 
constructed signals from the only observed one able to 
reveal in the frequency domain resulting transforms whose 
main lobe-widths between 3-dB levels or resolutions de- 
crease as lengths of constructed signals, called multi- 
resolution signals, increase. Derived expression of multi- 
resolution signals shows that the number of resolution 
levels are defined by increasing or decreasing the length 
of multi-resolution signals in order to depict respectively 
detailed or global views. 

In this second part, we report application procedures of 
multi-resolution signals and missing signal recovery. We 
propose to observe, via examples, the following perfor- 
mances of multi-resolution theory. 

1) The popular FFT algorithm is used for all com- 
putations.  

2) Frequency axis is magnified or contracted in accor- 
dance with applied resolution. 

3) Extent of spectral leakage is contracted and im- 
provement of frequency estimation is enhanced in accor- 
dance with applied levels of resolution. 

4) Inverse transformation recovers missing parts of 
observed finite duration signals since phase information 
is not destroyed by multi-resolution signals.  

In Section 2, we recall, for easy reference, expression 
of multi-resolution signals derived from the only ob- 

served finite duration signal [1]. Frequency leakage and 
frequency estimations yielded by multi-resolution signals 
are reconsidered in Section 3. Expression of recovered 
missing parts of finite duration signals by means of 
thresholding in the frequency domain before transform- 
ing are detailed in Section 4. Observation results on fre- 
quency resolution performances, contraction of leakage, 
frequency estimation and recovering of missing parts of 
signals are reported in Section 5. 

Observation results show that multi-resolution Fourier 
analysis enhances dramatically performances of Fourier 
spectra suffering limitations traced to implicit time win- 
dowing [2]. Reported observations are in accordance 
with theoretical predictions [1].  

2. Fundamentals 

In this section, we recall for easy reference principal re- 
sults of [1].  

2.1. Definitions 

( )XLet   be the bandpass amplitude spectrum of the 
zero-mean real signal x( )t  defined by, 

min max( ) = 0, ,X     

n

      (1) 

where mi  and max  are the bounds of the spectral 
support of ( )X  . 

Let us consider the observation interval whose length 
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T is chosen so that max 2πT 
( )

. A finite observation of 
x t

max

 in the time interval of duration T available at the  
output of a low-pass filter of cut-off frequency f  
yields, 

( )
( ) =

0,T

, [0, ]

otherwise.

x t t T
x t





          (2) 

The instants = f 2n et n , where maxef f

Tf

 is the 
sampling frequency, define the discrete-time process 

( )
e

x n , rewritten ( )Nx n

( )

. 

2.2. Expression of Multi-Resolution Signals 

Multi-resolution signals constructed from the only ob- 
served finite duration signal Tx t  in the time interval 
of length T are denoted ( )[ ( )]s Tx t [ ( )] where ( )s Tx t

( )T

 
represents the resolution operator of level, s, applied to 
x t , (see eq. (50) of [1]), i.e., 

    I[ 2]

( )

2

1

=0

[ ( )]

= ( )

( ) I[ 2] 1

s T

sT

T T
p

x t

t

x t spT s x sp





    s T t   

= 2,3, 4,5,s

(3) 

where  are resolution levels and I  2s  is 
the integer part of 2s . Here 2  represents the 
rectangular window of length 

(sT t )
2sT . 

Angular frequency resolution   of (3) as a fun- 
ction of the level of resolution, s, is given by, 

 = 2π .sT              (4) 

3. Frequency Estimation and Spectral 
Leakage 

In the following, frequency estimation and leakage eff- 
ects are reconsidered for multi-resolution signals.  

3.1. Frequency Estimation 

It is of an unquestionable interest to detail how precise 
frequency estimations are provided by multi-resolution 
signals. Let us assume for the sake of illustration that we 
have a sinusoidal waveform observed in the time interval 
of length T whose whose angular frequency is 0 . One 
can see that lengths of intervals in which a spectral line 
lies as a function of increasing levels of multi-resolution 
signals are given by, 

 ( ) = 2π ,sT

0

L s              (5) 

where s = 2, 3, 4, 5, represents levels of multi-resolution 
signals. 

