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Abstract 
 
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function ( )f x  comput-

able at every point on unbounded interval (0, ) . The algorithm consists of two modes: scanning and detecting. 
Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. 
Dynamic programming equations, combined with a series of liner programming problems, describe relations 
between results for every pair of successive evaluations of function f in parallel. Properties of optimal search 
strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer 

is located on a priori unknown interval ( n1, ]n  , then it can be detected after  

parallel evaluations of 

/2 1(p   
( ) 2log 1) 1pc n n    

( )f x , where p is the number of processors. 
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1. Introduction and Problem Statement 
 
Design of modern systems like planes, submarines, cars, 
aircraft carriers, drugs, space crafts, communication net- 
works etc. is an expensive and time consuming process. 
In many cases the designers must run and repeat expen-
sive experiments, while each run is a lasting process. The 
goals of these experiments can be either to maximize 
performance parameters (speed, carried load, degree of 
survivability, healing effect, reliability etc.) or to mini-
mize fuel consumption, undesirable side effects in drugs, 
system’s cost etc. 

Performance parameters that are to be maximized (or 
minimized) are functions of other design parameters 
(wing span in aircrafts, aerodynamic characteristics of 
cars, planes, helicopters, raising cars, antennas or hy-
drodynamic profiles of submarines, ships etc.). At the 
best, these functions are computable if CAD is applicable. 
Otherwise, multitude of wind tunnel experiments is re-
quired for aero- or hydrodynamic evaluations. Analo-
gously, numerous statistical experiments on animals and 
later on different groups of people are necessary if a new 
drug is a subject of design. Such experiments may last 

months or even years. For instance, in the USA devel-
opment of a new drug takes in average ten-twelve years. 
In view of all factors listed above, it is natural to mini-
mize the number of experiments in attempts to design a 
system with the best parameters. In most of the cases, we 
can estimate an upper bound on the design parameter 
under consideration; yet this is not always the case espe-
cially if the cost of experiments is increasing or even can 
be fatal in design of new drugs. 

The unbounded search problem, as described in [1], is 
a search for a key in a sorted unbounded sequence. The 
goal of the optimal unbounded search is to find this key 
for a minimal number of comparisons in the worst case. 
The authors describe an infinite series of sequential algo-
rithms (i.e., using a single processor), where each algo-
rithm is more accurate, than the previous algorithm. In [2] 
the unbounded search problem is interpreted as the fol-
lowing two-player game. Player A  chooses an arbitrary 
positive integer . Player  may ask whether the in-
teger 

n B
x  is less than . The “cost” of the searching 

algorithm is the number of guesses that  must use in 
order to determine . The goal of the player  is to 
use a minimal number of these guesses in the worst case. 

n
B

n B
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n [4]. 

This number is a function . The author of that pa-
per provides lower and upper bounds on the val f 

( )c n . More results on nearly-optimal algorithms are 
provided in [3], and then these results are generalized for 
a transfinite case i

( )c n

As pointed out in [5], the problem formulated in [2] is 
equivalent to the search for a maximizer of an unimodal 
function ( )f x , where . The goal of the 
search is to minimize the number of required evaluations 
of a function 

(0,x )

( )f x  (probes, for short) in the worst case, 
if the maximizer is located on a priori unspecified inter-
val , and where  is a positive integer number. 
In [5], the authors consider the unbounded discrete uni-
modal sequential search for a maximizer. Employing an 
elaborate apparatus of Kraft’s inequality, [5], inverse 
Fibonacci Ackermann’s function and, finally, a repeated 
diagonalization, they construct a series of algorithms that 
eventually approach lower bounds on the function . 

( 1n  , ]n n

( )c n
The general theory of optimal algorithms is provided 

in [6,7]. The problems where f  is a unimodal function, 
defined on a finite interval, are analyzed by many authors, 
and the optimal algorithms are provided and analyzed in 
[8-12]. Optimal parallel algorithms, searching for a maxi-
mum of a unimodal function on a finite interval, are dis-
cussed in [13-15]. The case where f  is a bimodal 
function is discussed and analyzed in [16-18]. The case 
where additional information is available is studied in 
[19,20]. The optimal search algorithm for the maximum 
of a unimodal function on a finite interval is generalized 
for a case of multi-extremal function in [21-23]. In all 
these papers, the optimal algorithms are based on the 
mere fact that a maximizer (minimizer) is located on a 
priori known finite interval  (called the interval of 
uncertainty). The algorithms employ a procedure that 
shortens the interval of uncertainty  after every probe. 
Complexities of related problems are functions of the 
size of interval K. Search algorithms for two-dimensional 
and multidimensional unimodal functions are considered 
respectively in [24,25]. 

K

K

In this paper we consider a parallel algorithm finding a 
maximizer (or a minimizer) of a function f  defined on 
an unbounded interval I  of R and computable at every 
point x I

, )
. Without loss of generality, we assume that 

. It is easy to see that an algorithm, that detects 
a maximizer, cannot employ the same or analogous 
strategies as in the finite case, since the interval of un-
certainty is infinite. 

(0I 

Definition 1.1. A unimodal function has the following 
properties: 1) there exists a positive number s , such that 

1 2( ) ( )( )f x f x f s   for all 1 20 x x s    and 

1 2( ) ( ) ( )f s f x f x   for all 1 2 ; 2) s x x    ( )f x  
is not constant on any subinterval of I . The point s  is 
called a maximizer of function ( )f x . It is not required 

that f  be a smooth or even a continuous function. 
The goal of this paper is to describe and analyze an 

algorithm that 1) detects an interval of length t (t-interval, 
for short) within which a maximizer of f  is located; 2) 
uses a minimal number of parallel probes (p-probes, for 
short) in the worst case for the t-detection. 

Definition 1.2. An algorithm is called balanced if it 
requires an equal number of probes for both stages 
(scanning and detection).  

