
Int. J. Communications, Network and System Sciences, 2011, 4, 549-561
doi:10.4236/ijcns.2011.49066 Published Online September 2011 (http://www.SciRP.org/journal/ijcns)

Copyright © 2011 SciRes. IJCNS

Parallel Minimax Searching Algorithm for Extremum of
Unimodal Unbounded Function

Boris S. Verkhovsky
Department of Computer Science, New Jersey Institute of Technology, Newark, USA

E-mail: verb73@gmail.com
Received June 27, 2011; revised August 1, 2011; accepted August 25, 2011

Abstract

In this paper we consider a parallel algorithm that detects the maximizer of unimodal function ()f x comput-

able at every point on unbounded interval (0,) . The algorithm consists of two modes: scanning and detecting.
Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals.
Dynamic programming equations, combined with a series of liner programming problems, describe relations
between results for every pair of successive evaluations of function f in parallel. Properties of optimal search
strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer

is located on a priori unknown interval (n1,]n  , then it can be detected after

parallel evaluations of

/2 1(p   
() 2log 1) 1pc n n    

()f x , where p is the number of processors.

Keywords: Adversarial Minimax Analysis, Design Parameters, Dynamic Programming, Function Evaluation,

Optimal Algorithm, Parallel Algorithm, System Design, Statistical Experiments, Time
Complexity, Unbounded Search, Unimodal Function

1. Introduction and Problem Statement

Design of modern systems like planes, submarines, cars,
aircraft carriers, drugs, space crafts, communication net-
works etc. is an expensive and time consuming process.
In many cases the designers must run and repeat expen-
sive experiments, while each run is a lasting process. The
goals of these experiments can be either to maximize
performance parameters (speed, carried load, degree of
survivability, healing effect, reliability etc.) or to mini-
mize fuel consumption, undesirable side effects in drugs,
system’s cost etc.

Performance parameters that are to be maximized (or
minimized) are functions of other design parameters
(wing span in aircrafts, aerodynamic characteristics of
cars, planes, helicopters, raising cars, antennas or hy-
drodynamic profiles of submarines, ships etc.). At the
best, these functions are computable if CAD is applicable.
Otherwise, multitude of wind tunnel experiments is re-
quired for aero- or hydrodynamic evaluations. Analo-
gously, numerous statistical experiments on animals and
later on different groups of people are necessary if a new
drug is a subject of design. Such experiments may last

months or even years. For instance, in the USA devel-
opment of a new drug takes in average ten-twelve years.
In view of all factors listed above, it is natural to mini-
mize the number of experiments in attempts to design a
system with the best parameters. In most of the cases, we
can estimate an upper bound on the design parameter
under consideration; yet this is not always the case espe-
cially if the cost of experiments is increasing or even can
be fatal in design of new drugs.

The unbounded search problem, as described in [1], is
a search for a key in a sorted unbounded sequence. The
goal of the optimal unbounded search is to find this key
for a minimal number of comparisons in the worst case.
The authors describe an infinite series of sequential algo-
rithms (i.e., using a single processor), where each algo-
rithm is more accurate, than the previous algorithm. In [2]
the unbounded search problem is interpreted as the fol-
lowing two-player game. Player A chooses an arbitrary
positive integer . Player may ask whether the in-
teger

n B
x is less than . The “cost” of the searching

algorithm is the number of guesses that must use in
order to determine . The goal of the player is to
use a minimal number of these guesses in the worst case.

n
B

n B

B. VERKHOVSKY

550

ue o

n [4].

This number is a function . The author of that pa-
per provides lower and upper bounds on the val f

()c n . More results on nearly-optimal algorithms are
provided in [3], and then these results are generalized for
a transfinite case i

()c n

As pointed out in [5], the problem formulated in [2] is
equivalent to the search for a maximizer of an unimodal
function ()f x , where . The goal of the
search is to minimize the number of required evaluations
of a function

(0,x)

()f x (probes, for short) in the worst case,
if the maximizer is located on a priori unspecified inter-
val , and where is a positive integer number.
In [5], the authors consider the unbounded discrete uni-
modal sequential search for a maximizer. Employing an
elaborate apparatus of Kraft’s inequality, [5], inverse
Fibonacci Ackermann’s function and, finally, a repeated
diagonalization, they construct a series of algorithms that
eventually approach lower bounds on the function .

(1n  ,]n n

()c n
The general theory of optimal algorithms is provided

in [6,7]. The problems where f is a unimodal function,
defined on a finite interval, are analyzed by many authors,
and the optimal algorithms are provided and analyzed in
[8-12]. Optimal parallel algorithms, searching for a maxi-
mum of a unimodal function on a finite interval, are dis-
cussed in [13-15]. The case where f is a bimodal
function is discussed and analyzed in [16-18]. The case
where additional information is available is studied in
[19,20]. The optimal search algorithm for the maximum
of a unimodal function on a finite interval is generalized
for a case of multi-extremal function in [21-23]. In all
these papers, the optimal algorithms are based on the
mere fact that a maximizer (minimizer) is located on a
priori known finite interval (called the interval of
uncertainty). The algorithms employ a procedure that
shortens the interval of uncertainty after every probe.
Complexities of related problems are functions of the
size of interval K. Search algorithms for two-dimensional
and multidimensional unimodal functions are considered
respectively in [24,25].

K

K

In this paper we consider a parallel algorithm finding a
maximizer (or a minimizer) of a function f defined on
an unbounded interval I of R and computable at every
point x I

,)
. Without loss of generality, we assume that

. It is easy to see that an algorithm, that detects
a maximizer, cannot employ the same or analogous
strategies as in the finite case, since the interval of un-
certainty is infinite.

(0I 

Definition 1.1. A unimodal function has the following
properties: 1) there exists a positive number s , such that

1 2() ()()f x f x f s  for all 1 20 x x s   and

1 2() () ()f s f x f x  for all 1 2 ; 2) s x x    ()f x
is not constant on any subinterval of I . The point s is
called a maximizer of function ()f x . It is not required

that f be a smooth or even a continuous function.
The goal of this paper is to describe and analyze an

algorithm that 1) detects an interval of length t (t-interval,
for short) within which a maximizer of f is located; 2)
uses a minimal number of parallel probes (p-probes, for
short) in the worst case for the t-detection.

Definition 1.2. An algorithm is called balanced if it
requires an equal number of probes for both stages
(scanning and detection).

Definition 1.3. The algorithm that is described in this
paper is minimax (optimal) in the following sense. Let F
be a set of all unimodal functions f F defined on I;

t be a set of all possible strategies tS s detecting a
t-interval that contains a maximizer s of function f; and
let be the number of p-probes that are re-
quired for detection of the maximizer on t-interval using
strategy t

(,)tsN f

s . Then a minimax strategy ts detects the
maximizer for a minimal number of p-probes in the
worst case of the unbounded function f, [17].