This means that the precision with which the angular 
frequency of the sinusoidal wave is known increases with 
increasing levels of multi-resolution signals, following in 

this, decreasing lengths of the interval in which lies  . 

3.2. Spectral Extent of Leakage 

To illustrate how frequency extent of leakage is modified 
when multi-resolution signals are used, let us reconsider 
here also the sine wave whose angular frequency is 0 . 
It is well known that the spectrum of a sine wave of 
angular frequency 0  does not consist of one com- 
ponent [3]. A series of magnitudes spaced on the fre- 
quency axis with the mutual distance 2π T  tend to dis- 
play a maximum at the vicinity of 0 . This spread of 
amplitude to adjacent frequency regions, termed leakage 
[2], depicts a frequency extent given by multiples of 
2π T

 

 (see p. 247 of [3]). 
In the multi-resolution framework, any angular fre- 

quency is given by,  

( , ) = 2π .n s n sT  

Hence modification of the frequency extent of this 
series of magnitudes at the vicinity of 0  as a function 
of the level of resolution is obtained by considering the 
variation ( , ) 0n s  . By using (5), one can see easily 
that, 

 ( , ) 0 0= ,n s n s             (6) 

where = 2πn Tn . 
By increasing the level of resolution, spacing of com- 

ponents on the frequency axis gets smaller and smaller 
such that angular frequency location of the signal moves 
closer to its true value. If true frequency location does 
not meet its integer multiple, then lines gather around its 
vicinity and the power leaks into much smaller adjacent 
cells of length  s2π T

= 2,3, 4,5s

. Spectral leakage is therefore 
contracted in accordance with levels of resolution s 
where .  

4. Missing Signal Recovery 

In this section, we recover missing part of a signal by 
using multi-resolution signals. We start by reconsidering 
amplitude spectra of multi-resolution signals in order to 
recover true spectra by means of filtering.  

4.1. Expression of Filtered Spectrum 

Fourier transformation of resolved spectral estimates, de- 
noted  ( )s TF ( )T x t   , is given by (see Equation (44) 
of [1] for details),  

 
  

          

( )

2 , 2

F ( )

ˆ= ,2π

= ,

s T

s s I ss

T x t

X sT

X H W



    

  

 

 (7) 

where  ˆ , 2π  X sT  is the spectrum of ( ) ( )s Tx t  
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depicted with the resolution  1 sT  and s ( )   ga- 
thers phases yielded by lengths of local periods of reso- 
lution signals.  

It is crucial to notice that the spectrum   , 2πX̂ sT


 
is different from the true spectrum sTX  . However, 
the true spectrum can be recovered from (7) as shown 
below. Accordingto above results on resolution windows, 
we can write, 

      
  

 2 , 2 2 , 2
= .

s I s s s I s
H2

W H      (8) 

By setting (8), (7) yields, 

          
    

  
 

2

2 , 2

ˆ , 2π

.

s s s

s s s I s

X s H H

X H H

   =T X 

    
 





 
 

(9) 

Let us define the action of any filtering operation as an 
operator F[x] acting on x. An ideal filtering able to recover 
missing parts of signals by means of inverse Fourier trans- 
formationis that filtering able to eliminate the second right- 
hand side of (9) without affecting its first right-hand side.  

