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Abstract 
 
In the past decade there has been an increasing need for designs to address the time and cost efficiency issues 
from various computer network applications such as general IP address lookup and specific network intru-
sion detection. Hashing techniques have been widely adopted for this purpose, among which XOR-operation- 
-based hashing is one of most popular techniques due to its relatively small hash process delay. In most cur-
rent commonly used XOR-hashing algorithms, each of the hash key bits is usually explicitly XORed only at 
most once in the hash process, which may limit the amount of potential randomness that can be introduced 
by the hashing process. In [1] a series of bit duplication techniques are proposed by systematically duplicat-
ing one row of key bits. This paper further looks into various ways in duplicating and re-using key bits to 
maximize randomness needed in the hashing process so as to enhance the overall performance further. Our 
simulation results show that, even with a slight increase in hardware requirement, a very significant reduc-
tion in the amount of hash collision can be obtained by the proposed technique. 
 
Keywords: Hash Algorithm, IP Address Lookup, Intrusion Detection 

1. Introduction 
 
Fast address lookup or identification matching has be- 
come critical to the feasibility of many modern appli- 
cations. In a general form, this problem involves a search 
process through a large database to find a record (or 
records) associated with a given key. One modern exam- 
ple is in that the routers in wide-area networks have to 
look through a large database, a routing table, for a 
forwarding link that matches the given destination 
address [2]. Another example that calls for imminent 
attention these days is in the area of internet security, in 
which intrusion detection demands rapid evaluation of 
client requests. In this, rules are established to allow the 
intrusion detection system to check for wrong-doing. 
There have been many designs developed for IP address 
lookup problem using a hash function. Hashing provides 
a way to search through a statistically smaller number of 
steps than a simple sequential straightforward search. 
Hashing in essence provides a process of mapping re- 
cords (hash keys) between two regions, a domain space 
(the database) and a hash space [3]. An algorithm, known 
as a hashing function, issues a set of directives outlining 

the mapping of a hash key (or record) from the domain 
space into hash space by creating a corresponding hash 
value. 

A complete survey and complexity analysis on IP 
address lookup algorithms has been provided in [4]. A 
performance comparison of traditional XOR folding, bit 
extraction, CRC-based hash functions is given in [5]. 
Although most of the hash functions, such as the simple 
XOR folding and bit extraction, are relatively inex- 
pensive to implement in software and hardware, their 
performance tends to be far from desirable. CRC-based 
hash functions are proved to be excellent means but are 
more complex to compute. Some schemes are hardware 
based that achieve an improvement in IP look-up by 
maintaining a subset of routing table in a faster cache 
memory [6,7], while others are software based which 
improve their search performance mainly through effi- 
cient data structures [8,9]. Waldvogel et al. [10] pro- 
posed an address look-up scheme based on a binary 
search of hash table, requiring an extra update process in 
a look-up table. Other hashing algorithms have also been 
widely adopted to provide for the address look-up 
process [11-16]. All hashing algorithms inevitably suffer 
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from unpredictable complexities involving conflicts among 
the data with the same hash result (hash collision). A 
search for matching a given query could end up with a 
sequential search through the number of maximal con- 
flicts in the database. This may result in a long search 
process time that exceeds the time limitation imposed by 
design specifications. The lower the number of hash 
collisions is created by the hash algorithm the better the 
performance becomes. Performance of a hashing algori- 
thm is usually determined by two measurements: the 
MSL (maximum search length) and ASL (average search 
length) with the former one indicating the largest number 
of hash collisions for any single hash value and the latter 
denoting the average number of hash collisions for all 
hash values. 