The Definition 1.3 implies that

  min max ,t t
s S f Ft t

N s N f s

 
  (1.1)

Remark 1.1. Although s is a priori unknown to the
algorithm designer, it is assumed in this paper that its
value is fixed. Otherwise, the algorithm designer will not
be able to provide any algorithm for t-detection of s. In-
deed, the adversary can generate a function f that is in-
creasing on any finite subinterval . (0,)v I

2. Choice of Next Evaluation Point

2.1. Sequential Search: Single-Processor Case

Proposition 2.1. Let us consider two arbitrary points, L
and R, that satisfy inequalities 0 . If L R   

() ()f L f R , then maximizer s is greater than L; if
 then maximizer s is smaller than R; if () 

()
()f L f R
()f L f R , then s is greater than L and smaller than R,

i.e., (,)s L R , [10,26].
Proof follows immediately from unimodality of the

function f.
If , then a maximizer s is detected on a

finite interval, i.e.,
() ()f L f R

(0,)s R . Therefore for t-detection
of the maximizer s we can employ Kiefer’s algorithm for
sequential search [10,26] or the algorithm [25] for paral-
lel search.

Suppose that f is evaluated at two points :iq L and
:jq R , where 0 L R    and let () ()f L f R .

Two strategies are possible in this case: to evaluate f ei-
ther at a point (,)M L R or at a point M R ; {there
is no reason to evaluate f at , since the Proposition
2.1 guarantees that if

q 
()

L
()f L f R , then maximizer s is

greater than L}. Let assume that function f is increasing

Copyright © 2011 SciRes. IJCNS

B. VERKHOVSKY

551

on interval (,)L R  .
Therefore, s is either on finite interval (,R R) or

on infinite interval . Keeping in mind that we
consider the worst case complexity, it is reasonable to
evaluate f at a point

R s  

M R that is on the infinite inter-
val .  ,R 

2.2. Multiprocessor Case

Let us consider the same function ()f x as in the single
processor case. Let us simultaneously evaluate it at
points 1, , pM M , where p is the number of available
processors.

Consider four scenarios:
A: All or a part of the points 1, , pM M are inside

interval ; (,)L R

1B: All points , , pM M
, ,


1

 are outside interval ,
i.e., every point

(,)L R

pM M
[,]

 is larger than R;
C: s R R 

[,]
;

D: s R R  .

2.3. Possible Outputs in the Worst Case

For both AC and AD scenarios ()f x and  can be
selected in such a way that for all , for which

i

1 i  p
(,)M L M , the inequality i() ()f M f R holds.

Hence, taking into account that we are dealing with the
worst case, all evaluations must be done outside interval

 if (,)L R () ()f L f

q q

R .

3. Optimal Unbounded Search Algorithm as

a Two-Player Game with Referee

3.1. Sequential Search: (p = 1)

Let us consider two players A and B and a referee. Their
game consists of two stages.
 At the beginning, player A selects a value 0s  and

informs the referee about it. Player B selects a value
t > 0 and informs player A and the referee about his
choice.

 At the first stage, B sequentially selects positive and
distinct points 1 2, , , iq . The referee terminates the
first stage if there are points jq and kq such that

js q and ks q .
 The second stage begins from state 1 1 1(, ,)u v w where

:1 1ju q ; : 1 jv q ; :1 1jw q . 

At the second stage, B selects points and A selects in-
tervals. Let the game be in state (, ,)j j ju v w of the sec-
ond stage. This stage terminates if j jw u t  . Other-
wise B selects a point j jx v , such that j j ju x w  .
Then A eliminates the leftmost or the rightmost subin-
terval, [16]. The goal of player B is to minimize the

number of points required to terminate the game. The
goal of player A is to maximize the number of these
points. The adversarial approach for interpretation of the
optimal search algorithms is also considered in [2,27].

Remark 3.1. It is easy to see that B is an algorithm
designer and A is a user that selects function f and re-
quired accuracy t.

3.2. Multiple-Processor Search: (p ≥ 2)

An optimal parallel search algorithm with p processors
has an analogous interpretation. In this case, at the first
phase of the game, player B on his move selects p dis-
tinct positive points. The referee terminates the first
phase if there are at least two points to the right from s.
At the beginning of the second phase, the player A se-
lects any two adjacent subintervals and eliminates all
other subintervals. In general, at the second phase, B
selects points and A selects intervals. More specifically,
player B on his move selects p distinct points on the in-
terval and player A on her move selects any two adjacent
subintervals and eliminates all other subintervals. The
goal of the game is the same as in the single-processor
case. It is obvious that on the first stage of the game
player B must select all points in an increasing order
from one p-probe to another.

Remark 3.2. At first, we will describe the optimal
unbounded searching algorithm with one processing
element, (PE, for short). Subsequently, we will describe
and discuss the parallel minimax unbounded search with
p PEs. As it will be demonstrated, the case where p is an
even integer is simpler than the case where p is odd.

4. Structure of Unbounded Sequential

Search

Consider a finite interval K, i.e., its length K   . In
the case, if it is known a priori that s K , then we can
t-detect maximizer s for at most
   log 1K t o K t    probes, where

 1 5 2   , [16,17]. (4.1)

However, the situation is more complicated if f is de-
fined on unbounded interval In this case we
divide entire interval I into an infinite set of finite subin-
tervals of uncertainty 1 1

(0,).I  

0,]: (I q ; 2 1 2: (,]I q q ; ; 
1: (,]k k kI q q ; where 

1 kk
I I




 . (4.2)

In this paper it is demonstrated that a minimax search
algorithm consists of two major modes: a scanning (ex-
panding) mode and a detecting (contracting) mode. Let
us assume for simplicity of notations that for all integer k

Copyright © 2011 SciRes. IJCNS

552

)

B. VERKHOVSKY

: (kf f q k k

Definition 4.1. A search algorithm is in the scanning
mode while for all function f satisfies
inequalities .

, i.e., is a result of the k-th probe. f

1 2 kq q q  
f  1 2 k

In the scanning mode we probe intervals
until this mode terminates.

f f

1 2, , , ,kI I I 

Definition 4.2. We say that a search algorithm is in
l-th state 1 of the scanning mode if l-th in-
terval of uncertainty 1]l l l

{ , }l l lp r r
(,I q q is to be eliminated

and is the next evaluation point. Here 1lq 

1 1:l lr q  lq I   l ; 1 1l l lr q q 
f f

l

Remark 4.1. If 1l l , then the search switches
into the detecting mode with initial state 1 , [16].
However, if 1l l , then the search moves to the next

1l state of the scanning mode. As a result, the interval
of uncertainty 1l

I  .