Definition 1.3. The algorithm that is described in this 
paper is minimax (optimal) in the following sense. Let F 
be a set of all unimodal functions f F  defined on I; 

t  be a set of all possible strategies tS s  detecting a 
t-interval that contains a maximizer s of function f; and 
let  be the number of p-probes that are re-
quired for detection of the maximizer on t-interval using 
strategy t

( , )tsN f

s . Then a minimax strategy ts  detects the 
maximizer for a minimal number of p-probes in the 
worst case of the unbounded function f, [17]. 

The Definition 1.3 implies that  

  min max ,t t
s S f Ft t

N s N f s

 
           (1.1) 

Remark 1.1. Although s is a priori unknown to the 
algorithm designer, it is assumed in this paper that its 
value is fixed. Otherwise, the algorithm designer will not 
be able to provide any algorithm for t-detection of s. In-
deed, the adversary can generate a function f that is in-
creasing on any finite subinterval . (0, )v I
 
2. Choice of Next Evaluation Point 
 
2.1. Sequential Search: Single-Processor Case 
 
Proposition 2.1. Let us consider two arbitrary points, L 
and R, that satisfy inequalities 0 . If L R   

( ) ( )f L f R , then maximizer s is greater than L; if 
 then maximizer s is smaller than R; if ( ) 

( )
( )f L f R
( )f L f R , then s is greater than L and smaller than R, 

i.e., ( , )s L R , [10,26]. 
Proof follows immediately from unimodality of the 

function f. 
If , then a maximizer s is detected on a 

finite interval, i.e., 
( ) ( )f L f R

(0, )s R . Therefore for t-detection 
of the maximizer s we can employ Kiefer’s algorithm for 
sequential search [10,26] or the algorithm [25] for paral-
lel search. 

Suppose that f is evaluated at two points :iq L  and 
:jq R , where 0 L R     and let ( ) ( )f L f R . 

Two strategies are possible in this case: to evaluate f ei-
ther at a point ( , )M L R  or at a point M R ; {there 
is no reason to evaluate f at , since the Proposition 
2.1 guarantees that if 

q 
( )

L
( )f L f R , then maximizer s is 

greater than L}. Let assume that function f is increasing 
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on interval ( , )L R  . 
Therefore, s is either on finite interval ( ,R R)  or 

on infinite interval . Keeping in mind that we 
consider the worst case complexity, it is reasonable to 
evaluate f at a point 

R s  

M R  that is on the infinite inter-
val .  ,R 
 
2.2. Multiprocessor Case 
 
Let us consider the same function ( )f x  as in the single 
processor case. Let us simultaneously evaluate it at 
points 1, , pM M , where p is the number of available 
processors. 

Consider four scenarios: 
A: All or a part of the points 1, , pM M  are inside 

interval ; ( , )L R

1B: All points , , pM M
, ,


1

 are outside interval , 
i.e., every point 

( , )L R

pM M
[ , ]

 is larger than R;  
C: s R R 

[ , ]
;  

D: s R R  . 
 
2.3. Possible Outputs in the Worst Case 
 
For both AC and AD scenarios ( )f x  and   can be 
selected in such a way that for all , for which 

i

1 i  p
( , )M L M , the inequality i( ) ( )f M f R  holds. 

Hence, taking into account that we are dealing with the 
worst case, all evaluations must be done outside interval 

 if ( , )L R ( ) ( )f L f

q q

R . 
 
3. Optimal Unbounded Search Algorithm as 

a Two-Player Game with Referee 
 
3.1. Sequential Search: (p = 1) 
 
Let us consider two players A and B and a referee. Their 
game consists of two stages.  
 At the beginning, player A selects a value 0s   and 

informs the referee about it. Player B selects a value  
t > 0 and informs player A and the referee about his 
choice.  

 At the first stage, B sequentially selects positive and 
distinct points 1 2, , , iq . The referee terminates the 
first stage if there are points jq  and kq  such that 

js q  and ks q .  
 The second stage begins from state 1 1 1( , , )u v w  where 

:1 1ju q ; : 1 jv q ; :1 1jw q . 

At the second stage, B selects points and A selects in-
tervals. Let the game be in state ( , , )j j ju v w  of the sec-
ond stage. This stage terminates if j jw u t  . Other-
wise B selects a point j jx v , such that j j ju x w  . 
Then A eliminates the leftmost or the rightmost subin-
terval, [16]. The goal of player B is to minimize the 

number of points required to terminate the game. The 
goal of player A is to maximize the number of these 
points. The adversarial approach for interpretation of the 
optimal search algorithms is also considered in [2,27]. 

Remark 3.1. It is easy to see that B is an algorithm 
designer and A is a user that selects function f and re-
quired accuracy t. 
 
3.2. Multiple-Processor Search: (p ≥ 2) 
 
An optimal parallel search algorithm with p processors 
has an analogous interpretation. In this case, at the first 
phase of the game, player B on his move selects p dis-
tinct positive points. The referee terminates the first 
phase if there are at least two points to the right from s. 
At the beginning of the second phase, the player A se-
lects any two adjacent subintervals and eliminates all 
other subintervals. In general, at the second phase, B 
selects points and A selects intervals. More specifically, 
player B on his move selects p distinct points on the in-
terval and player A on her move selects any two adjacent 
subintervals and eliminates all other subintervals. The 
goal of the game is the same as in the single-processor 
case. It is obvious that on the first stage of the game 
player B must select all points in an increasing order 
from one p-probe to another. 

Remark 3.2. At first, we will describe the optimal 
unbounded searching algorithm with one processing 
element, (PE, for short). Subsequently, we will describe 
and discuss the parallel minimax unbounded search with 
p PEs. As it will be demonstrated, the case where p is an 
even integer is simpler than the case where p is odd. 
 