Hashing techniques using simple XOR operations 
have been very popular in applications where timely 
response is critical due to its relatively small hash pro- 
cess delay. In all the current commonly used XOR- 
-hashing algorithms, when deriving the hash value, key 
bits are partitioned into rows to be XORed, and each of 
the hash key bits is usually explicitly XORed only at 
most once in the hash process, which may limit the 
amount of potential randomness that can be introduced 
by the hash process. When a key bit is reused (duplicated) 
for XORing in generating different hash value bits, there 
exists a potential that the overall randomness of new 
hash result may increase. In [1] a theory has been 
developed in duplicating bits while avoiding induced bit 
correlation which may easily offset any gained perfor- 
mance through bit duplication. Very significant perfor- 
mance improvement was obtained in this series of tech- 
niques by employing a novel single-row bit duplica- tion 
process to avoid bit nullification or downgrading pro- 
blem. An extension from a recent publication in [17], this 
paper aims to further extend the theory into duplicating 
more than one rows of key bits. By relaxing the res- 
triction in duplicating only one row of key bits, one is 
able to XOR more duplicated bits to obtain each hash bit 
without coming across the bit nullification or downg- 
rading problem. Our simulation results show that a very 
significant reduction in the amount of hash collision is 
obtained by the proposed technique compared to the pre- 
viously proposed duplication techniques. 
 
2. XOR-Hashing Methodology 
 
Throughout this paper, the database under discussion is 
defined as consisting of = 2mM  entries with each 
entry having  bits in length. It can also be viewed as 
having  M-bit vectors with each vector consisting of 
each respective bit from all entries. An example of 

 and  is shown in Figure 1(a). The target  

n

= 3m

n

= 8n

 
(a)                 (b) 

Figure 1. (a) Calculation of d values (b) sorted database by 
d value. 
 
hashing process is to hash each of the n-bit entries (an IP 
address or part of it in this application) into an m-bit hash 
value. These hash values need to be distributed as evenly 
as possible so as to minimize the eventual search time. 

XOR operator has been widely used for hashing and 
known to be an excellent operator in enhancing rando- 
mness in distribution. It also possesses a nice charac- 
teristic allowing for analytical performance analysis and 
thus better algorithm designing. A commonly used hash- 
ing technique is to simply hash the n-bit key into m-bit 
hash result through a simple process XORing every dis-  

tinct 
n

m
 key bits into a final hash bit. Such a random  

XORing process (so-called “Group-XOR” in this paper) 
may not always lead to a desirable outcome. A much 
more effective hashing approach is proposed in [18] by 
preprocessing (and sorting) the database according to a 
parameter, the  value, that reveals a very useful 
insight into the degree of uniformity of the database. The 

 value of a bit vector is the absolute difference 
between the number of 0’s and 1’s in it (as shown in 
Figure 1(a)). Translated to effect of hashing, in the final 

-bit hash result, a bit of  gives an even hashing 
distribution (i.e. evenly divided) among the entire 
address space allowing other bits to hash to it; while a bit 
of  will limit the hashing to only one half of the 
hash space. Intuitively, using the bits with smaller  
values for hashing would lead to a probabilistically better 
hash distribution, i.e. less potential conflict in the final 
mapping. Ideally, if one can identify (or through a 
combination to obtain)  bits with all their  values 
equal to 0, it should lead to the best potential performance, 
assuming no correlation among the bit vectors. This 
leads us to employing a simple pre-processing step in 
re-arranging the n  bit vectors according to their  
values sorted into a non-decreasing order as shown in 
Figure 1(b). This sorted sequence then gives us an “order 
of significance” according to which each bit should be 
utilized. 

d

d

m = 0d

=d M
d

d

m d

A XOR-hashing algorithm based on the principle of d 
value is presented in [19]. This algorithm, the d-IOX (d 
value in-order XOR folding), involves the aforemen- 

Copyright © 2011 SciRes.                                                                                IJCNS 



R. TIENGTAVAT  ET  AL. 325 
 
tioned preprocessing/sorting step before applying the 
simple in-order folding XOR hashing. Figure 2 shows 
the folding process in the d-IOX algorithm, with each of 
the iH ’s referring to a hashing function in deriving a 
hash value bit. The d-IOX proves to be much better than 
the simple random Group-XOR approach by registering 
an improvement in ASL and MSL up to 30% in 
randomly generated database and up to 80% in real IP 
database. Reasons behind such a significant improve- 
ment have been clearly explained in [19], mainly due to 
the nature in XORing bits with very different d values in 
order to maximize the reduction in d values in XORing. 