{ , }l lr r

f  f 

p 

I  is eliminated (since 1l s I ) and
the inter 2lval I  is the next to be examined. Since at
any state the search can switch into the detecting mode,
the dilemma is whether to select interv 2lal I  as small
as possible (in preparation for this switch) or, if the
search continues to stay in the scanning mode, to select

2lI  as large as possible. The dilemma indicates that
there must be an optimal ic cho e of 2lI  .

In the detecting mode, we can use an optimal strategy,
[10,16,26], which locates s on t-interval. To design a
minimax search algorithm, we must select all

1 2 1k in such a way, that the total number
of required probes on both modes is minimal in the worst
case.

q q q   

Definition 4.3. We say that a set of points
is a detecting triplet if

(, ,)i j kq q q

i jf f f  k k, where . (4.3) i jq q q 

If is a detecting triplet and f is a unimodal
function, then maximizer s satisfies inequality k

(, ,)i j kq q q

iq s q  ,
[17].

Definition 4.4. In the following consideration,
means the minimal total number of required probes for
both modes in order to detect maximizer s in the worst
case if

(,)U b c

(,]s b c .
In the following discussion, we assume that t = 1,

unless it is specified otherwise.
Proposition 4.1. If f is an unimodal function and

, but this is a priori unknown, then
for all s is detectable after probes in
the worst case, i.e.,

1(1,m ms F F  
3m 

1]



2(2)m 

  1 1, 1 2 2m mU F F m     (4.4)

where probes are used in the scanning mode and
 probes in the detecting mode. Here

1m 
3m  mF is m-th

Fibonacci number: ; 1 2 1F F  2 1m m mF F  F   for
m > 2.

Proof {by induction}: We will demonstrate that in the

scanning mode the optimal evaluation points

1 2 1, , , ,o o o o
kq q q q k must satisfy these properties: 1 : 1,oq 

1 :o o
k k kq q F  , for all , i.e., 2k 

k

2
1

:o
k i k

i

q F F 


2   . (4.5)

Remark 4.3. First, we demonstrate how to find an ap-
proximation a of s that satisfies inequality s a t  , i.e.,
a t s a t    . Then we will show how to adjust the
algorithm, if (1,]s n n 

(2, F
.

1). Let 3 4 2] (0,1s F  ] . Consider 11 q 

2 2q  . Then 1 2 . Hence, Proposition 4.1 implies
that

f f
2,)(0s q . Thus, 2 2a q implies that (0,1]a ;

therefore 1s a t  
)

. It is easy to verify that, if
(0,1s   and 0  , then, in the worst case, two

probes are not sufficient for detection of s on t-interval.
Indeed, the adversary can select such s and f that satisfy
the following inequalities: 1 21 and 1 2q s q   f f .
Hence, in that case, s is not t-detectable on inter-
val after two probes.

(0,1]

2) Let now 1(2, 2m ms F F )   and . Then s
can be t-detected for

m k

1s
(2, 2) 2m mF F m 1    probes. If , then k

probes were used in the scanning mode and
m k

3k 
probes in the detecting mode.

3) Let 1 2(1,k ks F F  1]  
1,2, ,i k

, but it is a priori un-
known. Let for all 1, 2k  

: 1i iq F 

 the probes are
taken in the points 2  .

In this case the following inequalities hold

1 2 1k k k 2f f f f f      .
Since 1 2k k kf f f   , then 1 2 is a de-

tecting triplet, and, as a result, the search is in the detect-
ing state 1 2{ , . Then from [8,10,26], using the
optimal search algorithm, we can detect s with accuracy
t = 1 for additional k evaluations of f. Hence the minimal
total number of required probes for both modes is equal

(, ,)k k kq q q 

}k kF F 

1 2(2, 2)kF  2t kU F k 1    . Q.E.T.

5. Optimal Balanced Sequential Search

5.1. The Algorithm

Assign a required accuracy t; {the scanning mode of the
algorithm begins};

:L t ; ; : 2R t

while () ()f L f R do begin

:temp L ; :L R ; ; (5.1) :R R temp t  

{(5.1) generates a sequence of probing states , 1 2{ , },F F 
1{ ,k k }F F }; end;

{the maximizer s is detected: (,)s temp R ; the algo-
rithm is in the detecting state
{ L temp , R L };

Copyright © 2011 SciRes. IJCNS

B. VERKHOVSKY

553

{the following steps describe the optimal detecting algo-
rithm-see [16]};
assign

: ;A temp (5.2) : ;B R :R A B L   ;

repeat
if () ()f L f R then

  
: ; : 2 ; :

: ; , ;

temp L L R B B R

R temp s A R

   

 

;

;

2}

 (5.3)

else

  
: ; : 2 ; :

: ; , ;

temp R R L A A L

L temp s L B

   

 
 (5.4)

{(5.3) and/or (5.4) generate a sequence of detecting
states 1 1{ , }, ,{ ,k kF F F F  };
until () 2 ;B A t 
assign : () 2a A B  ; {a is the approximation of the
maximizer: s a t  }; stop.

The algorithm described above is called V-algorithm.

5.2. Optimality of Sequential Search

Proposition 5.1. The number of required probes for
t-detection of a maximizer described in Proposition 3.1 is
minimal in the worst case.

Proof. The algorithm consists of the scanning and de-
tecting modes. In the scanning mode (SM) the search is
sequentially in the probing states where 1 2, , , mp p p

  1 1 2 1: , , , : ,m m mp F F p F F   . (5.5)

On the other hand, in the detecting mode (DM) the
algorithm is in the detecting states , ,

1

1{ , }m mF F  
2{ , }F F

 { ,
. It is known that all detecting states 1 ,

, 1 2

{ ,F F }m m

}F F are optimal (there are no other strategies
that can t-detect s for a smaller number of probes). At the
same time the entire SM is a mirror image of the DM.
Indeed, from the beginning to the end of the SM the
search goes from scanning state 1 2{ , }F F to scanning
state 1 , while in the DM the search goes from
detecting state 1{ , to detecting state 1 2{ ,

{ ,m mF F }
}m mF F  }F F .

Thus, both modes (scanning and detecting) are optimal;
therefore, the entire algorithm is optimal.

6. Complexity of Minimax Sequential Search

Let us compare the optimal search algorithms for two
cases:

1) Maximizer , but this is a priori un-
known; here b is a positive integer;

(, 1]ms b F 

2) It is known a priori that (0,)ms F

(,

. Let
be the minimal total number of required probes for
t-detection of s in the worst case if

(,)B b c

)s b c .