          
    

2
ˆ , 2π

, 2π

s s s

s

F X s H H

X sT

=T X     

  

   


 

(10) 

4.2. Recovering of Missing Parts 

According to expression of multi-resolution signals as 
given by (3), one can see easily that the term  s   
that gathers phases resulting from time translations can 
be written as, 

   1s s    

1TF 

            (11) 

By using (11) and considering the inverse Fourier 
transformation, denoted by the operator , of (10) in 
the window of length sT , represented by  sT t



, we 
obtain,  

     ,2πsT sTt T X sT x t      
1 ˆF F   (12) 

which is the recovered signal composed of its original 
part in the observed interval [0; T] and its missing part in 
the adjacent interval of length  1s T ,where s = 2, 3, 4, 5. 

4.3. Type of Filtering 
According to above results, one can easily see that (see 
details in the first part of this series [1]), 

 
  

 
2

,
s

H H
2 , 2s I s        (13) 

Notice also that side-lobes obtained by significant super- 
position of contributions  

2s
H   and 

  
 

2 , 2s I sH   

are observed beyond the interval defined by 
 π sT 

 

 [1]. 

Here (13) means that we can reduce these side-lobes 
by applying selected of windows with nonuniform wei- 
ghting or using one of the threshold selection rules [2]. In 
this work, for the sake of simplicity and illustration, we 
propose only hard thresholding procedure justified by(13) 
and defined by, 

 
  

     

ˆ , 2π

0, , 2π

, 2π , , 2π

H

F X sT

X sT

X sT X sT



 

  

     
  



 (14) 

where   is the applied threshold value and the upper 
script H represents hard thresholding. This method sets to 
zero side-lobes and keeps the spectrum over the threshold. 

5. Method and Results 

In this section, we report observation results of multi- 
resolution Fourier analysis. Here, the length T of obser- 
vation intervals is constant and frequency separations 

f  of analyzed signals are so that . In order to 
test resolution capabilities of described multi-resolution 
signals, let us consider a real signal composed of two- 
equi-power sinusoids of respective frequencies 0  and 

1  observed in the constant time interval T and defined 
by,  

< 1T f

f
f

       0 10, , = cos 2π cos 2π .Tt T x t f t f t    

In the following subsections we propose to analyze by 
means of multi-resolution signals these two equi-power 
sinusoids separated respectively by = 0.5f T  and 

= 0.18f T  where 1 0=f f f 

0 = 0.99f = 1.04f

.  
It is crucial to notice that spectra of multi-resolution 

signals are represented with their zero-padded versions. 
We recall that zero-padding resolves all potential ambi- 
guities, smooths the appearance of spectral estimates and 
reduces the quantization error for the estimation of 
depicted frequencies [2]. Notice that this zero-padding is 
a crucial operation since it highlights the effectiveness of 
the multi-resolution Fourier analysis proposed in the first 
part of this series and tested here.  

5.1. Resolution Schemes and Narrow 
Bandwidths 

Let us choose  Hz and 1  Hz satis- 
fying 1 0 = 0.5f f T  where T = 10 s. The instants 

=t n f = 4f
( )

n e e

define the discrete-time signal N

, where  Hz is the sampling frequency, 
x n

( )
. The power spe- 

ctrum of Nx n  is depicted in the plot 1(a1) of Figure 1. 
Its zero-padded version, as an answer to the question 
“One or two (spectral lines)?”, is proposed in 1-(a2). As 
expected, only one powerful spectral line located at 1.1 
Hz is depicted.  
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Figure 1. Multi-resolution Fourier analysis of two equi-power sinusoids separated by Δf = 0.5/T. Here (a1), (b1), (c1) and (d1) 
are respectively double (DR), quadruple (QR) and quintuple (relabeled OR for “optimal”) resolution spectra. Zero-padded 
versions of (a1), (b1), (c1) and (d1) are shown in (a2), (b2), (c2) and (d2). 
 