The new technique proposed in this paper will be 
based on the result of preprocessing by exploiting the 
“order of significance” among the key bits for bit reuse/ 
duplication, and the performance will be compared to the 
d-IOX as the base non-duplication one due to its superior 
performance over all other well-known XOR-hashing 
techniques. 
 
3. Bit-Duplication XOR Hashing 
 
For the sake of completeness, a summary of the bit- 
duplication theory presented in [1] is given here. 

Note that when there is no bit duplication under 
standard XOR hashing, no bits are shared in XORing to 
lead to different hash value bits. That is, each hash value 
bit comes from XORing a distinct set of hash key bits. If 
one intends to reuse some key bits for XORing, then the 
overall effectiveness may be compromised due to the 
sharing. Here a notion is introduced to illustrate the 
induced effect from bit duplication. In obtaining two 
hash key bits, when there exist common bits between the 
two sets of hash key bits for their XORing, an Induced 
Duplication Correlation (IDC) arises between the two 
hash value bits. The reason that this correlation is 
regarded as “induced” because it is created through the 
artificial bit-sharing from duplication, in contrast to the 
inherent correlation that may already exist in the hash 
key bits. Figure 3 gives a simple illustration for IDC, 
where each of the letters (from A to F) denotes a distinct 
hash key bit. 

The figure on the left shows that a hash value bit is 
obtained by XORing two distinct hash key bits, while the 
figure on the right shows that through duplication IDC 
occurs when every pair of hash value bits have some 
common bits being XORed. When more bits are 
duplicated for XORing, higher IDC tends to ensue. With 
the introduction of IDC the d value obtained for each 
hash value bit loses some of its meaning. That is, while 
randomness in the bit-wise distribution (d value) for each 
bit may be increased due to more bits being XORed, the 
overall randomness across the m hash value bits may  

 

Figure 2. In-order XOR (d-IOX) hash algorithm. 
 

 

Figure 3. Induced duplication correlation (IDC). 
 
actually decrease due to the IDC. In order to reach the 
best hash performance, one will need to duplicate effec- 
tively while making an effort to reduce the effect of IDC. 

In [1], a simple “cycle duplication” approach is 
proposed to ensure minimal bit correlation through the 
duplication process, in which key bits are shared between 
two groups of source bits to be XORed. One typical 
problem is the “nullification” problem where the same 
bit is duplicated to be XORed with itself in producing a 
hash bit, which results in a loss of one additional 
potential bit for randomness. The other problem is, while 
performing the cycle duplication process on the same 
row as shown in Figure 4 where the first row is dupli- 
cated twice in order to further increase the randomness. 
With this, each pair of hash bits will have two key bits 
shared in their XORing (e.g. bits 0 and 1 sharing A and 
D), thus leading to a “downgrading” problem, or simply 
a higher degree of IDC. Note that, in our discussion here, 
the same segment (the one with the smallest d values) is 
used for multiple duplication due to its low d values. 
Using another different segment (a segment of bits with 
larger d values) for the additional duplication has shown 
a far less potential for performance improvement due to 
an analysis result from [18] showing that XORing with 
bits of larger d values may even degrade the performance. 
Therefore, in order to avoid any kind of downgrading, 
one has to first decide if there are sufficient number of 
bits for further duplication. In order to duplicate X times 
without the downgrading problem, [1] shows that the 
minimal m required is  

 1 1m X X                   (1) 

or  
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Figure 4. An example of downgrading from additional dup- 
lication. 
 

4 3 1

2

m
X

  
 
 

                (2) 

In the preceding example shown in Figure 4, where 
 and = 4m = 2X  (two duplications are to be 

attempted), obviously, the condition in Equation (1) is 
violated - minimum value of m for two times of dup- 
lication is 7. 