From Proposition 4.1, if and ,
then

1 1mb F   2m 

  1 1, 1 2 2m mU F F m     . (6.1)

However, if 0b  , then the following inequality
holds:

  0, 1 2 2mU F m    . (6.2)

From [11] it follows that, if , then 4m 
(0,) 2mB F m  , otherwise

 0, 0.mB F  (6.3)

(6.1) and (6.3) imply that for all 4m 

    0, 1 2 0, 2 2m mU F B F m     . (6.4)

In general, if 1(,] (1, 1]m ms a b F F    , but this is a
priori unknown, then

       , 2 log 5 1 logU a b b o b b
        (6.5)

where  is defined in (4.1).
Equality (6.5) follows from the fact that

  5m m
mF    , [13,14]. (6.6)

where  1 5 2 1   m, therefore lim 0  if
. m 

Thus,

   5 1m
mF o    . (6.7)

If 1 1m mF P F    , then

  1 1, 2 2mU F P m    . (6.8)

The complexities (6.1) and (6.5) can be further re-
duced if any prior information is available, [6,17], or if a
searching algorithm is based on a randomized approach,
[19,30].

Proposition 6.1. Let be the minimal number in
the worst case of the required probes to detect s on a pri-
ori unknown interval

()c n

 1,s n  n . If

1 2mF n F 1m   , (6.9)

then

  2 2c n m   (6.10)

Proof. First of all, the relations (6.1), (6.2), (6.5) and
(6.8) are based in the previously made assumption that
t := 1. From this assumption it follows that maximizer is
detectable on an interval of length two, .
In order to find the complexity of the algorithm if

{ 1 1a s a    }

 1,s n n  , the scale of the search must be decreased
twice, i.e., we must select t := 1/2. Two cases must be
considered:

Copyright © 2011 SciRes. IJCNS

554 B. VERKHOVSKY

Case 1: If

 1 1 1mF t n    and ; (6.11)  1mn F   t

then (6.10) is implied by (6.5) if t :=1/2.
Case 2: If

   1 1m mF t n F t    and (6.12)  1 1mF t n   1,

i.e., the case where  1 1mF t  is in the middle of the
interval  1,n n

m
.

It occurs if In this case the left half of
the interval

mod3 0.
 1,n n is out of interval  1 1 ,mF t 

 1mF t  , i.e.,     1 , 1m mt F t   12 F1, 1/n n 




and, as a result, fewer probes are required for t-detection
of s. However, in the worst case, the maximizer may be
on the right half of interval 1,n n , hence

 for both cases. For illustration see Ta-
ble 6.1 below.

() 2(c n m 2)

Thus, (6.8) implies that

     2 log 2 5 1 4.c n n o n
       (6.13)

7. Estimated Interval of Uncertainty

In many applications, an upper bound value Q on maxi-
mizer s can be estimated from a feasibility study. Let

5T Q d  .Q Here 4 5 1.082.d  

Proposition 7.1. If s T  , then V-algorithm re-
quires fewer probes than Kiefer’s algorithm, [14]; if
T s T   , then Kiefer’s algorithm and V-algorithm
require the same number of probes; if , then
Kiefer’s algorithm requires fewer probes than V-algo-
rithm.

T s Q 

Proof. Let and . Then in the
worst case

: mT F 1

m

2 2: mQ F 

  
   

1 1

2 2

0, 1 1, 1

0, 2 2

m m

m

U F U F F

B F m

 



   

  
. (7.1)

It is easy to check that the proof follows from (6.7)
and from the fact that

   2

2 2 5 1m mF F o   m  . (7.2)

Preliminary results on analysis of the optimal algo-
rithm searching for the maximum of a multimodal func-
tion on the infinite interval are provided in [28].

Table 6.1. Total number of probes as function of n.

4 6n  494 798n  60,697 98,208n 

  10c n    30c n    50c n 

8. Parallel Search: Basic Properties

If several processors are available, then, as it is indicated
in [29], the algorithm can be executed in a parallel mode.
[13,15] are the earliest papers on a parallel search for a
maximum of a unimodal function of one variable on a
finite interval, that are known to the author of this paper.
Although the optimal search strategies in both papers are
in essence identical, the formulation of the problem is
different. The proof of optimality of the search is more
detailed in [15]. [2] provides an idea of a parallel algo-
rithm searching for a maximum of a unimodal function
on a unbounded interval. This idea is based on an appli-
cation of the Kraft’s inequality formalism, is provided in
[2]. The authors indicate that the approach they used to
construct an infinite series of near-optimal algorithms for
the unbounded search with a single processor can be ex-
panded for a multiprocessor case. However, no details
are provided.

The search algorithm described in this paper is based
on the following properties.

Proposition 8.1: Let us consider p arbitrary points

1, , pq q that satisfy inequalities

10 pq q     . (8.1)

If

1 2 1p pf f f  f    , (8.2)

then maximizer s is greater than if 1;pq 

1 2 1p pf f f     f , (8.3)

then s is smaller than if 2 ;q

1 1 1 ,j j j pf f f f f        (8.4)

then s is greater than 1jq  and does not exceed 1jq  ,
i.e.,

 1 1,j js q q    . (8.5)

Proof follows immediately from unimodality of func-
tion f.

9. Search on Finite Interval: Principle of

Optimality

Definition 9.1. (,)p

mI u v

{ , }.u v

 is a minimal in the worst case
interval of uncertainty containing maximizer s that can
be detected after m p-probes if the search starts from the
detecting state

9.1. Properties of  ,p

mI u v

1)    p
l,p

m ,I u v l ;)

(Effectiveness of p-probes);

I u v if (9.1m 

Copyright © 2011 SciRes. IJCNS

B. VERKHOVSKY

Copyright © 2011 SciRes. IJCNS

555

2)  1 1 2 2,p
m l  ,p 5)    ,p p

m mI u v

(Monot

I u v if 1 2u u ; 1 2v v

,I cu cv cI u v for every ; (9.5) 0c ; (9.2)

3)

onicity of uncertainty); (Homogeneity).

 p
m m  , ,pI u v I v u ; (Symmetricity); (9.3)

9.2. Properties of (,)p

mI u v if p = 2
4) ,  ,p q

m mI u v I
Efficiency of paral

u v if p q ; (9.4)
(leliza tion); Proposition 9.1: Let . Then u v



 


 (9.6)

(9.6) is a functional equation of dynamic programming; it implies the following property. Proofs of this and the follow-

 
    

   
1 3

1 2

2 2
1 1 1 3 1 3 1 3

,2

2 2
1 2 1 1 2 1 1 2 2

min max , max , , ,max , ;
, min

min max , max , , , max , .

m m
y u y v

m

m m
y y u

I u y y y I y u y v y
I u v

I y y u y y I u y y y v

  

  

       
        

ing Propositions 9.2-9.5 are provided in the Appendix.
Proposition 9.2: Let u v ; then

 
 

2
12

2
1

, if ;
2,

, ; 0 if .

m

m

m

u v
I v u v

I u v

I u z z z u u v





      
    

 (9.7)

.3. Odd Number of Processors

roposition 9.3: If ; and then

9

P 2 1p r  u v ,

 
      

           

2 1 1r
12 1

2 1
1

, , 1 ;
,

, 1 , 1 ;

mr
m r

m

I r k v k  u ku r k v k k r k v u k r k
I u v

I r k v ku k u r k v r k k r k v u k





            
            

 (9.8)

here for)

2
w 1 /k r    

er branch of
2 (1) (r k v ku ku r k v     

(9.8) and for 0 /k r in the upp   
wer branch of

() (1) ()r k v ku k u r k v      in the lo

(9.8).