4. Structure of Unbounded Sequential 

Search 
 
Consider a finite interval K, i.e., its length K   . In 
the case, if it is known a priori that s K , then we can 
t-detect maximizer s for at most  
   log 1K t o K t     probes, where  

 1 5 2   , [16,17].         (4.1) 

However, the situation is more complicated if f is de-
fined on unbounded interval  In this case we 
divide entire interval I into an infinite set of finite subin-
tervals of uncertainty 1 1

(0, ).I  

0, ]: (I q ; 2 1 2: ( , ]I q q ; ; 
1: ( , ]k k kI q q ;  where  

1 kk
I I




 .              (4.2) 

In this paper it is demonstrated that a minimax search 
algorithm consists of two major modes: a scanning (ex-
panding) mode and a detecting (contracting) mode. Let 
us assume for simplicity of notations that for all integer k 

Copyright © 2011 SciRes.                                                                                IJCNS 



 
552 

)

B. VERKHOVSKY 

: (kf f q k k

Definition 4.1. A search algorithm is in the scanning 
mode while for all  function f satisfies 
inequalities . 

, i.e.,  is a result of the k-th probe. f

1 2 kq q q  
f  1 2 k

In the scanning mode we probe intervals  
until this mode terminates. 

f f

1 2, , , ,kI I I 

Definition 4.2. We say that a search algorithm is in 
l-th state 1  of the scanning mode if l-th in-
terval of uncertainty 1 ]l l l

{ , }l l lp r r
( ,I q q  is to be eliminated 

and  is the next evaluation point. Here  1lq 

1 1:l lr q  lq I   l ; 1 1l l lr q q 
f f

l

Remark 4.1. If 1l l , then the search switches 
into the detecting mode with initial state 1 , [16]. 
However, if 1l l , then the search moves to the next 

1l  state of the scanning mode. As a result, the interval 
of uncertainty 1l

I  . 

{ , }l lr r

f  f 

p 

I   is eliminated (since 1l s I  ) and 
the inter 2lval I   is the next to be examined. Since at 
any state the search can switch into the detecting mode, 
the dilemma is whether to select interv 2lal I   as small 
as possible (in preparation for this switch) or, if the 
search continues to stay in the scanning mode, to select 

2lI   as large as possible. The dilemma indicates that 
there must be an optimal ic cho e of 2lI  . 

In the detecting mode, we can use an optimal strategy, 
[10,16,26], which locates s on t-interval. To design a 
minimax search algorithm, we must select all  

1 2 1k  in such a way, that the total number 
of required probes on both modes is minimal in the worst 
case. 

q q q   

Definition 4.3. We say that a set of points  
is a detecting triplet if 

( , , )i j kq q q

i jf f f  k k, where .     (4.3) i jq q q 

If  is a detecting triplet and f is a unimodal 
function, then maximizer s satisfies inequality k

( , , )i j kq q q

iq s q  , 
[17].  

Definition 4.4. In the following consideration,  
means the minimal total number of required probes for 
both modes in order to detect maximizer s in the worst 
case if 

( , )U b c

( , ]s b c .  
In the following discussion, we assume that t = 1, 

unless it is specified otherwise. 
Proposition 4.1. If f is an unimodal function and 

, but this is a priori unknown, then 
for all  s is detectable after  probes in 
the worst case, i.e.,  

1( 1,m ms F F  
3m 

1]



2( 2)m 

  1 1, 1 2 2m mU F F m            (4.4) 

where  probes are used in the scanning mode and 
 probes in the detecting mode. Here 

1m 
3m  mF  is m-th 

Fibonacci number: ; 1 2 1F F  2 1m m mF F  F    for  
m > 2.  

Proof {by induction}: We will demonstrate that in the 

scanning mode the optimal evaluation points  

1 2 1, , , ,o o o o
kq q q q k  must satisfy these properties: 1 : 1,oq   

1 :o o
k k kq q F  , for all , i.e.,  2k 

k

2
1

:o
k i k

i

q F F 


2   .          (4.5) 

Remark 4.3. First, we demonstrate how to find an ap-
proximation a of s that satisfies inequality s a t  , i.e., 
a t s a t    . Then we will show how to adjust the 
algorithm, if ( 1, ]s n n 

( 2, F
. 

1). Let 3 4 2] (0,1s F   ] . Consider 11 q   

2 2q  . Then 1 2 . Hence, Proposition 4.1 implies 
that 

f f
2, )(0s q . Thus, 2 2a q  implies that (0,1]a ; 

therefore 1s a t  
)

. It is easy to verify that, if 
(0,1s    and 0  , then, in the worst case, two 

probes are not sufficient for detection of s on t-interval. 
Indeed, the adversary can select such s and f that satisfy 
the following inequalities: 1 21  and 1 2q s q   f f . 
Hence, in that case, s is not t-detectable on  inter-
val after two probes. 

(0,1]

2) Let now 1( 2, 2m ms F F  )    and . Then s 
can be t-detected for  

m k

1s
( 2, 2) 2m mF F m 1     probes. If , then k 

probes were used in the scanning mode and 
m k

3k   
probes in the detecting mode. 

3) Let 1 2( 1,k ks F F  1]  
1,2, ,i k

, but it is a priori un-
known. Let for all 1, 2k  

: 1i iq F 

 the probes are 
taken in the points 2  . 

In this case the following inequalities hold  

1 2 1k k k 2f f f f f      .  
Since 1 2k k kf f f   , then 1 2  is a de-

tecting triplet, and, as a result, the search is in the detect-
ing state 1 2{ , . Then from [8,10,26], using the 
optimal search algorithm, we can detect s with accuracy  
t = 1 for additional k evaluations of f. Hence the minimal 
total number of required probes for both modes is equal 

( , , )k k kq q q 

}k kF F 

1 2( 2, 2)kF  2t kU F k 1    . Q.E.T. 
 