The problem can be translated into a problem of 
graphics for easier visualization and processing. Bor- 
rowing from the notations used in [1], let the set of the m 
bit position indices be denoted = 0,1, 2, , 1S m 

1

, 
and these bits are to be duplicated X times such that X 
satisfies the condition in Equation (1). For the sake of 
simplicity without losing generality, assume that each of 
the X duplicated sequences of the m bits are to be rotated 
starting from a particular bit position to avoid the two 
problems. We can simply focus on the bit 0 position of 
each of the strings to analyze the whole pattern. That is, 
the bit 0 position of the original string is at position 0. 
Let the position of bit 0 of each of the X   strings be 
denoted as js  where . Figure 5 shows an 
illustration for a case with  and , with 13 
bit positions on a circle. In this case, the four starting 
locations are 0 , 1 , 2  and 3 . With 
this notation, one can easily show that, in order to avoid 
any nullification problem, the following condition has to 
hold:  

0 j X 
= 3X

= 1s s

= 13m

= 3 = 9s= 0s

, , , 0 , , and i js s i j i j m i     j  

which guarantees that no bit position has two identical 
bits to be XORed. In order to avoid any sharing of 
multiple bits (i.e. the downgrading problem), the follow-  

 

Figure 5. Three-time duplication with m = 13 using cycle 
duplication with one bit in common. 
 
ing condition has to be satisfied:  

   , , , , , 0 , , , , and , , .ij klD D i j k l i j k l m i j k l     (3) 

where ij  denotes the “shorter” distance from position D

is  to position js ; that is,  

    =min  mod ,  mod ij i j j iD s s m s s  m  

For example, between  and , their dis- 
tance is  

1 = 1s 3 = 9s

      13 = 1 9   13, 9 1   13 = 5,8 = 5.D min mod mod min   

Essentially, this condition guarantees that the no two 
positions can share more than one bit in common. Note 
that there are a total of  such distance values 
among the 

1
2
XC 

1X   starting positions (e.g. the six 
different distance values,  4,5,61, 2,3, , in Figure 5), 
and this number should be exactly the same as the 
number of all possible “shorter” distance values available  

from m positions along a circle, which is 
2

m 
  

, when m  

is set to be the exact minimum that satisfies Equation (1). 
Thus, one should be able to prove that 

1
2 =

2
X m

C   
  

 

which can be easily derived from  

    1
2

1 1 1
= =

2 2 2
XX X X Xm

C= .    
     

 

 
4. Multi-Row “Each-Row-Once” Duplication 
 
All duplication techniques discussed so far have been the 
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“Uni-row duplication” ones, i.e. only the first row is 
duplicated, potentially multiple times. In order to avoid 
the problems of nullification and downgrading, the 
number of times that this row is allowed to be duplicated 
is limited by O m  . While the benefit in duplicating 
only “the best row” clearly demonstrates itself, the 
potential in duplicating more times using other rows 
cannot be simply ignored. One can easily see that, based 
on the observation made so far, if the first row is not 
“fully” duplicated, then the “shorter” distance value slots 
thus freed up may be used for duplicating other rows, 
potentially more times. 

Based on the theory developed in the previous section, 
one can easily derive that, if each row is only duplicated 
once, the total of number of rows (and thus total of times) 
that can be duplicated without causing the nullification 
or downgrading problem can be significantly greater than  

4 3 1

2

m  

 

 . Assuming that the bit rows are indexed  

as , ir 1
n

i
m
     

, using the same circular fashion for  

duplication, one can show that, if , i
1

1
2

m
i

     
,  

row  is duplicated exactly once by rotating its bits by 
 bit positions, then the maximum number of dupli- 

cations can be achieved without any of the afore- 
mentioned problems. That is, let  denote the number 
of rows thus duplicated, and  

i
i

Y

1

2

m
Y

  

                 (4) 

This is demonstrated by the example shown in Figure 
6, where each of the three rows, 1 , 2 , and 3 , is 
cycle-duplicated once by rotating each of its bits once, 
twice, or thrice, respectively. If one additional row 4  is 
allowed to duplicated, as shown in Figure 7, the problem 
of downgrading arises leading to two shared bits in some 
pairs of two columns.  