9.4. Even Number of Processors

roposition 9.4: If

P 2p r and then for all u v ,
1 2k r     the f g dynam programming

:
ollowin ic

equation holds

             
         

2
12

2
1

1 , 1 1 , 1 1
(,)

1 , , 1 , 0 1 .

r
mr

m r
m

;I r k v ku k u r k v r k r k v u k r k
I u v

I u v r z z ku r k v z u v k





                 
            

 (9.9)

.5. Defining Rules of Optimal Detecting States

efinition 9.2. If there exists a pair of positive numbers

 and

9    2 1 2 1
1, ,r r

m m m m m m mI c d I d c r d 
  , (9.11)

whic

h means that D
c and d such that c>d and for all non-negative numbers u
and v

u v

1 : ;m mc d  1 :m m md c r d   ;

 p is even, then

 (9.12)

Proposition 9.6. if
c d   (,) (,),p p

m mI u v I c d (9.10)

then is an op
imal detecting

st

 two propositions can be proved by in-
du

     2 2
1, 1 , ,dr r

m mI c d I c d r d
{ , }c d
finitio

timal detecting state.
De n 9.3. Let { , }k kc d be the opt

ate starting from whi n be located after k addi-
tional p-probes.

The following

ch s ca

ction:
Proposition 9.5. if p is odd, then

m m m m m m       

which means that

   1 1: ; : 1m m m m m md d z c c d r d 1.        (9.13)

Remark 9.1. tmd cons in (9.13).
1) and 2) im (9.12) and (9

op states ;
ply defining rules .13) for

timal detecting , }kd ; here 0 1{ kc z 

556 B. VERKHOVSKY

0 0: 1; : ; : ; : 2 .t d z c t z r p        (9.14)

Proposition (1) and (2) im defining rulesply the
optimal detecting states : if p is odd, t

if p is even, then for all

.

 (9.16)

Both these rules for p odd and even can be generalized
as: assign

 for
hen for all { , }k kc d

1

 1 1 1: ; : ;k k k kc r c c     (9.15)
k

 kd d

0k 

 : 1c r c  
   

1 1 1

1 1

: ;

1 1:

k

k k k k

k

k k

d z

d d

r c rd t r z

  

 



 

     

 : 1 mod 2;p   (9.17)
then

 
 

1 11 2 ;k kp c d     

1 1

 :

: mod 2 .

k

k k k

c

d p c d  
 (9.18)

The following two examples and Table 9.1

{with t = 1;

0 01 2; 1 2; 1 2z c d   } (9.19)

show how steps k ar
for v f processors

optimal search e changing
arious number o

 and kc d
.

Example 9.1. Let p = 3; then : 2 2; r p 
 1 : 1 2 1 2 2;c r   1 : 1 2d  ;
   1 1: 2 2 1 2 5r c d     ; 2

   3 2 2: 2 5 2c r c d   
Example 9.2: Let p = 4; then for

c 2 1: 2d c 
14; : 5c  ;

;
 3 2d 

all 1k  : 1 2kd  ; and

 1 0 0 0: 3 3 1 2;c c d d    

  2
2 1: 3 3 ;c c d d   1 1 1 2

  3
3 2 2 2: 3 3 1 2;c c d d     

10. Search on Infinite Interval wi Even

Number of Processors {p = 2r}

bes

th

10.1. Scanning Mode

Let us select the first p pro 11 21 1, , , pq q q .

 and q qIf maximizer  1,10, ps q  
t

1 2,1 1i i 
on a fi te inte

 for
ected rval

-probe.
 general

he) th detecting state. It
e are required for

alternating

all 2 i p  , then s will be de ni
after the very first p

In , if  1, 1,,k p ks q q    , then s will be detected
on a finite interval after k p-probes.

10.2. Detecting Mode

Suppose the search is in t

eans that at most k
(1k  -

+ 1 p-prob
s. p-pr

m
t-detection of the maximizer obes will divide the
larger interval into p + 1 sub-intervals

, , , , , ,k k k k k kd c d c c d . In the k-th detecting state, the
search will be either in { , }k kd c state or in the { , }k kc d
state. Both of these states are equivalent, i.e., they re-

er of p-probes for the t-detection
and the symmetrical ch probes. Schematical
can be described in the following diagram:

1kc 

quire the same numb
oice of ly it

     1 1, ; , , , , , , , ,k k k k k k k k k k k kd c c d c d c d c d d c   
(10.1)

Here a semico

1kd
lon separates the “leftover” interval

 of the prev
, , , , , ,k k k k k kd c d c c d

pe
It

detecting states descri

in

ious state from
, where t

p =

 the new sub-i
he pair

nique.
 6 and let the search

ntervals
)

 I
be

(,d ck k

ated r times.
is important to notice for further application that the

bed above are not u ndeed,
let us consider the search with

is re-

the detecting state { ,8 }x x , where x is an integer vari-
able, and 1 7.x  Then for any x, the maximizer s is
t-detectable after one p-probe only: divide the left inter-
val into x equal sub s using 1interval x  probes and
divide the rval into 8right inte x equal intervals using
8 1x  probes. Let x = 5. Applying the schematic de-
scription (10.1) of search we have
{5,3} [1,1,1,1,1;1,1,1] {1,1}  1x  , then

[1;1,1,1,1,1,1,1] {1,1} . In general, for any even
p we consider a detecting state {1, k

. If

 onto
1)kr 

{1,7}

divide the right interval
nating lengths equal

2(1) 1}r  
ubintervals with alter-

. Let us
 p s

1 12(  and one. Then from
the diagram (10.1) one can see tha

 
t

 
   1 1 1

1, 1 1

1;2 1 1,1, 2 1 1,1,

k

k k k

r

r r
  

 

 1 1r

 11, 2(1) 1

{1, 1} 1;1,1, ,

k

p

  
   

1, 2 1

,1 1,1

r r 
,1,2

1

1 .

       

} is the
 can be

  

   
Therefore, the

optimal detecting state starting f
t-detected after k p-pr





 detecting state

s.