5. Optimal Balanced Sequential Search  
 
5.1. The Algorithm 
 
Assign a required accuracy t; {the scanning mode of the 
algorithm begins}; 

:L t ; ; : 2R t

while ( ) ( )f L f R  do begin 

:temp L ; :L R ; ;   (5.1) :R R temp t  

{(5.1) generates a sequence of probing states , 1 2{ , },F F 
1{ ,k k }F F }; end; 

{the maximizer s is detected: ( , )s temp R ; the algo-
rithm is in the detecting state  
{ L temp , R L }; 
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{the following steps describe the optimal detecting algo-
rithm-see [16]}; 
assign  

: ;A temp       (5.2) : ;B R :R A B L   ;

repeat 
if ( ) ( )f L f R  then  

  
: ; : 2 ; :

: ; , ;

temp L L R B B R

R temp s A R

   

 

;

;

2}

      (5.3) 

else  

  
: ; : 2 ; :

: ; , ;

temp R R L A A L

L temp s L B

   

 
      (5.4) 

{(5.3) and/or (5.4) generate a sequence of detecting 
states 1 1{ , }, ,{ ,k kF F F F  }; 
until ( ) 2 ;B A t   
assign : ( ) 2a A B  ; {a is the approximation of the 
maximizer: s a t  }; stop. 

The algorithm described above is called V-algorithm. 
 
5.2. Optimality of Sequential Search 
 
Proposition 5.1. The number of required probes for 
t-detection of a maximizer described in Proposition 3.1 is 
minimal in the worst case. 

Proof. The algorithm consists of the scanning and de-
tecting modes. In the scanning mode (SM) the search is 
sequentially in the probing states  where 1 2, , , mp p p

  1 1 2 1: , , , : ,m m mp F F p F F   .       (5.5) 

On the other hand, in the detecting mode (DM) the 
algorithm is in the detecting states , , 

1

1{ , }m mF F  
2{ , }F F

 { ,
. It is known that all detecting states 1 , 

, 1 2

{ ,F F }m m

}F F  are optimal (there are no other strategies 
that can t-detect s for a smaller number of probes). At the 
same time the entire SM is a mirror image of the DM. 
Indeed, from the beginning to the end of the SM the 
search goes from scanning state 1 2{ , }F F  to scanning 
state 1 , while in the DM the search goes from 
detecting state 1{ ,  to detecting state 1 2{ ,

{ ,m mF F }
}m mF F  }F F . 

Thus, both modes (scanning and detecting) are optimal; 
therefore, the entire algorithm is optimal. 
 
6. Complexity of Minimax Sequential Search 
 
Let us compare the optimal search algorithms for two 
cases: 

1) Maximizer , but this is a priori un-
known; here b is a positive integer; 

( , 1]ms b F 

2) It is known a priori that (0, )ms F

( ,

. Let  
be the minimal total number of required probes for 
t-detection of s in the worst case if 

( , )B b c

)s b c . 

From Proposition 4.1, if  and , 
then 

1 1mb F   2m 

  1 1, 1 2 2m mU F F m     .        (6.1) 

However, if 0b  , then the following inequality 
holds: 

  0, 1 2 2mU F m    .          (6.2) 

From [11] it follows that, if , then  4m 
(0, ) 2mB F m  , otherwise 

 0, 0.mB F                (6.3) 

(6.1) and (6.3) imply that for all   4m 

    0, 1 2 0, 2 2m mU F B F m     .    (6.4) 

In general, if 1( , ] ( 1, 1]m ms a b F F    , but this is a 
priori unknown, then 

       , 2 log 5 1 logU a b b o b b
         (6.5) 

where   is defined in (4.1). 
Equality (6.5) follows from the fact that  

  5m m
mF    , [13,14].       (6.6) 

where  1 5 2 1   m, therefore lim 0   if 
.  m 

Thus, 

   5 1m
mF o    .         (6.7) 

If 1 1m mF P F    , then  

  1 1, 2 2mU F P m    .        (6.8) 

The complexities (6.1) and (6.5) can be further re-
duced if any prior information is available, [6,17], or if a 
searching algorithm is based on a randomized approach, 
[19,30]. 

Proposition 6.1. Let  be the minimal number in 
the worst case of the required probes to detect s on a pri-
ori unknown interval 

( )c n

 1,s n  n . If  

1 2mF n F 1m   ,           (6.9) 

then 

  2 2c n m              (6.10) 

Proof. First of all, the relations (6.1), (6.2), (6.5) and 
(6.8) are based in the previously made assumption that 
t := 1. From this assumption it follows that maximizer is 
detectable on an interval of length two, . 
In order to find the complexity of the algorithm if 

{ 1 1a s a    }

 1,s n n  , the scale of the search must be decreased 
twice, i.e., we must select t := 1/2. Two cases must be 
considered: 
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Case 1: If  

 1 1 1mF t n     and ;    (6.11)  1mn F   t

then (6.10) is implied by (6.5) if t :=1/2.  
Case 2: If  

   1 1m mF t n F t     and  (6.12)  1 1mF t n   1,

i.e., the case where  1 1mF t   is in the middle of the 
interval  1,n n

m
.  

It occurs if  In this case the left half of 
the interval 

mod3 0.
 1,n n  is out of interval  1 1 ,mF t   

 1mF t  , i.e.,     1 , 1m mt F t   12 F1, 1/n n 



  
and, as a result, fewer probes are required for t-detection 
of s. However, in the worst case, the maximizer may be 
on the right half of interval 1,n n , hence  

 for both cases. For illustration see Ta-
ble 6.1 below. 

