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Abstract

This paper considers three algorithms for the extraction of square roots of complex integers {called Gaus-
sians} using arithmetic based on complex modulus p + iq. These algorithms are almost twice as fast as the
analogous algorithms extracting square roots of either real or complex integers in arithmetic based on
modulus p, where p is a real prime. A cryptographic system based on these algorithms is provided in this
paper. A procedure reducing the computational complexity is described as well. Main results are explained in

several numeric illustrations.
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1. Introduction and Problem Statement

The concept of complex modulus was introduced by C. F.
Gauss [1]. The set of complex integers is an infinite sys-
tem of equidistant points located on parallel straight lines,
such that the infinite plane is decomposable into infi-
nitely many squares. Analogously, every integer that is
divisible by a complex integer m = a + bi forms infini-

tely many squares, with sides equal to ~/a> +b’ .
1.1. Complex Moduli

Let’s denote (a,b):=a+hi. Associates of G:=(p,q)
are —G, iG and —iG; they are the vertices of a square
where -G = (— p,—q) ; IG = (O, 1)( p,q) = (—q, p);

—iG =(0,~1)(p.a)=(a,~p).

To understand the congruencies, let’s consider a sys-
tem of integer Cartesian coordinates. The squares on this
system of coordinates are inclined to the former squares
if neither of integers a, b is equal to zero [1]. Then the
associates of the modulus (p,q) are rotations of “vec-
tor” (p,q) on 90 degrees. Let’s consider the plane of
complex numbers and as an example, the complex prime
number (1,4):=1+4i [2]. Let the left-most bottom
point of the mesh be the origin of the coordinate system for

*Dedicated to the memory of Samuel A. Verkhovsky.
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Gaussians, and let G:=1+4i=(1,4) be the Gaussian
modulus. Inside each square there is a number of Gaus-
sian integers; plus every vertex of each square is also a
Gaussian integer. In order to avoid multiple counting of
the same vertex, we consider that only the left-most bot-
tom vertex of each square belongs to that square [1]. For
more insights and graphics see [2].

This paper is a logical continuation of a recently pub-
lished paper [3], which considered a cryptographic scheme
based on complex integers modulo real semi-prime pqg.
The above mentioned paper describes an extractor of
quadratic roots from complex integers called Gaussians.
A slightly different approach is considered in [4]. Several
general ideas for computation of a square root in modular
arithmetic are provided in [5-7].

This paper considers arithmetic based on complex in-
tegers with Gaussian modulus. As demonstrated below,
the extraction of square roots in such arithmetic requires
a smaller number of basic operations. As a result, the
described cryptographic system is almost twice faster
than the analogous systems in [3,4].

Consider quadratic equation

(xy)" =(c,d)mod(p,q), )

where modulus G :=(p,q) is a Gaussian prime; and let
N :=|(p.a)|=p*+0". )
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1.2. General Properties

Proposition 1: Gaussian (p,q) is a prime if and only
if its norm N is a real prime [1].

Remark 1: Since [(£p.+q)|=|(+0.+p)]. without loss
of generality we assume that, if (p,q) is prime, then p
is odd and q is even {unless it is stated otherwise}.

Proposition 2: If norm of (p,q) is a prime (2), then
forevery (p,q), (N—1)/4 isan integer.

Proof: Let p:=2k+1 and q:=2r. Then (2) implies
that

N—1:4[k(k+1)+r2]. Q.E.D. 3)

Proposition 3 {cyclic identity}: If ged[ (a,b), (p,q) | = (1,0)
and ||G|| is a prime, then the following identity holds:

(a,b)" " mod(p,q)=(1,0). “

Remark 2: More details about identity (4) are provided

in the Appendix in Proposition 3.A.
Proposition 4 {Modular multiplicative inverse}: if

gcd[(a, b).( p,q)} =(1,0), then
(a,b)”" =(a,b)"* modG . (5)

Remark 3: Yet, more computationally-efficient is to
solve an appropriate Diophantine equation. However,
this is beyond the scope of this paper.

Definition 1: Gaussian (X,y) is called a quadratic
root of (c,d) modulo G if (X,y) and (c,d) satisfy
Equation (1); we denote it as

(X,y):: (C,d)modG. (6)

2. Quadratic Root Extraction Where
N =5(mod 8)

Proposition 5: If (p,q) is prime and N =5(mod38),
then m:=(N-1)/4 is odd.