r r r

r

For examples, bit postions 1 and 5 now share key bits 
 and T  , and bit positions 0 and 3 share key bits  

and . 
O

δ
Note that the number of duplications allowed is also 

limited by the number of rows. Let X  be the maximum 
number of duplications allowed using “uni-row”, and  
be the maximum number of duplications allowed using 
“multi-row each-row-once”, Table 1 lists the comparison 
between these two numbers under different  values. 
Note that  denotes the number of allowable duplica- 
tions when  is unlimited which imposes no restriction 
on the number of rows available. A more practical 
illustration is given here with 32  and 64Y , each deno- 
ting the number when  is set to 32 and 64 respectively.  

Y

m
Y

n

Y
n

 

Figure 6. “Each-row-once” duplication with m = 7 using 
cycle duplication. 
 

 





 

Figure 7. “Each-row-once” over-duplication with m = 7 
using cycle duplication. 
 
Table 1. Maximum number of duplications allowed for a 
given m.  

m X Y Y<32> Y<64> 

5 2 2 2 2 

6 2 2 2 2 

7 2 3 3 3 

8 2 3 3 3 

9 2 4 4* 4 

10 2 4 4* 4 

11 2 5 3* 5 

12 2 5 3* 5 

13 3 6 3* 5* 

14 3 6 3* 5* 

15 3 7 3* 5* 

 
Also, whenever  is not an integral multiple of , the 
last row is with only a partial length, which is reflected 
in the table with an *. That is, the maximum duplication 
times for  when there are  bits is  

n m

nY n

1
= min ,

2n

m n
Y

m

     
        

 

For example, for  and , under uni-row 
duplication scheme, the row for duplication can only be 
duplicated at most 3 times, while, under this multi-row 

= 15m = 64n
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approach, all 5 rows can be duplicated, each row once. 
Whether or not such a new approach brings additional 
benefit remains to be decided. For the purpose of  

discussion, let 1 2= , , , n

m

X X X X  
  

 


 

 


 represent the pat- 

tern of duplication for all rows, where iX , 1
n

i
m
     

  

denotes the number of times row  is duplicated. Thus, 
under uni-row duplication, (3,0,0,0,0) is the most dup- 
lication allowed; while under multi-row duplication just 
discussed, (1,1,1,1,1) becomes the pattern for duplica- 
tion. 

i

 
5. Hybrid Duplication 
 
Note that, as aforementioned, duplicating rows with 
higher  values tend to bring limited benefits and 
sometimes can even be detrimental. In order to maximize 
the benefit from duplication, one may have to use a 
hybrid approach in duplicating several rows, by duplicating 
different rows different number of times. Let i

d

X  den  
the number of times row i  is to be duplicated, in order 
for no nullification or downgrading to happen, the fol- 
lowing condition has to be satisfied.  

ote

 1 1

2 2

n

m
i i

i

X X m
 
        
  

where  is the total number of rows under duplication. 
Note that this is a necessary condition but not a sufficient 
condition since a given pattern satisfying this condition 
may not be feasible. A simple example is when , 
a satisfying pattern of (2,2) cannot be constructed. This 
again follows the same reasoning in proving the uni-row 
and multi-row duplication. Similarly, under  and 

, some of “maximally” allowed duplication 
patterns are listed in the following:  ,  

, , and all permutations of each 
of the patterns, such as  and . 
For example, in the case of 

r

1,1

= 14m

= 15

1,0,0,0

 2,0,1, 2

m

3,

1,

= 64n

2,1,1,

 

Figure 8. An example of hybrid duplication with (2,2,1,0,0) 
on m = 15. 
 
set of duplicated rows; that is, for the first row, the three 
distance values between every pair of two starting 
positions are 1 (between 0 and 1), 2 (between 1 and 3) 
and 3 (between (0 and 3); for the second row the three 
distance values are 4 (between 0 and 4), 5 (between 4 
and 9) and 6 (between 9 and 0); for the third row the only 
distance value is 7 (between 0 and 7). With this, all avai- 
lable distance values (from 1 to 7) are taken, which re- 
presents the maximally allowed duplication situation. 
The complete duplication pattern is shown in Figure 9.1  
 