( ) 2(c n m 2)

Thus, (6.8) implies that  

     2 log 2 5 1 4.c n n o n
           (6.13) 

 
7. Estimated Interval of Uncertainty 
 
In many applications, an upper bound value Q on maxi-
mizer s can be estimated from a feasibility study. Let  

5T Q d  .Q  Here 4 5 1.082.d    

Proposition 7.1. If s T  , then V-algorithm re-
quires fewer probes than Kiefer’s algorithm, [14]; if 
T s T   , then Kiefer’s algorithm and V-algorithm 
require the same number of probes; if , then 
Kiefer’s algorithm requires fewer probes than V-algo-
rithm.  

T s Q 

Proof. Let  and . Then in the 
worst case 

: mT F 1

m

2 2: mQ F 

  
   

1 1

2 2

0, 1 1, 1

0, 2 2

m m

m

U F U F F

B F m

 



   

  
.     (7.1) 

It is easy to check that the proof follows from (6.7) 
and from the fact that 

   2

2 2 5 1m mF F o   m  .      (7.2) 

Preliminary results on analysis of the optimal algo-
rithm searching for the maximum of a multimodal func-
tion on the infinite interval are provided in [28].  

 
Table 6.1. Total number of probes as function of n. 

4 6n   494 798n   60,697 98,208n   

  10c n     30c n     50c n   

8. Parallel Search: Basic Properties 
 
If several processors are available, then, as it is indicated 
in [29], the algorithm can be executed in a parallel mode. 
[13,15] are the earliest papers on a parallel search for a 
maximum of a unimodal function of one variable on a 
finite interval, that are known to the author of this paper. 
Although the optimal search strategies in both papers are 
in essence identical, the formulation of the problem is 
different. The proof of optimality of the search is more 
detailed in [15]. [2] provides an idea of a parallel algo-
rithm searching for a maximum of a unimodal function 
on a unbounded interval. This idea is based on an appli-
cation of the Kraft’s inequality formalism, is provided in 
[2]. The authors indicate that the approach they used to 
construct an infinite series of near-optimal algorithms for 
the unbounded search with a single processor can be ex-
panded for a multiprocessor case. However, no details 
are provided. 

The search algorithm described in this paper is based 
on the following properties. 

Proposition 8.1: Let us consider p arbitrary points 

1, , pq q  that satisfy inequalities 

10 pq q     .           (8.1) 

If  

1 2 1p pf f f  f    ,         (8.2) 

then maximizer s is greater than  if 1;pq 

1 2 1p pf f f     f ,         (8.3) 

then s is smaller than  if 2 ;q

1 1 1 ,j j j pf f f f f             (8.4) 

then s is greater than 1jq   and does not exceed 1jq  , 
i.e.,  

 1 1,j js q q    .             (8.5) 

Proof follows immediately from unimodality of func-
tion f. 
 
9. Search on Finite Interval: Principle of 

Optimality 
 
Definition 9.1. ( , )p

mI u v

{ , }.u v

 is a minimal in the worst case 
interval of uncertainty containing maximizer s that can 
be detected after m p-probes if the search starts from the 
detecting state  
 
9.1. Properties of  ,p

mI u v  
 

1)          p
l,p

m ,I u v l ;     ) 

(Effectiveness of p-probes); 

I u v  if   (9.1m 
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2)  1 1 2 2,p
m l  ,p 5)      ,p p

m mI u v

(Monot

I u v  if 1 2u u ; 1 2v v
 

,I cu cv cI u v  for every ;  (9.5) 0c ; (9.2) 

3)  

onicity of uncertainty); (Homogeneity).  

 p
m m  , ,pI u v I v u ; (Symmetricity);     (9.3) 

   

 
9.2. Properties of ( , )p

mI u v  if p = 2 
4)    ,  ,p q

m mI u v I
Efficiency of paral

u v  if p q ;      (9.4)  
( leliza   tion); Proposition 9.1: Let .  Then  u v

 



 


        (9.6) 

(9.6) is a functional equation of dynamic programming; it implies the following property. Proofs of this and the follow-

 
    

   
1 3

1 2

2 2
1 1 1 3 1 3 1 3

,2

2 2
1 2 1 1 2 1 1 2 2

min max , max , , ,max , ;
, min

min max , max , , , max , .

m m
y u y v

m

m m
y y u

I u y y y I y u y v y
I u v

I y y u y y I u y y y v

  

  

       
        

 

ing Propositions 9.2-9.5 are provided in the Appendix. 
Proposition 9.2: Let u v ; then  

 
 

2
12

2
1

,  if ;  
2,

, ; 0  if .

m

m

m

u v
I v u v

I u v

I u z z z u u v





      
    

                          (9.7) 

 
.3. Odd Number of Processors 

roposition 9.3: If ; and  then 

9
 
P 2 1p r  u v ,

 
      

           

2 1 1r
12 1

2 1
1

, ,  1 ;
,

, 1 ,  1 ;

mr
m r

m

I r k v k  u ku r k v k k r k v u k r k
I u v

I r k v ku k u r k v r k k r k v u k





            
            

          (9.8) 

 
here for )

2
w 1 /k r      

er branch of
2 ( 1) (r k v ku ku r k v       

(9.8) and for 0 /k r in the upp    
wer branch of

 
( ) ( 1) ( )r k v ku k u r k v       in the lo  

 
(9.8).  