Proof: Notice that g mod 4 =2, otherwise (3) implies
that N = l(mod 8). Q.E.D.

2.1. Quadratic and Quartic Roots of (1,0)
Modulo (p,q)

Consider a quadratic root (u,w) of (1, 0)mod (p,q):
(u,w):=/(1,0) mod(p,q).
Then (u,w)2 =(u2 —w2,2uw) =(1,0)mod( p,q). This

equation holds if either w = 0 and u® =1modG ; or if
u=0and

W' =-1modG . 7

Since the last equation does not have a real integer so-
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lution for w, it implies that
(u,w)=(£1,0)=[(£1,0)+(p, q)]JmodG.  (8)

Hence, if aroot (X,y) is known, then another root of
(c,d) is (u,w)(x,y)modG.

Quartic roots: There are four quartic roots of (1, O) ,
each satisfying g =(1,0):

q, = (1’0); q, = (—1,0); g; = (Oal); q, = (Oa_l); (9)
where

074 =0, (modG); a7 =g, =(1,0)(mod G).
2.2. Quadratic Root Extractor (QRE-1)

Step 1.1: Compute
N:=p’>+g* m=(N-1)/4;2=(N+3)/8 (10)

Step 2.1: if N is not a prime, then QRE-1 algorithm is
not applicable, {n/a};

Remark 4:
(p-1,9)=(-1,0)modG ; (11)
Step 3.1: Compute
E:=(c,d)" modG; (12)

Step 4.1: if E =(0,%1), then (c,d) is Gaussian qua-
dratic non-residue (GQNR}, i.e. its square root does not
exist;

Step 5.1:if E =(1,0), then

(%y)=(c,d)""* modG ; (13)
Step 6.1: if E =(—1,0), then
R =(0,£1)modG; {R =JE" mode}; (14)
(x,y)=Rx(c,d) modG ; (15)
Step 7.1 {2™ square root}:
(t,v):=(p-Lg)(xy)modG (11). (16)
2.3. Validation of Algorithm

Proposition 6: Suppose

a) (p.q) is a prime and q=2(mod4); (17)
b) z=(N+3)/8; E:=(c,d)" " modG; (18)

¢) R=vVE' modG if E=(1,0) or (-1,0);  (19)
then
(c,d)"R=,/(c,d)(modG). (20)
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Proof: First of all, (19) implies that
ER’>modG =(1,0). (21)

Yet,
(N+3)/4

(c.d)

R*=(c.d)(c.d)" " R* = (c,d)(ER?)
(C,d)(modG)

(22)

Therefore, (21) and (22) imply equation
(c,d)” R* =(c,d)(modG), (23)
which itself implies that (20) is correct. Q.E.D.

3. Criterion of Gaussian Quadratic
Residuosity Where N =5(mod 8)

Proposition 7: Gaussian (c,d) has a quadratic root
modulo Gaussian prime (p,q) only if

(¢,d)" " modG = (+1,0) . (24)

Example 1: Consider p =91, q=-6; N :||( p,q)||=8317,
which is a prime; hence (+91,£6) are Gaussian primes.
Compute m := (N—1)/4/=2079; z:=(N+3)/8 =1040;

Let Sc,d): (81,71). Since
(81,71)" =(96,85) = (~1,0)(mod(91,6)) (11), therefore,

x,y) =/(81,71) =(81,71)""*" x(0,1
()= FLT) =17 <o)
=(57,75)(mod(91,-6)).

Verification: Indeed,

(57,75)" mod(91,-6) = (81,71) . (26)

4. Numeric Illustration

Consider p= 10, g =-3. Then N=109; m=27; z = 14.
In Table 1 (C,d )m are the quartic roots ¢, of unity
), ie.,

R:={g, =(1,0);0, =(12,7) = (~1,0);0,=(3.9)=(0,-1);
6,=(10,-2)=(0.1)(mod(p,q))}

Step-by-step process of extraction of the square roots
and criteria of quadratic residuosity are illustrated for
several values of (c,d).

5. Quadratic Root Extraction (QRE-2)
Where N =9(mod 16)

5.1. Basic Properties

Proposition 8: if p=3(mod8) and q=0(mod4), then

Copyright © 2011 SciRes.

Table 1. Quadratic root extraction and verification;
N mod 8=5.