6. Simulation Results 
 





  2,2,1,0,0

 0,1,0,3,0
 02, 2,1,0, , as shown in 

Figure 8, first row is duplicated two times with each of 
the three starting bit positions being 0, 1 and 3 (indicated 
in circles), the second row is duplicated two times with 
the starting positions being 0, 4 and 9 (indicated in 
boxes), and the third row duplicated once with the two 
starting positions being 0 and 7 (indicated in triangles). 
Note that, the condition for avoiding nullification 
problem still needs to be satisfied for each of the three 
duplicated rows, independently; that is, all three rows 
duplicated are allowed to share the starting bit position 0. 
For the condition in avoiding downgrading problem 
(Equation (3)), again, it has to be satisfied within each  

Simulation runs are performed on randomly generated 
data sets and real IP data sets to demonstrate the per- 
formance improvement of the minimal IDC dupli- cation 
XOR hash technique over other techniques with no dup- 
lication. The Group-XOR algorithm which XORs groups 
of random key bits is the general base of our comparison, 
while the d-IOX [19] and the IDC technique from [1] 
aforementioned will serve as the reference. 
 
6.1. Randomly Generated Data Sets 
 
We first use a data set randomly generated such that the 
d value for each bit position is uniformly distributed. 
Performance comparison among the three techniques are 
in terms of MSL and ASL by taking an average of results 
from 1000 runs. In order to disengage potential effect  

1“Partial-row” duplication poses an additional relaxation on the cons-
traint from Equation (1) since the last partial row is not fully cycled 
around the whole m-bit section thus leading to less restriction on the 
downgrading. This issue will be disregarded in this paper due to its 
minimal effect on the performance from duplicating the last row 
which has the largest d values. 
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Figure 9. Hybrid Duplication with (2,2,1,0,0) on m = 15. 
 
from any uncertain factors, no partial rows are con- 
sidered; that is, n is set to be an integral multiple of m. 

We first compare the effect of uni-row duplication 
approaches in duplicating different rows. Figure 10 shows 
the results comparing all possible uni-row duplication 
patterns on various of combinations of  when  
is set to  - ,  and   . 

 ,n m
28,14

n






n
2m  32,16 30,15

Figure 11 shows the results when  is set to  - 
, , . Throughout these different 

combinations, when one row is selected for duplication, 
the more times it is duplicated, the higher the perfor- 
mance it delivers. Comparing performance from dupli- 
cating different rows, our aforementioned conjecture is 
clearly verified here that duplicating the row with the 
smallest d values (the first row) does lead to the most 
benefit while duplicating the row with the largest d 
values produces the least benefit. 

3m
 30,10  27,9 24,8

On the cases where , the uni-row duplication 
shows a somewhat different result than the  
cases. Duplicating the best row (the first row) again 
shows the best potential, while duplicating each of the 
non-best rows (the second or the third row), although it 
still shows continuously improved performance when 
more duplications are applied, its best achievable per- 
formance (from 

= 3n m
= 2n m

 0, 2,0  or  0,0, 2 ) cannot closely 
match the performance from  2,0,0 . From this result, 
had the second row been allowed to duplicate a few more 
times, it might have had a chance to match the first-row 
duplication, but the maximal number of times that can be 
applied without causing any nullification or downgrading 
problem is restricted to 2 for each of the uni-row 
duplications under  for our simulations. Dupli- 
cating the third row does not inspire as much as 
duplicating other rows, which can be easily explained by 
the fact that the high d values in the third row inherently 
limit its potential in duplication. Under uni-row dupli- 
cation, the best duplication is from the maximally dup- 
licated patterns using the first row. 