9.4. Even Number of Processors 

roposition 9.4: If 
 
P 2p r  and  then for all u v ,
1 2k r      the f g dynam programming 

:  
ollowin ic 

equation holds
 

             
         

2
12

2
1

1 , 1 1 ,  1 1
( , )

1 , , 1 , 0 1 .

r
mr

m r
m

;I r k v ku k u r k v r k r k v u k r k
I u v

I u v r z z ku r k v z u v k





                 
            

    (9.9) 

 
.5. Defining Rules of Optimal Detecting States 

efinition 9.2. If there exists a pair of positive numbers 

 and 

9    2 1 2 1
1, ,r r

m m m m m m mI c d I d c r d 
   ,   (9.11) 

whic
 

h means that  D
c and d such that c>d and for all non-negative numbers u 
and v  

u v

1 : ;m mc d   1 :m m md c r d    ;   

 p is even, then 

   (9.12) 

Proposition 9.6. if
c d   ( , ) ( , ),p p

m mI u v I c d     (9.10) 

then  is an op
imal detecting 

st

 two propositions can be proved by in-
du

     2 2
1, 1 , ,dr r

m mI c d I c d r d
{ , }c d
finitio

timal detecting state. 
De n 9.3. Let { , }k kc d  be the opt

ate starting from whi n be located after k addi-
tional p-probes. 

The following

ch s ca

ction: 
Proposition 9.5. if p is odd, then  

m m m m m m        

which means that  

   1 1: ;  : 1m m m m m md d z c c d r d 1.         (9.13) 

Remark 9.1. tmd cons  in (9.13). 
1) and 2) im  (9.12) and (9

op  states ;
ply defining rules .13) for 

timal detecting , }kd ; here 0 1{ kc z   
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0 0: 1;  : ;  : ;  : 2 .t d z c t z r p           (9.14) 

Proposition (1) and (2) im defining rulesply the 
optimal detecting states : if p is odd, t

if p is even, then for all 

.

  (9.16) 

Both these rules for p odd and even can be generalized 
as: assign  

 for 
hen for all { , }k kc d

1   

 1 1 1: ; : ;k k k kc r c c            (9.15) 
k

 kd d

0k   

 : 1c r c  
   

1 1 1

1 1

: ;  

1 1:

k

k k k k

k

k k

d z

d d

r c rd t r z

  

 



 

     

 

 : 1 mod 2;p                           (9.17) 
then 

 
 

1 11 2 ;k kp c d     

1 1

 :

: mod 2 .

k

k k k

c

d p c d  
    (9.18) 

The following two examples and Table 9.1

{with t = 1; 

  

0 01 2;  1 2;  1 2z c d   }   (9.19) 

show how steps k  ar
for v f processors

optimal search e changing 
arious number o

 and kc d
. 

Example 9.1. Let p = 3; then : 2 2;   r p 
 1 : 1 2 1 2 2;c r    1 : 1 2d  ;  
   1 1: 2 2 1 2 5r c d     ; 2

   3 2 2: 2 5 2c r c d   
Example 9.2: Let p = 4; then for 

c 2 1: 2d c   
14; : 5c  ; 

;
  3 2d   

all 1k   : 1 2kd  ; and  

 1 0 0 0: 3 3 1 2;c c d d      

  2
2 1: 3 3 ;c c d d   1 1 1 2

  3
3 2 2 2: 3 3 1 2;c c d d        

 
10. Search on Infinite Interval wi  Even 

Number of Processors {p = 2r} 

bes 

th

 
10.1. Scanning Mode 
 
Let us select the first p pro 11 21 1, , , pq q q . 

  and q qIf maximizer  1,10, ps q  
t

1 2,1 1i i 
on a fi te inte

 for 
ected rval 

-probe. 
 general

he ) th detecting state. It 
e are required for 

alternating 

all 2 i p  , then s will be de ni
after the very first p

In , if  1, 1,,k p ks q q    , then s will be detected 
on a finite interval after k p-probes. 
 
10.2. Detecting Mode 
 
Suppose the search is in t

eans that at most k 
( 1k  -

+ 1 p-prob
s. p-pr

m
t-detection of the maximizer obes will divide the 
larger interval  into p + 1 sub-intervals 

, , , , , ,k k k k k kd c d c c d . In the k-th detecting state, the 
search will be either in { , }k kd c  state or in the { , }k kc d  
state. Both of these states are equivalent, i.e., they re-

er of p-probes for the t-detection 
and the symmetrical ch probes. Schematical  
can be described in the following diagram:  

1kc 

quire the same numb
oice of ly it

     1 1, ; , , , , , , , ,k k k k k k k k k k k kd c c d c d c d c d d c   
(10.1) 

Here a semico

1kd
lon separates the “leftover” interval 

  of the prev
, , , , , ,k k k k k kd c d c c d

pe
It 

detecting states descri

in 

ious state from
, where t

p =

 the new sub-i
he pair 

nique.
 6 and let the search 

ntervals 
)  

 I
be 

( ,d ck k

ated r times. 
is important to notice for further application that the 

bed above are not u ndeed, 
let us consider the search with 

is re-

the detecting state { ,8 }x x , where x is an integer vari-
able, and 1 7.x   Then for any x, the maximizer s is 
t-detectable after one p-probe only: divide the left inter-
val into x equal sub s using 1interval x   probes and 
divide the rval into 8right inte x  equal intervals using 
8 1x   probes. Let x = 5. Applying the schematic de-
scription (10.1) of search we have  
{5,3} [1,1,1,1,1;1,1,1] {1,1}  1x  , then  

[1;1,1,1,1,1,1,1] {1,1} . In general, for any even 
p we consider a detecting state {1, k

. If

 onto
1)kr 

 
{1,7}

divide the right interval
nating lengths equal 

2( 1) 1}r  
ubintervals with alter-

.  Let us 
 p s

1 12(    and one. Then from 
the diagram (10.1) one can see tha

 
t 

 
   1 1 1

1, 1 1

1;2 1 1,1, 2 1 1,1,

k

k k k

r

r r
  

 

 1 1r

 11, 2( 1) 1

{1, 1} 1;1,1, ,

k

p

  
   

1, 2 1

,1 1,1

r r 
,1,2

1

1 .

        

}  is the 
 can be 

  

   
Therefore, the

optimal detecting state starting f
t-detected after k p-pr
 





 detecting state 

s. 