5.1.1. Double Resolution Scheme 5.1.2. Fourfold Resolution Scheme 
The power spectrum of the double resolution signal 

(2) N

The power spectrum of the quadruple resolution signal 
   (4) Nx n   

= 42k

 without filtering is shown in the plot 1-(b1). 
One can see explicitly two frequencies located respec- 
tively at 1.025 Hz and 1.075 Hz. Depicted frequencies 
correspond respectively to the locations k0 = 41 and k1 = 
43 separated by l  for which the double resolution 
spectrum is zero. In 1-(b2), one finds the zero-padded 
version of 1-(b1). This shows that we have indeed two 
separated spectral lines.  

x n   

ˆ = 0.9875f
ˆ = 1.0625f

 is shown in 1(c1). We find two sinusoids 
distributed in the frequency axis defined by quadruple 
frequency resolution. Depicted frequencies (indicated by 
arrows) are close to true ones since 0 Hz and 

2 Hz. One notes that the precision with which 
frequencies are depicted in this scheme are enhanced. The 
zero-padded version is shown in 1-(c2) where one finds, 
without ambiguity, two lines separated by = 0.75f T . 
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It is crucial to notice that the spectrum 1-(c1) (or its 
zero-padded version 1-(c2)) shows that depicted frequen- 
cy separations are so that 0.25f T 

 

. This means that 
frequency resolution is indeed effective and it is not 
destroyed when evolving from a level of resolution to an 
other one.  

5.1.3. Optimal Resolution Scheme 
The spectrum of the optimal or the quintuple resolution 
signal (5) Nx n  

ˆ = 0f ˆ =

   with its zero-padded version are 
shown in 1-(d1) and in 1-(d2). Here also, we have an in- 
crease of frequency estimations since depicted powerful 
lines respectively given by 0 Hz and 2.992 f  
1.058 Hz are closer to true ones. Here frequency sepa- 
ration between powerful spectral lines is 0.66f T 

f

. 
 

One notes that   is higher than 0.2 T . The variation 
with respect to the true frequency separation, 0.5 T , is 
0.16 T . This variation meets the corresponding lower 
bound of the uncertainty principle ( = 1 5T f ). 

Clearly sinusoids separated by 0.5 T  are well se- 
parated by the double, quadruple and optimal resolution 
signals since depicted frequency separations are greater 
or equal to lower bounds of their respective uncertainty 
principles ( 0.5 T , , 0.2 ). 0.25 T T

5.2. Frequency Resolution Limits 

Now frequencies are so that 1 0  with 0  
 Hz and 1  Hz. This frequency separation 

represents the limit of resolution schemes. Results are 
shown in Figure 2. 

= 0.18f f T =f
0.98 = 0.998f

 

Figure 2. Multi-resolution Fourier analysis of two equi-power sinusoids separated by Δf = 0.18/T. Here (a1), (b1), (c1) and (d1) 
are respectively double (DR), quadruple (QR) and quintuple (relabeled OR for “optimal”) resolution spectra. Zero-padded 
versions of (a1), (b1), (c1) and (d1) are shown in (a2), (b2), (c2) and (d2). 
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One finds in 2-(a1) or 2-(a2), respectively, the spec- 

trum of N  x n  and its zero-padded version. This spec- 
trum cannot exhibit the true frequency resolution what- 
ever applied zero-padding. The spectrum of  (2) Nx n   

 

 
in 2-(b1) shows only one powerful frequency located at  
1.025 Hz. Its zero-padded version in 2-(b2) depicts how- 
ever two powerful peaks since zero-padding eliminates 
potential ambiguities and reduces quantization error.  

5.2.1. Fourfold Resolution Scheme 
The spectrum of (4) Nx n     in 2-(c1) and its zero- 
padded version in 2-(c2) depict two powerful frequency 
lines (shown by arrows) located respectively at 0f   
0.9874 Hz and 1f

  = 1.0125 Hz. These lines are sepa- 
rated by 0.25 T  which yields a variation of 0.07 T  
with respect to the true frequency separation. It can thus be 
seen that fourfold frequency resolution scheme is able to 
separate lines closer to its resolution capability 0.25 T . 