(cd) (3,89 @8 67 -2 ©2 10,5
(c.d)" 1,0)
(c.d (-2 QNR (53 (1L,4 QNR (2,2

(10,-2) (-1,0) (L0 (3,9 (1,0

(c.d)R  (9,-2) n/a (7,2) 7,-1) nfa (2,2
(%) 3,8) ok 6,7  (8,-2 *  (10,5)

m:=(N-1)/8 isoddand (N+7)/16 is an integer.
Proof: Since p = 8w + 3 and q = 4r, therefore
N =16(4w* +3w+r’)+9  (2). Hence 16|(N+7).
If we assume that m is even; then

(N+7)/16=(m+1)/2. 27)

Thus, if m/2 is integer, then (N +7)/16 is not (27).
This contradiction proves Proposition 8.

Proposition 9 {criterion of Gaussian quadratic residu-
osity}:

Let

E:=(c.d )(N_l)/8 modG ; (28)
and ”gcd((c,d),G)" =1.

Then (c,d) has a quadratic root modulo Gaussian
prime G if

E :={(£1,0);(0,£1)} = {£1;i}; {see the algorithm below}.

(29)
Proposition 10: Suppose
a)pisoddand q=0(mod4); 30)
b) z=(N+7)/16; €2))
c¢) Resolventa R satisfies the following conditions:
(£1,0)modG if E=(1,0); (32)
R=41(0,£1)modG if E=(-10); (33)
+JE modG if E=(0,+1);  (34)
Then
(c,d)"R=,/(c,d)(modG). (35)

Proof: Notice that in (32)-(34) R=+vE ™' modG .
If (35) is correct, then it implies that

(c,d)” R* =(c,d)(modG). (36)
On the other hand,
(c.d)" R* =(c,0)[ (c,d)" " R* |(moaG); (37)

therefore (28), (32)-(34) imply that
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ER? mod(p,q):l. (38)
Hence (36) is correct. In other words, it confirms as-
sumption (35). Q.E.D.
5.2. Octadic Roots of (1,0) Modulo (p,q)

Consider roots of 8™ power (called the octadic roots) of
unity; there are eight such roots: fork=1, -, 8

e =(1,0)={e.. = (+1,0)se, = (0,21);

(39)
e o=%,(0,1);8, 5= (O,—l)}
Then
e =(1,0)=e;e5, =(-1,0)=¢e,;
2, =(0,1)=¢e;;€2, =(0,~1)=¢,
Therefore, the resolventa R must satisfy the following

equations fork=1, 2, -, 8:
Re, modG =(1,0) orR =¢,' (modG). 41)

(40)

Thus, R:= e;l =g if k=12;
Ri=¢'=¢ =¢e/e =—¢ if k=3,4; (42)
and
(0,-1)e, if k=56
(0,1)e, if k=78 "
(43)

-l A7 _ p4a2 _ 2 _
R:=¢, =g =¢/e6 =-6€¢ —{

5.3. Computation of /i =./(0,1) Modulo (p,q)

f (p,q) is fixed and Nmod16=9, then this root

must be pre-computed in advance.
Direct computation: Since

Vi = Jeosn/2 +isinn/2

=cosm/4+isinm/4 =

(LV2/2,

it is necessary to compute square root of two and multi-
plicative inverse of two modulo G.

5.4. Multiplicative Inverse of 2 Modulo (p,q)

If p is odd and q is even, then
=((p+1)/2,0/2)(mod(p.0));

if q is odd and p is even, then
27 =((1-0)/2. p/2)(mod(p.q))-

Otherwise the modular inverse of 2 does not exist.
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Example 2: Let G = (8, —3); then
27 =(2,4)(mod(8,-3)) and 2 =(5,1)(mod(8,-3)).
Hence /i =(1,1)(5,1)(2,4) =(2,3)(mod(8,-3)) [8].

Indeed, (2,3)" =(1,0)(mod(8,-3))
Indirect computation: In general, observe that if

square root of 2 does not exist and for a Gaussian (a,b)
holds inequality

F=(ab)" " (modG) = {(£L,0);(0,£1)},  (44)
then
(a,b)( * modG = {«/i or \/_} (45)
Although in this case we do not directly compute
(0,1)modG, it is obvious that
if F?modG=(0,1) (44), then

Gi=Jon=F

(modG) (46)

otherwise

= (0101 = (0~

1)F(modG). (47)

5.5. Algorithm for Quadratic Root Extraction

Step 1.2:

N:=p>+g* m=(N-1)/8; z=(N+7)/16  (48)