 



k{1, 2( 1) 1r  
rom which s

obe

Table 9.1. Search intervals as functions of number of proc-
essors p.  

p 2 3 4 

1 1 1, ,c d z  1.5; 0.5; 2 2; 0.5; 2.5 2.5; 0.5; 3 

2 2 2; ;c d z  3.5; 0.5; 4 5; 2; 7 8.5; 0.5; 9 

26.5; 0.5; 27 

p 

3 3 3; ;c d z  7.5; 0.5; 8 14; 5; 19 

5 6 7 

1 1 1, ,c d z  3; 0.5; 3.5 3.5; 0.5; 4 4; 0.5; 4.5 

2 2 2; ;c d z  10.5; 3; 13. 5; 18; 4; 22 

4  

5 15.

6

 0.5; 16 

3 3 3; ;c d z  0.5; 10.5; 51 3.5; 0.5; 64 88; 18; 106 
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11. Inter o m on k 
 

ort), i.e., PE(i) and PE(i + 1) are connected with MEM(i) 

 

.    (1

Then for large m(p) and m(1) holds that  

 

ed probes in
parallel and sequential modes are respectiv

-Pr cessor Co municati Networ

1) All PEs are connected with
2) Two adjacent PEs share a memory unit (MEM, for 

 a linear bus; 

sh
and can read from it concurrently. 

12. Speed-up and Efficiency of  
Parallelization 

 

Let ( ) 1 ( )m p m pb n b    and (1) 1b n b   (1)m m 2.1) 

     log 1 log 1m p u m u . p       (12.2) 

On the other hand, the numbers of requir  
ely equal 

   2 1pc n m p   and    1 2 1 1c n m  .  (12.3) 

Let’s define the speed-up of parallelization as   

    1p ps n c c n .      n    (12.4) 

Then (12.2) and (12.3) imply that 

   
 

log

log 1p u

u p
s n  .  

If efficiency of parallelization is define

        (12.5) 

d as  

   :p pe n s n p ,          (

th

12.6) 

en 

       
 1 log 1p pe n c n pc n

p u
   

Since for the large number p of processors  

logu p
. (12.7) 

  2 1u p p    ; 

therefore for a large n 

(see (A.15) and Table A.1 in Appendix)   (12.8) 

   
 

 
log 2 1

log
p

log
p

1 5 2
s n p


   ;  (12.9) 

  

and finally 

   logpe n p p    .      (12.10)
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Appendix 
 
A1. Complexity Analysis 
 
A1.1. Basic Parameters 

ka   interval added before k-th p-probe is computed;  

kg   smaller interval on the k-th scanning state of the 
search;  

k  larger interval on the k-th scanning state of the 
search;   
h 

k  interval of uncertainty eliminated from the search 
after the k-th p-probe;  
w 

k  total interval added before the k-th p-probe is per-
formed; 
t 

k  total interval eliminated from the search as a result 
of k p-probes. 
b 

 
A1.2. Basic Relations: {odd p} 

 
 

2

2 2 1

   ;  

: ;

k k k k

k k k

k k k

a p h p g rh r g

r g h g

a h h 

          
  

 

k

   (A.1) 

k  and kb  satisfy the following recursive relations for 
all  
w

3 :k 

1;  : ;k k k k k k kw a h g w h h            (A.2) 

 1 1:k kt h h r  ;

;

1 .
k

z

            (A.3) 

1 1;  : .k k k k k kb b w b t h            (A.4) 

 
A1.3. Basic Relations: {even p} 

 
 

1

1

: ;  : 1 ;  : 2

: 1 ;

k

k k

k

k

g z h r z w r

w r r z


     

  
    (A.5) 

   1

1 1
: 1

ik k

k ii i
b w r r z r



 
        (A.6) 

Let us consider for all  sequences 1k  ,  ,  k k kh v   
with the following defining rules:  

 1 2: ;  k k k k k kh v z h r h h      ;     (A.7) 

where  

1 0 1 0: 0;  : 1;  : 1;  : 1  and  0 1v v z         . (A.8) 

(A.7) implies that  

  1 2 1 2: ;  :k k k k k kv r v v r         .

2

  (A.9) 

It is easy to demonstrate by induction that for all  

k1  .kk rv              (A.10) 

Therefore 

2 .k k kh v rv z               (A.11) 

If p = 1, then kv Fk , where all kF  are the Fibo-
nacci numbers. 

Thus, all  can be computed using the following 
formula:  

kv

;k
kv u w   k             (A.12) 

where u and w are roots of the equation  

 2 1 0x r x   :           (A.13) 

and   and   satisfy the equations:   

0 1;  .v u w v1 r             (A.14) 

From (A.13) 

    

    

4 2 1

4 2;  1 2

u r r r r p

w r r r r p

     

     ;
   (A.15) 

{see Table A.1 for values of u(p)}. 

For every p 1 2 1 2x 1 ;  ;  x u x w x    . Indeed, from 
Viete theorem  

.w r u                (A.16) 

Since , then u r 1 0w   . From (A.15) and (A.16) 

 .k
kv u o u            (A.17) 

From (A.14) 

       4 2 4 2r r r r r r r         4 .  (A.18) 

Therefore, lim ( ) 1 2;
p

p


  lim ( ) 0;
p

p


  i.e.,  

   lim 1 1.
p

u p r


         (A.19) 

The latter limit in (A.19) means that for a large num-
ber of processors    3 2u p p  . 

Examples A1: Table A.1 shows relationship between 
odd p and u(p). 
 
A2. Maximal Intervals Analyzed after m  

Parallel Probes 
 
Proposition A.1: If  1, 1m ms v v1   , then m p-probes 
are required in the worst case to detect the maximizer on 
a final interval. 