5.2.2. Optimal Resolution Scheme 
One can see in 2-(d1) and in 2-(d2), shapes of the two 
 

sinusoids (separated by 0.25 T

 

 in the quadruple resolu- 
tion scheme) in the new frequency axis defined by opti- 
mal frequency resolution 1 5T

= 1f 1 = 1.05f
= 10T

 

. We obtain two equi- 
power lines located respectively at 0.99 Hz and 1.01 Hz 
which yields a frequency separation closer to the true one.  

One can see without ambiguity that observed fre- 
quency resolutions of Figures 1 and 2 are not limited by 
the length of the time interval and meet bounds of the un- 
certainty principle. Results of Figures 1 and 2 show that 
zero-padding highlights the effectiveness of the multi- 
resolution Fourier analysis. Hence, observed frequency 
resolution capability of multi-resolution signals is in accor- 
dance with theoretical predictions. 

5.3. Missing Signal Recovery 

Here we consider a signal composed of two sinusoids of 
respective frequencies 0  Hz and  Hz 
observed in the time interval of length  s. These 
frequencies are separated by 1 2T . The original signal, 

 Tx t


, is shown in Figure 3(a) where the missing part is 
represented by zeros in the interval , 2T T . The spec-  

 

Figure 3. Missing signal recovery. Missing part in the time domain is recovered in (d) by inverse Fourier transformation 
applied to the thresholded double resolution spectrum in (c). 
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 (2) Nxtrum of the double resolution signal n   

ˆ =

 is 
depicted in Figure 3(b) around the Fourier frequency 1 
Hz. One finds two lines at 1  Hz and 2

ˆ = 1.025f f  
1.075 Hz. As already mentioned in section IV, recover-  

ing missing part of the signal requires thresholding of 
the obtained amplitude spectrum in 3-(b). One can see 
that side-lobes in 3-(b) around powerful spectral lines 
can be eliminated by applying one of the threshold 
selection rules as detailed in section IV. In this work, we 
use hard thresholding procedure with a threshold, as 
given by (14), is = 0.6 . The resulted spectrum is 
shown in Figure 3(c) where side-lobes are eliminated. 
Inverse Fourier transformation is applied to the 
thresholded amplitude spectrum shown in 3-(c). The 
obtained signal in the interval  0,2T  is depicted in 
3-(d). One can see that missing part of the original signal  

 

composed of two frequencies is indeed recovered. 

5.4. Frequency Estimation 

 (5) Nx nHere we use the amplitude spectrum of     
for direct estimation of frequencies. Let us consider the 
signal  Nx n

= 2.87f = 4.27f
= 10T

 

 consisting of sinusoids whose true fre- 
quencies are: 0  Hz, 1  Hz and f2 = 
7.385 Hz observed in the time interval of length  
s. Results are shown in Figure 4. In the plot 4(a), the 
amplitude spectrum of Nx n  whose frequency loca- 
tions are separated by the mutual distance 1 = 0.1T

= 3f
= 4.4f = 7.5f

 Hz 
depicts the frequencies (shown by arrows): 0 Hz, 

1  Hz and 2  Hz. Errors affecting these 
frequencies are respectively 4.5%, 3% and 1.5%. Clearly, 
the resolution 1 T  is not able to recover true frequency 
precisions. 

 

 

Figure 4. Frequency estimations. True frequencies are: f0 = 2.87 Hz, f1 = 4.27Hz and f2 = 7.385 Hz. Quintuple (or Optimal) 
resolution Fourier analysis yields frequency estimations in (b) whereas in (a) frequencies are depicted with the resolution 1/T. 
Estimation Errors in (b) for f0, f1, f2 are respectively: 0.7%, 0.5% and 0.3%. 
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Now, let us consider the amplitude spectrum of  

(5) N  x n   

 

, (Optimal resolution signal) shown in 4-(b). 
This spectrum whose frequency locations are separated 
by the mutual distance 1  Hz depicts the 
following frequencies (shown by arrows): 0  Hz, 

1  Hz and 2  Hz. One can see that 
frequencies shown by arrows move closer to true ones 
and are within the resolution 

5 0.02T 
ˆ = 2.85f

ˆ = 4f .41

 

.25 ˆ = 7f

1 5 . Errors affecting 
frequency estimations are respectively: 0.7%, 0.5% and 
0.3%. Frequency precisions are respectively enhanced by 
5, 6.43 and 6 with respect to those depicted in 4-(a) by 
the spectrum of 

T

 Nx n . 