10m

Using the each-row-once duplication approach, one 
may be able to duplicate the most number of times, but  

 
 

 
 

 

Figure 10. Simulation results for uni-row duplications for n 
= 2m. 
 
the benefit may be offset by duplicating the rows with 
larger d values, and the fact that m is not large enough to 
support maximal number of rows for duplication also 
limits the potential of this approach. 

Simulation runs on hybrid duplication deliver the most 
intriguing results. Figure 12 and Figure 13 show the 
comparison results for  and , respec- 
tively. In the cases where , some of hybrid 
duplication patterns easily outperform the best uni-row 
duplication approach. For example, in the case of 

= 2n m
n

= 3n m
= 2m

   , = 32,16n m , the the patterns of ,  1,3  2,1 ,  2,2  
and  3,1  all exceed the performance of   by a  3,0

Copyright © 2011 SciRes.                                                                                IJCNS 



R. TIENGTAVAT  ET  AL. 330
 

 

 
 

 
 

 

Figure 11. Simulation results for uni-row duplications for n 
= 3m. 
 
significant margin, up to an additional 25% of impro- 
vement. Similarly, an additional 22% and 18% of im- 
provement is obtained in the case of    , = 30,15n m

0

m

 
and , respectively. This important ob- 
servation reveals that maximally duplicating the best row, 

 in this case, may not be the best approach; instead, 
duplicating the best row fewer than the maximally 
allowed times coupled with duplicating the second row 
(e.g.  or  or even ) actually delivers 
better results. This can be explained by looking into the 
performance trend shown in Figures 10 and 11 where 
duplicating a row with smaller  values tends to reach 
it best potential earlier in terms of the numbers of 
duplication applied. For example,  does not pose 
a significant gain over , while duplicating the 
second row each additional time obviously provides 
more benefit. In the cases of , hybrid patterns 
produce even more interesting results. First, the pattern of 

 by duplicating the third row on top of 

  , = 28,14n m



 2,1 2, 2

1

 
 

 
 

 

Figure 12. Simulation results for hybrid duplications for n 
= 2m. 

 

3,0

1,1,

1, 2

d

3,


= 3n

2,0

 1,1,0  
actually leads to a degraded performance, which again  

 
can be explained by the large d values in the third row. In 
general, duplicating the first row and second row wherever 
is feasible normally leads to a gain in performance. In 
   , = 30,10n m  and    , = 27,9n m ,  produ- 
ces the best performance, closely followed by that of 

2,1,0

 1, 2,0 . In    24,8, =n m , due to the limitation of , 
neither 

m
 2,1,0  nor  1, 2,0  is feasible, and  ,02,0  

easily leads the pack followed by .   1,1,0
 
6.2. Downgrading Problem 
 
We further verify our claim in the downgrading problem 
using a series of simulation runs. Instead of using the 
properly selected starting bit(s) in rotation for duplication, 
a straightforward “one-bit shift” rotation is employed.  
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Figure 13. Simulation results for hybrid duplications for n 
= 3m. 
 
Figure 14 illustrates the comparison between the two, 
with  and .  denotes the standard 
duplication patterns using the proposed approaches, 
while  denotes the simple “one-bit shift” pat- 
terns. The results clearly show that, when duplicating the 
first row twice, the downgrading problem incurs a loss of 
11% in performance, while it reduces the gain by 6% 
when duplicating three times. Note that, properly dupli- 
cating twice (shows as ) even outperforms the three- 
-time duplication with a downgrading problem (shown as 
(3*,0)). 

= 16m

 *
0 ,0X

= 32n

2,0

 0 ,0X







 
6.3. IP Data Simulation 
 
Simulation is also performed on a collection of real IP  

 

Figure 14. Simulation results illustrating the effect of down- 
grading in duplication. 
 
addresses gathered from three different sources: 
 General IP Traffic  
 Ad/Spam IP  
 P2P IP  
The General IP traffic addresses are collected from 

packets entering a local network router in a duration of a 
few hours, while the Ad/Spam and P2P IP addresses are 
gathered from the IP filtering open source software 
project PeerGuardian [20]. For the simulation on these 
data sets,  distinct IP addresses were randomly taken 
from the trace and then used as a database to perform the 
hashing. Results are obtained by averaging those from 
1000 runs. Figures 15, 16 and 17 display the simulation 
results comparing among different duplication schemes 
under various values of  when  is set to equal to 