Proof is implied by (A.14) and (A.17). 
Proposition A.2: If p is odd, then 

 
Table A.1. u(p) as function of odd number of processors p. 

p p = 1 p = 5 p = 9 

u(p)  1 5 2 1.618   3 21 2 3.791    5 45 2 5.854 
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     
   

( )

( )

2 log 1 1

2log 1 1;

p u p m

u p

c n v p

n p





   
     







   (A.20) 
( ) 2 1c n m  . Then the proof follows from (A.14) and 

(A.17) respectively. 
 
A3. Proof of Proposition A 9.1 and, if p is even, then  

     1 12 log 1 1 2log 1 1p r m rc n v n        . 

(A.21) 

 
Proof: There are only three ways to decompose the in-
tervals u and v using two evaluations (semicolons indi-
cate the previous points that separate u and v):  Proof: If  1( 1, ) 1, 1m ms n n v v     , then  

 
1)                 1 2 3 4 2 3 2 3, ; , , ; , ,u v y y y y u y y v y y   ;  where 1 ;y u  2 3 4y y y v   ;        (A.21) 

2)                 1 2 3 4 1 1 3 3, , ; , , ; ,u v y y y y y u y y v y   ;  where 1 2 ;y y u            (A.22) 3 4 ;y y v 

3)                 1 2 3 4 1 2 1 2, , , ; , , ;u v y y y y y y u y y v    .  where 1 2 3 ;y y y u             (A.23) 4 .y v

The following recursive equation is derived from the decomposition (A.21)-(A.23): 

 

     

     

     

2 3

1 3

1 2

2 2 2
1 2 1 2 3 1 3 2 3

,

2 2 2 2
1 1 1 1 1 3 1 3 3

,

2 2 2
1 1 2 1 2 1 2 1 1 2

,

min max , , , , , ;

, min min max , , , , , ;

min max , , , , , .

m m m
y y

m m m m
y y

m m m
y y

I u y I y y I y v y y

I u v I y u y I u y y I y v y

I y y I y u y y I u y y v

  

  

  

    


     

      

             (A.24) 

 
Taking into account that 2 2 2 3u y v y y y      and 

that 2 2  we can eliminate the second and 
the third terms in the upper branch of the functional 
Equation (A.24). 

u y v v y   
such a way that every two adjacent intervals have equal 
sums. It implies that the alternating intervals must have 
equal lengths: 1 3 ;y y w    2 4 .y y z 

y u y  Hence (A.26) implies that   1 1 2 ;y w
2 .y v   On the other hand the first term of the upper branch in 

(A.24) can itself be eliminated since 

   
2 1

2 2
1 2 1 1 1min , min ,m m

y v y u
I u y I u y y  

  .      (A.25) 

In addition,    
1 3

2
1 1 1 3 3

0 0
min , min ,m

y u y v
I y u y y v y   

   . 

Hence Equation (A.24) is reduced to Equation (9.1). 
Q.E.D. 

A4. Proof of Proposition A9.2 
 

 
 

2
12

2
1

,  if ;  
2,

, ; 0  if .

m

m

m

u v
I v u v

I u v

I u z z z u u v





      
    

  (A.26) 

Proof: Since, in the worst case, the adversary can se-
lect two adjacent intervals with the largest sum, from 
optimality point of view, one must select the intervals in  

Thus, 1 ( )y u v 2   if . u v
However, if u v , then   1 3 ;zy y

1 3u y v y   .u z   
Let us consider for every k = 1, , p + 1 a pair of 

equations: 


1
;

k

ii
y u


         (A.27) 

2

1
;

p

ii k
y v



 


where for all i = 2, , p + 2 .  0iy 
 
A5. Proof of Proposition A9.3 
 

  
1

1 1
1 1 ,1 1

, min max min , .
i i

p p
m m

k p y yi p
I u v I y y


      

 i i

p p

  (A.28) 

Proof: There are p + 1 ways to represent the intervals 
u and v as sums in (A.27). The following dynamic pro-
gramming equation describes recursive relations between 
the detecting states  

 

           
2

1 1 2 1 2 3 1 1 1 1 1 1 2
1 1 1, ,

, min min max , , , , , , , , , , ,
p

p p p p p p
m m m m k k m k k m

k p y y
I u v I y y I y y I y y I y y I y y


         

  
   

 
A6. Proof of Proposition 9.4 where all control variables 1 2  must satisfy 

constraints (A.27). Considering the worst case, a user 
can select such a function f, that the algorithm must se-
lect a pair of adjacent intervals with the largest sum. 

, , py y 
 
If 2 1p r  ; and , then  u v
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 
       
           

2 1
12 1

2 1
1

1 , ,  1
,

, 1 ,  1

r
mr

m r
m

;

;

I r k v ku ku r k v k k r k v u k r k
I u v

I r k v ku k u r k v r k k r k v u k






              
            

          (A.29) 

 
Proof: Since an algorithm designer’s goal is for a 

given number of p-probes to maximize an interval on 
which s can be located within a unit interval, it is obvi-
ous to select all the intervals in such a way that any two 
adjacent intervals would have the same sum. This search 
strategy means that intervals 1 2 3 1 2, , , , , ,p p py y y y y y 

1 3 ;y y w  2 4 ;y y
 

must have alternate values:  z   

, i.e., in general, for all  1 2i p     2 1 ;iy w 
2i .y z  

 
A7. Proof of Proposition A9.5 
 
If 2p r  and , then for all u v 1 2k r      the 
following dynamic programming equations holds: 

 

 
             
         

2
12

2
1

1 , 1 1 ,  1 1
,

1 , , 1 , 0 1 .

r
mr

m r
m

;I r k v ku k u r k v r k r k v u k r k
I u v

I u v r z z ku r k v z u v k





                 
            

     (9.9) 

 
Proof is analogous to the proof of the Theorem 9.4. 

 