Step 2.2: if N is not a prime, then the QRE-2 algo-
rithm is not applicable;
Step 3.2: Find a Gaussian (a,b), for which

F:=(a,b)" mod G={(£1,0);(0,+1)} ; (49)

Step 4.2: if F?=(0,1),then R:=F =+/i(modG);
if F2=(0,-1),then R:=(0,~1)F =+/i(modG);
Step 5.2: Compute

E:=(c,d)" modG; (50)

Step 6.2: if E={(+10);(0,£1)} (22), then square
root of (c,d) does not exist;

Step 7.2: if E = (1,0), then (X,y):=(c.,d
goto Step 10.2;

)Z modG ;

Step 8.2: if E =(-1,0), then
(x,y)=(c,d)’ ( )modG goto Step 10.2;
Step 9.2: if E =(0,1), then
(x,y)=(c.d)"[(0.1)R |modG; goto Step 10.2; (51)
else
(x,y)=(c,d)" RmodG ; (52)
Step 10.2 {2" square root}:
(t,v):=(p-10q)(x,y)modG. (53)
1JCNS
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6. Second Numeric Illustration

Consider (p,q)=(8,-3),then N=73,i.e.,
73=9(mod 16); m=9; z =5; (54)
Octadic roots of (1, 0):
e =(10,5)" =(1,0);

e, =(10,5) = (~1,0)(mod(8,-3));
0

(0,—1) ;
(6,6)" =(3,7); & =(6,6) =—/(0,-1).

The following nine values of (c,d) in Table 2 illus-
trate various cases of QRE-2 algorithm.

7. Quadratic Root Extraction (QRE-3)
Where N =17(mod 32)

7.1. Basic Property and Roots of (1, 0)

Proposition 11: Analogously it can be proved that if
p=%7(mod16) and =0(mod8), then (N+15)/32
is integer and m:=(N—1)/16 is odd.

Proof: Let p=16k+7 and q=8r ;then
N =32[Kk(8k+7)+2]+49,ie, 32|(N+15).

Notice that (N + 15)/32 =(m +1)/2 . On the other hand,
if m is even, then (m+1)/2 is not an integer, which
implies that (N +15)/32 is not an integer. Q.E.D.

Definition 2: u; is a square root of (1, 0) if

u? =(1,0)(modG), i =1,2. (55)

Definition 3: q; is a quartic root of (1, 0) if

g; =(1,0)(modG), j =1,2,3,4. (56)
Definition 4: e, is a octadic root of (I, 0) if

& =(1,0)(modG), k=1,2,---,8. 7
Definition 5: s, is a sedonic root of (1, 0) if

5° =(1,0)(modG), 1 =1,2,---,16. (38)

7.2. Resolventa of Quadratic Root Extractor

Proposition 12: Suppose
a) p=+7(mod16) and q=0(mod3), (59)

b) L:=c’+d* z=(N+15)/32; m:=(N-1)/16 (60)

¢) Let E:=(c,d)" mod(p,q); and resolventa R satis-
fies the following conditions:

Ri=+Ju =+Ju; (modG) if E =u;; (61)
R=+ qj'1 Ei\/g(modG) if E=qj; (62)

R:=1\e =+,/e] (modG) if E=¢g,; (63)

Ri=4s ' =+5° (modG) if E=s5; (64)
then
(c.d)'R=,/(c.d)(modG). (65)
Proof: Let
(x,y)=(c,d)’R=,/(c,d)(modG).  (66)
Therefore

(c.d)"""° R = (c,d)ER* (modG).  (67)
If E=u,then
ER* =E’ =u; =(1,0)(modG); (68)
if E=q;, then
ER?=E'=gj =(10)(modG);  (69)

if E=g,then

Table 2. Quadratic root extractor where N =9(mod 16).