 



k{1, 2(1) 1r  
rom which s

obe

Table 9.1. Search intervals as functions of number of proc-
essors p.

p 2 3 4

1 1 1, ,c d z 1.5; 0.5; 2 2; 0.5; 2.5 2.5; 0.5; 3

2 2 2; ;c d z 3.5; 0.5; 4 5; 2; 7 8.5; 0.5; 9

26.5; 0.5; 27

p

3 3 3; ;c d z 7.5; 0.5; 8 14; 5; 19

5 6 7

1 1 1, ,c d z 3; 0.5; 3.5 3.5; 0.5; 4 4; 0.5; 4.5

2 2 2; ;c d z 10.5; 3; 13. 5; 18; 4; 22

4

5 15.

6

 0.5; 16

3 3 3; ;c d z 0.5; 10.5; 51 3.5; 0.5; 64 88; 18; 106

Copyright © 2011 SciRes. IJCNS

B. VERKHOVSKY

557

11. Inter o m on k

ort), i.e., PE(i) and PE(i + 1) are connected with MEM(i)

. (1

Then for large m(p) and m(1) holds that

ed probes in
parallel and sequential modes are respectiv

-Pr cessor Co municati Networ

1) All PEs are connected with
2) Two adjacent PEs share a memory unit (MEM, for

 a linear bus;

sh
and can read from it concurrently.

12. Speed-up and Efficiency of
Parallelization

Let () 1 ()m p m pb n b   and (1) 1b n b   (1)m m 2.1)

     log 1 log 1m p u m u . p  (12.2)

On the other hand, the numbers of requir
ely equal

   2 1pc n m p  and    1 2 1 1c n m  . (12.3)

Let’s define the speed-up of parallelization as

    1p ps n c c n . n (12.4)

Then (12.2) and (12.3) imply that

   
 

log

log 1p u

u p
s n  .

If efficiency of parallelization is define

 (12.5)

d as

   :p pe n s n p , (

th

12.6)

en

       
 1 log 1p pe n c n pc n

p u
   

Since for the large number p of processors

logu p
. (12.7)

  2 1u p p    ;

therefore for a large n

(see (A.15) and Table A.1 in Appendix) (12.8)

   
 

 
log 2 1

log
p

log
p

1 5 2
s n p


   ; (12.9)

  

and finally

   logpe n p p    . (12.10)

13. Acknowledgements

Willard Miranker and
J. Watson Research Ce

nd Henryk Wozniakowski of Columbia University for

] J. L. Bentley and A. C.-C. Yao, “An Almost Optimal
Information Pro-

Vol. 5, No. 1, 1976, pp. 82-87.

I express my appreciation to
Shmuel Winograd of Thomas nter
a
their comments and discussions. I also thank my former
students Swetha Medicherla and Aleksey Koval for sug-

gestions that improved the style of this paper.

14. References

[1

Algorithm for Unbounded Searching,”
cessing Letters,
doi:10.1016/0020-0190(76)90071-5

[2] R. Beigel, “Unbounded Searching Algorithm,” SIAM
Journal of Computing, Vol. 19, No. 3, 1990, pp. 522-537.
doi:10.1137/0219035

[3] E. M. Reingold and X. Shen, “More Nearly-Optimal Al-
gorithms for Unbounded Searching, Part I, the Finite
Case,” SIAM Journal of Computing, Vol. 20, No. 1, 1991,
pp. 156-183. doi:10.1137/0220010

[4] E. M. Reingold and X. Shen, “More Nearly-Optimal Al-
gorithms for Unbounded Searching, Part II, the Transfi-
nite Case,” SIAM Journal of Computing, Vol. 20, No. 1,
1991, pp. 184-208. doi:10.1137/0220011

[5] A. S. Goldstein and E. M. Reingold, “A Fibonacci-Kraft
Inequality and Discrete Unimodal Search,” SIAM Journal
of Computing, Vol. 22, No. 4, 1993, pp. 751-777.
doi:10.1137/0222049

[6] A. S. Nemirovsky and D. B. Yudin, “Problems Complex-
ity and Method Efficiency in Optimization,” W
terscience, New York,

iley-In-
1983.

er, “Minimax Optimization

, 1976, pp.

[7] J. F. Traub and H. Wozniakowski, “A General Theory of
Optimal Algorithms,” Academic Press, San Diego, 1980.

[8] J. H. Beamer and D. J. Wild
of Unimodal Function by Variable Block Search,” Man-
agement Science, Vol. 16, 1970, pp. 629-641.

[9] D. Chasan and S. Gal, “On the Optimality of the Expo-
nential Function for Some Minimax Problems,” SIAM
Journal of Applied Mathematics, Vol. 30, No. 2
324-348. doi:10.1137/0130032

[10] J. C. Kiefer, “Sequential Minimax Search for a Maxi-
mum,” Proceedings of American Mathematical Society,
Vol. 4, No. 3, 1953, pp. 502-506.
doi:10.1090/S0002-9939-1953-0055639-3

[11] L. T. Oliver and D. J. Wilde, “Symmetric Sequential
Minimax Search for a Maximum,
Vol. 2, No. 3, 1964, pp. 169-175.

” Fibonacci Quarterly,

ement Science, Vol. 12, No. 9, 1966, pp.

[12] C. Witzgall, “Fibonacci Search with Arbitrary First
Evaluation,” Fibonacci Quaterly, Vol. 10, No. 2, 1972,
pp. 113-134.

[13] M. Avriel and D. J. Wilde, “Optimal Search for a Maxi-
mum with Sequences of Simultaneous Function Evalua-
tions,” Manag
722-731. doi:10.1287/mnsc.12.9.722

[14] S. Gal and W. L. Miranker, “Optimal Sequential and
Parallel Search for Finding a Root,” Journal of Combi-
natorial Theory, Series A, Vol. 23, No. 1, 1977, pp. 1-14.
doi:10.1016/0097-3165(77)90074-7

[15] R. Karp and W. L. Miranker, “Parallel Minimax Search
for a Maximum,” Journal of Combinatorial Theory, Vol.
4, 1968, pp. 59-90.