5.5. Extent of Spectral Leakage 

Here, we explore the shape yielded by the spectrum of 
one sinusoid observed in an interval of length T as a 
function of the level of multi-resolution signal. We pro- 
pose to observe the frequency extent of the spectrum of a 
sinusoid as an indication of leakage affecting its spectral 
line. 

Let us consider a sinusoid whose frequency is f = 1.05 
Hz observed in the time interval T  s. Obtained 
results are shown in Figure 5. One finds the spectrum of 

N

= 10

 x n  in 5-(a), its double, fourfold and optimal reso- 
lution spectra are respectively shown in 5-(b), 5-(c) and 
5(d). Dotted curves in 5-(b), 5-(c) and 5-(d) represent the 
spectrum of 5-(a) for comparison. 

fLet    denote the original extent of leakage of the 
spectrum 5-(a). The double resolution spectrum 5-(b) 
exhibits one powerful frequency line located at 1.075 Hz 
with two side-lobes. Here the variation from one side- 
lobe to the other one in the interval [1,1.25] (Hz) is 

(2)  where the lower script “(2)” stands for 
“double resolution”. One notes that the extent in which fre- 
quency lines are confined is contracted since 

= 1.5f T 

(2)

The quadruple resolution spectrum 5-(c) shows two 
powerful lines located respectively at 1.0375 Hz and 
1.0625 Hz. Notice that the frequency 1.05 Hz coincide 
with the frequency location for which the quadruple re- 
solution spectrum is zero. This gives two lines instead of 
a simple one. Variation from one line to the other one is 

ˆ = 2f f  

 

. 

1 4T . The extent of the depicted sinusoidal spectrum is 

(4)

In 5-(d), the spectrum of (5) N

= 0.5f T 
 

. 
x n     yields one 

powerful frequency line located at 1.05 Hz (which is the 
true frequency). Total variation when including side- 
lobes (situated in the interval [1.02,1.08] (Hz)) is 

(5) . In 5-(d) leakage is contracted by the fac- 
tor 5. One notes that components of the spectrum in 5-(d) 
are spaced by the mutual distance 

= 0.6f 

 

T

1 5T  which is the 
fifth part of the distance 1 T  separating components in 
5-(a).  

 

Figure 5. Leakage effects. Frequency extent of spectral lea- 
kage is reduced as level of resolution increases. Dotted cur- 
ves in (b), (c) and (d) represent the spectrum (a) for com- 
parison. DR, QR and OR stand respectively for double, 
quadruple and quintuple (optimal) resolution. 
 

It can thus be seen easily that extent of spectral lea-  
kage is successively contracted and observed lines move 
towards the true frequency in accordance with applied 
resolution levels. 

6. Conclusion 

In the second part of this series, we report application 
procedures of multi-resolution Fourier analysis proposed 
in the first part of this series together with missing signal 
recovery. We have shown that frequency resolution of 
finite duration signals is increased, extent of their spec- 
tral leakage contracted, their frequency estimation im- 
proved and missing parts recovered without further ob- 
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servation. Performances of Fourier spectra are enhanced 
in accordance with applied resolution levels. Obtained 
frequency resolutions are not limited by the length of the 
observation interval and meet bounds of the indeter- 
minacy principle or Heisenberg inequality. Observed re- 
sults are in accordance with theoretical predictions. 
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