(c.d) an G,-1 3,4 4,3) (CY} 5,9 7,-1 8,5 10, 3)
(c.,d)" 2,3) , 1) 0,-1) 0,-1) (1,0) 0,1 ©9,2) 8,-2) (-1,0)
(c.d)’ n/a (8,5) (3,6) (5,7 1,2) 8,1 n/a @3,-1) 9, 19)
(c.d)'R n/a 4,5) 9, 4) 4, 1) (1,2) 5,4) n/a 2,2) (7, 6)
(xy) n/a (3,-1) (3,4) 4,3) 5,1 (5,5) n/a 8,5) (10, 3)
NB1:If E={e, e}, then QRE-2 algorithm is not applicable, since the square roots of e,,--,& do not exist.
Copyright © 2011 SciRes. 1JCNS
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ER* =E*=¢] = (1,
if E=s,,then
ER’ =E' =5/° =(1,0)(modG)-  (71)

0)(modG); (70)

7.3. Sedonic Roots of (1,0) Modulo G

Unity (1, 0) has two square roots { ,0)and (-1, O)}
four quartic roots {(1 O) (-1,0);(0,1);(0, - 1)}; eight
octadic roots {(1, 0);(-1,0); ( 1);(0,-1); e;,€.8, e}
and sixteen sedonic roots

{{(1, O)a (—1, O)a (0, 1)7(0> _1)se5ae<,»e7yegasgss[():"':

where
€56 =*4/(0,1), €5 =%,/(0,~1) and

(0 1) 513141516 T\E (0 1)

(72)

59 101112

7.4. Third Numeric Illustration

Consider N=113; (p,q)=(8,—
m:=(N-1)/16=7; z:=(N+1

In Table 3 below (—1,0)=(1
(0,-1 )=(7 7)(mod (8,-7));

(0.-1 (0.1)

(0,1)5(12 2 ( od(8, 7=)

—£(0,£1) L(73)
={(10,5):(12,-2);(10,-2);(5,-2)} (mod(8,~7))

A/ E£4/(0,£1
( ) . (7%
={(5.-4)(3.3):(5.3):(10,3)}(mod (8,~7))
In (74) there are four sedonic roots of (1,0) that must
be pre-computed on the design stage of the QRE-3 algo-

rithm. Although this is a non-deterministic process, each
of these roots must be computed only once prior to using

7) . Then

5)/32=4.
41); (0.1)=(8,-6);
(0,-1)=(6,5);

(3,-1);

/—\+

315,316},

the extractor. These roots correspond to

E=(o, h)m =15(1,0) (modG),
wherem=7; G=(p,q)=(8,-7) and Gaussians
(9,h)={(6,3);(10,1);(11,3);(5, 4)} .

The remaining four sedonic roots listed in (73) are
equivalent to negative values of roots in (74):

(10,5) = —(5,-4);(12,-2) = —(3,3);(10,-2)
=—(5,3);(5,-2)=-(10,3) '

8. Cryptographic Algorithm

Step 1.3 {System design}: Every user (Alice, Bob, ")
selects a pair of Gaussian primes (p,q) and (r,s) as
her/his private keys, and computes n:=(p,q)(r,s) as
her/his public key; she/he pre-computes N = p* +q°, m,
zand R;

Step 2.3 {Generalized Chinese remainder Theorem
modulo composite Gaussian n}: Each user pre-computes
his/her parameters of CRT:

M :=(p,q)_1 mod(r,s); W :=(I’,S)_1 mod(p,q). (75)

Step 3.3 {Encryption by sender (Alice)}: Alice repre-
sents the plaintext as an array of Gaussians and inserts
digital isotopes into every Gaussian (a,b) [3];

Step 4.3: Using Bob’s public key n, she computes ci-
phertext

C:=(a, b)2 modn; (76)

and transmits C to receiver (Bob) via open channels of a
communication network;

Step 5.3 {Decryption by receiver (Bob)}: He com-
putes square roots of C mod (p,q) and mod (r,s),
where (p,q) and (r,s) are Bob’s private keys;

Step 6.3: Using the CRT and his pre-computed M and
W (75), Bob computes all quadratic roots of ciphertext C;

Step 7.3: Bob recovers the initial plaintext {by select-

Table 3. Binary tree of sedonic roots of (1,0) where modulus G=(8,-7).

(g,h) 6,3) * (10, 1) * * (11,3) * 5,4) *
E=y (1,0) 5,—4) (10, 5) 3,3 1z2,-2) * S, 3) (10, -2) 1o, 3) 5,-2)
E* =4(1,0) * ,5) O, -4 * * * @3,-1 12,2) *
E*=4(1,0) * * () * * * 8,-6) * *
e = /(1.0) % ¥ * ¥ -1,0) " " % *

g « % # % a,0) % % % #

NB2: For the sake of brevity, only 1/2 of all roots are listed in every row of Table 3; all remaining roots are listed in the rows below. For instance,
{(1,0) ={(6,5):(9.4):(3,-1);(12,2); and (7,7);(8,-6); and (~1,0); and (1,0)} .