Copyright © 2011 SciRes. IJCNS

http://dx.doi.org/10.1016/0020-0190(76)90071-5
http://dx.doi.org/10.1016/0020-0190(76)90071-5
http://dx.doi.org/10.1137/0220010
http://dx.doi.org/10.1137/0220010
http://dx.doi.org/10.1137/0220010
http://dx.doi.org/10.1137/0220010
http://dx.doi.org/10.1137/0220011
http://dx.doi.org/10.1137/0220011
http://dx.doi.org/10.1137/0220011
http://dx.doi.org/10.1137/0220011
http://dx.doi.org/10.1137/0222049
http://dx.doi.org/10.1137/0130032
http://dx.doi.org/10.1137/0130032
http://dx.doi.org/10.1137/0130032
http://dx.doi.org/10.1137/0130032
http://dx.doi.org/10.1090/S0002-9939-1953-0055639-3
http://dx.doi.org/10.1090/S0002-9939-1953-0055639-3
http://dx.doi.org/10.1090/S0002-9939-1953-0055639-3
http://dx.doi.org/10.1090/S0002-9939-1953-0055639-3
http://dx.doi.org/10.1287/mnsc.12.9.722
http://dx.doi.org/10.1287/mnsc.12.9.722
http://dx.doi.org/10.1287/mnsc.12.9.722
http://dx.doi.org/10.1287/mnsc.12.9.722
http://dx.doi.org/10.1016/0097-3165(77)90074-7
http://dx.doi.org/10.1016/0097-3165(77)90074-7
http://dx.doi.org/10.1016/0097-3165(77)90074-7
http://dx.doi.org/10.1016/0097-3165(77)90074-7

B. VERKHOVSKY

Copyright © 2011 SciRes. IJCNS

558

No. 2, 1989, pp. 238-250.

[16] B. Verkhovsky, “Optimal Search Algorithm for Extrema
of a Discrete Periodic Bimodal Function,” Journal of
Complexity, Vol. 5,
doi:10.1016/0885-064X(89)90006-X

[17] B. Veroy (Verkhovsky), “Optimal Algorithm for Search
of Extrema of a Bimodal Function,” Journal o
ity, Vol. 2, No. 4, 1986, pp. 323-332.

f Complex-

doi:10.1016/0885-064X(86)90010-5

[18] B. Veroy, “Optimal Search Algorithm for a Minimum of
a Discrete Periodic Bimodal Func
Processing Letters, Vol. 29, No. 5, 19

tion,” Information
88, pp. 233-239.

doi:10.1016/0020-0190(88)90115-9

[19] S. Gal, “Sequential Minimax Search for a Maximum
When Prior Information Is Available,” SIAM Journal
Applied Mathematics, Vol. 21, No. 4,

of
 1971, pp. 590-595.

doi:10.1137/0121063

[20] Yu. I. Neymark and R. T. Strongin, “Informative Ap-
proach to a Problem of Search for an Extremum of a
Function,” Technicheska

ya Kibernetika, Vol. 1, 1966, pp

ubert, “A Sequential Method Seeking the Glob

a Global Extre-

. Hoffman and P. Wolfe, “Minimizing a Unimodal

eneralization of Fibonacci Search to

proxima-

.
7-26.

[21] R. Horst and P. M. Pardalos, “Handbook of Global Opti-
mization,” Kluwer Academic Publishers, Norwell, 1994.

[22] B. O. Sh al
Maximum of a Function,” SIAM Journal of Numerical
Analysis, Vol. 3, No. 1, 1972, pp. 43-51.

[23] L. N. Timonov, “Search Algorithm for
mum,” Technicheskaya Kibernetika, Vol. 3, 1977, pp. 53-
60.

[24] A. J
Function of Two Integer Variables,” Mathematical pro-
gramming, II. Mathematical Programming Studies, Vol.
25, 1985, pp. 76-87.

[25] A. I. Kuzovkin, “A G
the Multidimensional Case,” Èkonomka i Matematiches-
kie Metody, Vol. 21, No. 4, 1968, pp. 931-940.

[26] J. C. Kiefer, “Optimal Sequential Search and Ap
tion Methods under Minimum Regularity Assumptions,”
SIAM Journal of Applied Mathematics, Vol. 5, 1957, pp.
105-136. doi:10.1137/0105009

[27] S. Gal, “A Discrete Search Game,” SIAM Journal of Ap-
plied Mathematics, Vol. 27, No. 4, 1974, pp. 641-648.
doi:10.1137/0127054

[28] B. Verkhovsky, “Optimal Algorithm for Search of a

g

Maximum of n-Modal Function on Infinite Interval,” In:
D. Du and P. M. Pardalos, Eds., Minimax and Applica-
tions, Academic Publisher, Kluwer, 1997, pp. 245-261.

[29] B. Verkhovsky, “Parallel Minimax Unbounded Searchin
for a Maximum of a Unimodal Function,” Research Re-
port, CIS-95-03, New Jersey Institute of Technology,
Newark, 1995, pp. 1-24.

http://dx.doi.org/10.1016/0885-064X(89)90006-X
http://dx.doi.org/10.1016/0885-064X(86)90010-5
http://dx.doi.org/10.1016/0020-0190(88)90115-9
http://dx.doi.org/10.1137/0121063
http://dx.doi.org/10.1137/0105009
http://dx.doi.org/10.1137/0105009
http://dx.doi.org/10.1137/0127054
http://dx.doi.org/10.1137/0127054

B. VERKHOVSKY

559

Appendix

A1. Complexity Analysis

A1.1. Basic Parameters

ka  interval added before k-th p-probe is computed;

kg  smaller interval on the k-th scanning state of the
search;

k larger interval on the k-th scanning state of the
search;
h 

k interval of uncertainty eliminated from the search
after the k-th p-probe;
w 

k total interval added before the k-th p-probe is per-
formed;
t 

k total interval eliminated from the search as a result
of k p-probes.
b 

A1.2. Basic Relations: {odd p}

 
 

2

2 2 1

 ;

: ;

k k k k

k k k

k k k

a p h p g rh r g

r g h g

a h h 

          
  

 

k

 (A.1)

k and kb satisfy the following recursive relations for
all
w

3 :k 

1; : ;k k k k k k kw a h g w h h      (A.2)

 1 1:k kt h h r  ;

;

1 .
k

z

 (A.3)

1 1; : .k k k k k kb b w b t h     (A.4)

A1.3. Basic Relations: {even p}

 
 

1

1

: ; : 1 ; : 2

: 1 ;

k

k k

k

k

g z h r z w r

w r r z


     

  
 (A.5)

   1

1 1
: 1

ik k

k ii i
b w r r z r



 
       (A.6)

Let us consider for all sequences 1k  , , k k kh v 
with the following defining rules:

 1 2: ; k k k k k kh v z h r h h      ; (A.7)

where

1 0 1 0: 0; : 1; : 1; : 1 and 0 1v v z         . (A.8)

(A.7) implies that

  1 2 1 2: ; :k k k k k kv r v v r         .

2

 (A.9)

It is easy to demonstrate by induction that for all

k1 .kk rv   (A.10)

Therefore

2 .k k kh v rv z  (A.11)

If p = 1, then kv Fk , where all kF are the Fibo-
nacci numbers.

Thus, all can be computed using the following
formula:

kv

;k
kv u w   k (A.12)

where u and w are roots of the equation

 2 1 0x r x   : (A.13)

and  and  satisfy the equations:

0 1; .v u w v1 r         (A.14)

From (A.13)

    

    

4 2 1

4 2; 1 2

u r r r r p

w r r r r p

     

     ;
 (A.15)

{see Table A.1 for values of u(p)}.