. Results from general IP address database exhibit a 
trend similar to what is obtained from the random 
database. In general, the more times a row is duplicated, 
the better the performance becomes, which applies to 
each of the two rows. Hybrid duplication patterns usually 
lead to better performance, which is clearly demonstrated 
in the cases of  and  where 

2m

m

5

n

= 1

2m

= 1m 4m  2, 2  
outperforms all others in the former case and  21,  and 
 2,1

= 1m
 both excel in the latter case. In the case of 

, 6  0,3  barely beats out a group of hybrid 
patterns, including  3,1 ,  1, 2 ,  and 2, 2  31, . 

Results from Ad-Spam IP address database (Figure 16) 
show a very different scenario. When increasing the 
number of duplication on the first row, results in general 
improves; duplication of the second row leads to a very 
surprising behavior. Duplicating the second row once, 
 0,1 , leads to a dramatically degraded performance by a 
margin from 6% in  to 33% in . Further 
duplicating the second row with  and 

= 14m = 16m
0,2  30,  does 

improve the performance from  but are still worse 
than the non-duplication case. This behavior can be 
attributed to the following reasons. The d value dis- 
tribution of this database after sorting the key bits accor-  

 0,1
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Figure 15. Simulation results for general IP addresses for (a) 
n = 2m. 
 
ding to the d value is very different from the general IP 
one and especially from the randomly generated one. The 
d values of most key bits of this database are already 
small compared to the other databases, which leads to a 
better result compared to other database when no dup- 
lication is used (case ). According to our previous 
theoretical analysis, it is harder to further reduce the d 
value of a bit already with a small d value by XORing it 
with another bit with a d value not significantly larger 
[18]. When duplicating the second row which has d 
values not significantly larger than the first row's, the 
resulted d values after XORing tend to increase. Note 
that the degree of performance degradation from dup- 
licating the second row lessens as m becomes smaller. 
For this database, the best duplication pattern is clearly 
dominated by the duplication of only the first row - 

 usually outperforms all others. 

0,0

0,3
Simulation from P2P IP address database shows 

somewhat similar results (Figure 17) to those from 
Ad-Spam IP database, but the degree of performance 
degradation from duplicating the second row is not as 
severe. In the case of , such a duplication ((0,1))  = 14m

 
 

 
 

 

Figure 16. Simulation results for ad-spam IP addresses for 
n = 2m. 
 
actually leads to a 5% improvement in performance, and 
it is furthered improved when duplicated more. The best 
performance is usually achieved with a hybrid pattern, 
 2,1  for , = 14m  2, 2  for , and = 15m  3,0  for 

. = 1m 6
 
7. Conclusions 
 
This paper further extends previously proposed hash 
design methodology to allow for more performance 
improvement. This new methodology provides an extra 
degree of design flexibility and points out a direction for 
future research, especially for cases with large number of 
hash key bits. By duplicating and reusing hash key bits in 
a more comprehensive manner, our technique further 
enhances the randomness from the best known XOR- 
hashing techniques. There still exist many potential 
extensions along this line of research. This paper only 
approaches bit duplication in a cyclic pattern, while a 
mixture of different patterns may provide even more 
benefit. In addition, this paper examined only induced 
correlation from the duplication without considering the  

Copyright © 2011 SciRes.                                                                                IJCNS 



R. TIENGTAVAT  ET  AL. 333 
 

 
 

 
 

 

Figure 17. Simulation results for P2P IP addresses for n = 
2m. 
 
inherent correlation already existing in the target data- 
base, which may have a very significant impact on the 
design of hash algorithms. By providing initial ground- 
work for duplication in hashing, this paper has pointed 
out the potential areas to improve hashing algorithms and 
new ways to exploit specific characteristics of the target 
database. 
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