Copyright © 2011 SciRes. 1JCNS
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Table 4. Residues, applicable square root extractors and examples of corresponding N.

N mod 32 5 9 13 17 21 25 29
QRE QRE-1 QRE-2 QRE-1 QRE-3 QRE-1 QRE-2 QRE-1
N, 260773 692969 432589 386641 612373 525913 906557
(p,q) (113, 498) (212, 805) (258, 605) (375, 496) (522, 583) (157, 708) (421, 854)
N, 812101 249257 360781 676337 159157 405529 750077
(p,a) (351, 830) (16, 499) (275, 534) (464, 679) (174, 359) (48, 635) (11, 866)

ing the quadratic root of C that has digital isotopes [9]}.
This algorithm is a generalization of the Rabin crypto-
graphic algorithm [10], which employs the square root
algorithm for encryption and decryption of real integers
modulo semi-prime n = pg, where p and g are primes.

9. Reduction of Computational Complexity

In Step 3.1 (12) and Step 4.1 (13), two exponentiations
are performed to compute (c,d) to the powers m and z
respectively; these operations are the most time-con-
suming.

However, observe that there is a simple linear rela-
tionship between m and z:

2(z-1)=m-1 {=(N-5)/4}. (77)

This implies that it is sufficient to execute only one
exponentiation. Indeed, we initially compute

A =(c,d )Zf1 modG ; {one exponentiation};  (78)
then

A = A" modG = {(C,d )Z(H)} ; {one squaring}; (79)
after that

A=A x (C, d ) = {(C, d )m} ; {one multiplication}; (80)

and finally A, :=Ax(c,d)= {(C,d )Z} ; {one multiplica-
tion}. (81)
10. Applicability of QRE Algorithms

Consider A:=Nmod32, where N are primes, which can
be represented as a sum of two integer squares. For such N

the residues are equal A:={l,5,9,13,17,21, 25 and 29} .

Table 4 above indicates which algorithm is applicable
for each value of residue A.

Therefore, the three algorithms provided in this paper
cover all cases of prime moduli with the exception of

Copyright © 2011 SciRes.

N =1(mod32). Yet, most of the moduli in the latter
case can still be covered if we consider QRE algorithms,
where the primes N =33(mod 64); N =65(mod 128);
and in general, for integer t>5 the algorithms de-
scribed above can be generalized for the cases where

N=(2'+1)(mod2"*"), (82)

and the even component in the corresponding modulus
(p.q) isdivisible by 2'".

11. Conclusion and Acknowledgements
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Appendix

Al. Classification of Roots of (1,0) Modulo
(p,q)

There are various types of unary roots:
Definitions and notations:

S, =+ (L0)mod((p.a))={s,.5,};  (A.D)
where

P = —(1,0) mod((p,a)) ={p,,} (A2)

is the set of principal square roots of (1,0) of the first
level. Then

S, = {5, mod((p.Q))} k=12 (A3)
where
P, =%p, ={ pzk}mod(( p,q)); k=12 (A4

is the set of principal square roots of (1,0) of the second
level.
In general,

S, = {i Sk }mod(( p,q)); (A.5)
where
P ::{J_r P mod((p,q))} (A.6)

is the set of principal square roots of (1,0) of the i-th
level.

A2. Criterion of Quadratic Residuosity and
General Algorithm

Proposition 1.A: Let Nmod2* =2"+1.
If and only if

E=(c,d)™"*
then (c,d) has a square root. In this case

R:=+VE"' modG; (A.8)

modG eSS, |, (A.7)

and

R(c,d)" ™ (modG). (A9

(xy)=
A3. Quadratic Extractor Modulo (n,-1)

Proposition 2.A: Let N = ||(n,—1)|| be a prime;
N mod4 =1, but N mod8 =1. (A.10)

If the norm of (C, d) is co-prime with N, then square
root (x,y) of (c,d) isequal

(xy)=Rx(c,d)" W mod(n,-1);  (A.11)
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where

-1
2
R =[ (c.d)' "‘} mod(n,~1). (A.12)
Proof: First of all, if N =n”+1 is a prime integer, then
n is even. Therefore (A.10) implies that n’ / 4 and
(n2 +4)/8 are integers. Then (A.11) and (A.12) imply
that

(xy) =R x(c.d)""* (c.d) = (c,d)mod(n,~1). (A.13)
Sincg the cyclic identity (4) implies that
(c, d) =(1, 0)(mod( )) then potentially
(c.d)"” mod (n,~1) ={(+1,0);(0,%1);,(0,21) .
(A.14)
Therefore,
(£1,0) if (c.d)"" =(1,0);
. n?/4
+(0,1) if (c,d)""* =(~1,0
o (0D if (o )2 (-1,0) (A1)
£ J(0.1) if (c.d)"* = (0,-1);
£(0,1) (0.1 if (c.d)™"* = (0,1).