For every p 1 2 1 2x 1 ; ; x u x w x    . Indeed, from
Viete theorem

.w r u  (A.16)

Since , then u r 1 0w   . From (A.15) and (A.16)

 .k
kv u o u  (A.17)

From (A.14)

       4 2 4 2r r r r r r r         4 . (A.18)

Therefore, lim () 1 2;
p

p


 lim () 0;
p

p


 i.e.,

   lim 1 1.
p

u p r


  (A.19)

The latter limit in (A.19) means that for a large num-
ber of processors    3 2u p p  .

Examples A1: Table A.1 shows relationship between
odd p and u(p).

A2. Maximal Intervals Analyzed after m

Parallel Probes

Proposition A.1: If  1, 1m ms v v1   , then m p-probes
are required in the worst case to detect the maximizer on
a final interval.

Proof is implied by (A.14) and (A.17).
Proposition A.2: If p is odd, then

Table A.1. u(p) as function of odd number of processors p.

p p = 1 p = 5 p = 9

u(p)  1 5 2 1.618   3 21 2 3.791   5 45 2 5.854 

Copyright © 2011 SciRes. IJCNS

B. VERKHOVSKY

Copyright © 2011 SciRes. IJCNS

560

     
   

()

()

2 log 1 1

2log 1 1;

p u p m

u p

c n v p

n p





   
     







 (A.20)
() 2 1c n m  . Then the proof follows from (A.14) and

(A.17) respectively.

A3. Proof of Proposition A 9.1 and, if p is even, then

     1 12 log 1 1 2log 1 1p r m rc n v n        .

(A.21)

Proof: There are only three ways to decompose the in-
tervals u and v using two evaluations (semicolons indi-
cate the previous points that separate u and v): Proof: If  1(1,) 1, 1m ms n n v v     , then

1)      1 2 3 4 2 3 2 3, ; , , ; , ,u v y y y y u y y v y y   ; where 1 ;y u 2 3 4y y y v   ; (A.21)

2)      1 2 3 4 1 1 3 3, , ; , , ; ,u v y y y y y u y y v y   ; where 1 2 ;y y u  (A.22) 3 4 ;y y v 

3)      1 2 3 4 1 2 1 2, , , ; , , ;u v y y y y y y u y y v    . where 1 2 3 ;y y y u   (A.23) 4 .y v

The following recursive equation is derived from the decomposition (A.21)-(A.23):

 

     

     

     

2 3

1 3

1 2

2 2 2
1 2 1 2 3 1 3 2 3

,

2 2 2 2
1 1 1 1 1 3 1 3 3

,

2 2 2
1 1 2 1 2 1 2 1 1 2

,

min max , , , , , ;

, min min max , , , , , ;

min max , , , , , .

m m m
y y

m m m m
y y

m m m
y y

I u y I y y I y v y y

I u v I y u y I u y y I y v y

I y y I y u y y I u y y v

  

  

  

    


     

      

 (A.24)

Taking into account that 2 2 2 3u y v y y y     and

that 2 2 we can eliminate the second and
the third terms in the upper branch of the functional
Equation (A.24).

u y v v y   
such a way that every two adjacent intervals have equal
sums. It implies that the alternating intervals must have
equal lengths: 1 3 ;y y w  2 4 .y y z 

y u y  Hence (A.26) implies that 1 1 2 ;y w
2 .y v On the other hand the first term of the upper branch in

(A.24) can itself be eliminated since

   
2 1

2 2
1 2 1 1 1min , min ,m m

y v y u
I u y I u y y  

  . (A.25)

In addition,    
1 3

2
1 1 1 3 3

0 0
min , min ,m

y u y v
I y u y y v y   

   .

Hence Equation (A.24) is reduced to Equation (9.1).
Q.E.D.

A4. Proof of Proposition A9.2

 
 

2
12

2
1

, if ;
2,

, ; 0 if .

m

m

m

u v
I v u v

I u v

I u z z z u u v





      
    

 (A.26)

Proof: Since, in the worst case, the adversary can se-
lect two adjacent intervals with the largest sum, from
optimality point of view, one must select the intervals in

Thus, 1 ()y u v 2  if . u v
However, if u v , then 1 3 ;zy y

1 3u y v y   .u z  
Let us consider for every k = 1, , p + 1 a pair of

equations:


1
;

k

ii
y u


 (A.27)

2

1
;

p

ii k
y v



 


where for all i = 2, , p + 2 .  0iy 

A5. Proof of Proposition A9.3

  
1

1 1
1 1 ,1 1

, min max min , .
i i

p p
m m

k p y yi p
I u v I y y


      

 i i

p p

 (A.28)

Proof: There are p + 1 ways to represent the intervals
u and v as sums in (A.27). The following dynamic pro-
gramming equation describes recursive relations between
the detecting states

           
2

1 1 2 1 2 3 1 1 1 1 1 1 2
1 1 1, ,

, min min max , , , , , , , , , , ,
p

p p p p p p
m m m m k k m k k m

k p y y
I u v I y y I y y I y y I y y I y y


         

  
 

A6. Proof of Proposition 9.4 where all control variables 1 2 must satisfy

constraints (A.27). Considering the worst case, a user
can select such a function f, that the algorithm must se-
lect a pair of adjacent intervals with the largest sum.

, , py y 

If 2 1p r  ; and , then u v

B. VERKHOVSKY

Copyright © 2011 SciRes. IJCNS

561

 
       
           

2 1
12 1

2 1
1

1 , , 1
,

, 1 , 1

r
mr

m r
m

;

;

I r k v ku ku r k v k k r k v u k r k
I u v

I r k v ku k u r k v r k k r k v u k






              
            

 (A.29)

Proof: Since an algorithm designer’s goal is for a

given number of p-probes to maximize an interval on
which s can be located within a unit interval, it is obvi-
ous to select all the intervals in such a way that any two
adjacent intervals would have the same sum. This search
strategy means that intervals 1 2 3 1 2, , , , , ,p p py y y y y y 

1 3 ;y y w  2 4 ;y y

must have alternate values: z 

, i.e., in general, for all  1 2i p  2 1 ;iy w 
2i .y z

A7. Proof of Proposition A9.5

If 2p r and , then for all u v 1 2k r     the
following dynamic programming equations holds:

 
             
         

2
12

2
1

1 , 1 1 , 1 1
,

1 , , 1 , 0 1 .

r
mr

m r
m

;I r k v ku k u r k v r k r k v u k r k
I u v

I u v r z z ku r k v z u v k





                 
            

 (9.9)

Proof is analogous to the proof of the Theorem 9.4.