Since 4/(0,1) =(1,1) \/7/2 mod(n,~1)) {see Subsec-

tions 5.3}, then R does not exist if V2 does not exist
[1,6]. Therefore (c,d) is the Gaussian QNR [3]. For
more details see (32)-(34), (A.11), (A.12), Subsection 5.4
and eight examples in Table A1.

Remark Al: Here *(1,9) and %(10,0) are quartic

roots of (1,0) modulo (10,-1). Indeed,

d; =(10,0) = (0,1)(mod (10,~1));
:( 9)=(0,-1)(mod(10,-1)); (9
=(10,0)" =(~1,0)(mod(10,-1)) = g,

q; =(L9) =(-10)=(10,9)=q,.
Ad4. Special Cyclic Identity

Proposition 3.A: If N = " p,q)" is prime, then
(a.p)"" =(1,0)(mod(p,q)).
Remark A2: Although ||( P, q)" = ||(q, p)" , identity (A.16)

holds because (p,q) and (qg,p) are co-prime. Indeed,

assumption that (p,q)(u,w)=(q, p)(mod( D, q)), where
both u and w are integers, implies that

u=(p+q)/N and w=(q—p)/N (mod(p.q)).

However, (A.17) is impossible since the inverse of N
modulo (p,q) does not exist.

(A.16)

(A.17)
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Table Al. {Quadratic root extraction where N mod4=1 and N mod8=1}: (n,-1)=(10,-1); m:= (n/2)2 =25;

z:=(m+1)/2=13.

(c.d) 2,0 (3,2) 4,8 6,7 74 9,2) 99 10,1)
(c,d)™" (0, -1) (-1,0) (1,0) -1,0) (-1,0) ©,1) 0, 1) (-1,0)
(c.d) GQNR 9,4) (6,3) (6,9) (5,8) GQNR GQNR (9, 0)

R n/a £(10, 0) (1,0) +(1,9) +(10, 0) n/a n/a £(1,9)
(xy)=(c.d)'R n/a +(6, 8) +(6, 3) +(1, 5) (2, 4) n/a n/a (10, 8)
(xy) ok (3,2) (4,8) (6,7) (7, 4) ok ok (10, 1)

Example 1.A: (—4,10)" mod(5,-2) =(1,0), although
ged[[(-4.10)].](5,-2)[ ] =29 #1.
Corollary 1A: If ged|(s,t).(p.q)]=(1,0), then

[(s:t)(a,p)]"" =(1,0)(mod(p,q))

Proposition 4.A: If n and r in modulus (n,—r) have
different parities, then multiplicative inverse of
(-r,n) modulo (n,—r) exists and equals

(-rn)”
=(n-r)" [(n—r+1,-n—r—1)/2](mod(n,-r)).
Proof: First of all,
(-r.n)=(n-r)(1,1)(mod(n,-r)).

Now let’s find integers X and Y such that
(L1)(x,y)=(10)=(n+1,—r)(mod(n,-r)) (A.21)

B

(A.18)

(A.19)

(A.20)
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ie, X—y=n+L X+y=-r.
Hence

x=(n-r+1)/2; y=(-n-r-1)/2.  (A22)
Therefore, (A.20) and (A.22) imply
(=rm)(=r.n)" =[(n=r)(LH](n=r)" (L1)" =
z(—r,n){(n—r)_] [(n- r+1,—n—r—1)/2]} =
=(1,0)(mod(n,-r)). Q.E.D.
(A.23)

Example 2.A: Let n =10, r = 3. Then
(=3,10) " =77 (4,-7)=(2,1)(4,~7) =(8,3).
Indeed, (-3,10)(8,3)=(1,0)(mod(10,-3)).
Corollary 2A: If n and r in modulus (n, r) have dif-
ferent parities and there exists multiplicative inverse of

(a,b), then multiplicative inverse of
(r, n)(a, b)mod(n, r) also exists.
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