
Int. J. Communications, Network and System Sciences, 2011, 4, 1-16
doi:10.4236/ijcns.2011.41001 Published Online January 2011 (http://www.SciRP.org/journal/ijcns)

Copyright © 2011 SciRes. IJCNS

RISN: An Efficient Sensor Network Overlay with Support
for Autonomous and Distributed Applications

Evens Jean1, Ingmar Rauschert1, Robert T. Collins1, Ali R. Hurson2, Sahra Sedigh2, Yu Jiao3
1The Pennsylvania State University, University Park, USA
2Missouri University of Science & Technology, Rolla, USA

3Oak Ridge National Laboratory, Oak Ridge, USA
E-mail: jean@cse.psu.edu, rauscher@cse.psu.edu, rcollins@cse.psu.edu, hurson@mst.edu,

sedighs@mst.edu, jiaoy@ornl.gov
Received November 22, 2010; revised December 14, 2010; accepted December 18, 2010

Abstract

Once deployed, sensor networks are capable of providing a comprehensive view of their environment.
However, since the current sensor network paradigm promotes isolated networks that are statically tasked,
the full power of the harnessed data has yet to be exploited. In recent years, users have become mobile enti-
ties that require constant access to data for efficient and autonomous processing. Under the current limita-
tions of sensor networks, users would be restricted using only a subset of the vast amount of data being col-
lected; depending on the networks they are able to access. Through reliance on isolated networks, prolifera-
tion of sensor nodes can easily occur in any area that has high appeals to users. Furthermore, support for dy-
namic tasking of nodes and efficient processing of data is contrary to the general view of sensor networks as
subject to severe resource constraints. Addressing the aforementioned challenges requires the deployment of
a system that allows users to take full advantage of data collected in the area of interest to their tasks. Such a
system must enable interoperability of surrounding networks, support dynamic tasking, and swiftly react to
stimuli. In light of these observations, we introduce a hardware-overlay system designed to allow users to
efficiently collect and utilize data from various heterogeneous sensor networks. The hardware-overlay takes
advantage of FPGA devices and the mobile agent paradigm in order to efficiently collect and process data
from cooperating networks. The computational and power efficiency of the prototyped system are herein
demonstrated. Furthermore, as a proof-of-concept, we present the implementation of a distributed and
autonomous visual object tracker implemented atop the Reconfigurable and Interoperable Sensor Network
(RISN) showcasing the network’s ability to support ad-hoc agent networks dedicated to user’s tasks.

Keywords: Pervasive Computing, Mobile Computing, RISN, Service Overlays, Overlay Architecture, Sensor

Network, Embedded Systems, Mobile Agents, Target Tracking, Reconfigurable Hardware,
Interoperability

1. Introduction

A sensor network is primarily composed of sensing
nodes forming a network capable of reacting to envi-
ronmental stimuli. The sensor nodes are generally low-
power, low-memory devices with highly constrained
computational capability. The data collected by the nodes
is relayed to a special node in the network referred to as
a base station or sink, for processing. Traditional sensor
network architectures advocate the deployment of stati-
cally tasked nodes that form an isolated network. Hence,

for every new application, a network would have to be
deployed over possibly overlapping coverage areas. Node
proliferation is generally undesirable, especially in areas
such as metropolitan centers, wildlife refuges or when
the overlapping networks may contain similar sensing
apparatuses.

In general, the requirements and restrictions of appli-
cations are not necessarily aligned with those of the sen-
sor network. Applications generally require the ability to
efficiently access and process data from anywhere and at
any time. The ability for networks to interoperate is thus

E. JEAN ET AL. 2

crucial, as applications are generally impervious to the
origins of data, but are more concerned with the accuracy
and reliability of the data. Further exacerbating the re-
source constraints typical of sensor networks are the se-
vere constraints of end-user devices, which may be un-
able to support the computation of interest, thereby ren-
dering the data available in the network unusable. The
ability to remotely process collected data could allow
users to offload computations, should they be unable to
efficiently process the data locally. Such computations
could be carried out by nodes with processing abilities
that deviate from those of traditional sensor nodes [1,2].

While users may require swift reaction to environ-
mental stimuli, this requirement is in conflict with the
general approach in sensor networks of relaying sensed
data over multiple hops to a remote sink for processing.
Moving computation closer to where data collection oc-
curs is an attractive possibility in reducing the reaction
time of applications [2,3]. Furthermore, the needs of us-
ers will undoubtedly vary, and the stimulus that triggers
collection of data by sensor nodes will change as well,
thereby requiring nodes that can be tasked dynamically.
Static tasking is not efficacious in a dynamic environ-
ment that supports the needs of dynamic users.

In essence, allowing users to efficiently harness data
collected by sensor networks requires dynamic tasking of
nodes subsisting in a dynamic environment, as well as
efficient processing and interoperability to increase the
amount of data available and prevent proliferation of
nodes. To this end, we introduce a Reconfigurable and
Interoperable Sensor Network (RISN) overlay architec-
ture capable of harnessing and processing information
from surrounding networks, referred to as sub-networks
herein thereafter. RISN (read as risen) relies on Field
Programmable Gate Arrays (FPGAs) to provide in-
creased computational capability and hardware recon-
figuration of nodes. Furthermore, relying on the use of
mobile agents, RISN provides users the ability to migrate
tasks to locations of interest, to collect and process data
from surrounding nodes, and accomplish their desired
goals. As herein discussed, RISN provides:
 Increased processing power through the use of

hardware accelerators to help support applications
with severe computational constraints,

 Interoperability with surrounding networks to en-
able data sharing and prevent node proliferation,

 Dynamic tasking and reconfiguration of nodes
through the use of mobile agents capable of form-
ing ad-hoc agent networks to intelligently collect
and process data of interest, and

 Service provision to efficiently support common
needs of applications.

Applications that constantly need to adapt their execu-

tion patterns based on current observations can greatly
benefit from RISN’s ability to support dynamic tasking
and reconfiguration of nodes. In general, object tracking
applications are interested in continuously maintaining
the location of an object as it traverses a sensed envi-
ronment. Such applications need to adapt to the object’s
motion as well as the heterogeneity of the sensing envi-
ronment. By that we mean that the tracker should be able
to adapt to the fact that an object may not be traceable at
times from one or more nodes using a particular feature
set. The location of the target could however still be de-
termined through other feature sets or sensing abilities of
the network such as heat or sound signatures. Drawing
on that logic, we implemented a distributed tracking al-
gorithm atop of RISN, that is capable of adapting to the
environment, and maintain the location of the object of
interest despite the potential heterogeneity of sub-net-
works through which the object may travel.

In presenting our work, we will first present the back-
ground and work related to our proposal in Section 2.
Section 3 presents the requirements of the system while
discussing the prototype implemented. Section 4 evalu-
ates our proposal and introduces a cost model for assess-
ing the potential benefits of RISN. Section 5 discusses
the aforementioned target-tracking application imple-
mented atop RISN; finally, Section 6 concludes this dis-
cussion, highlighting our contribution and future works.

2. Background & Related Works

Generally aiming at increasing the processing power of
nodes, the notion of using Field Programmable Gate Ar-
ray (FPGA) nodes has been adopted in several research
proposals. VAPRES was introduced to that end and
shown to reduce processing time [4], however adoption
of the system for large deployments appears infeasible,
since the network remains specialized based on its local-
ized sensing ability. Commuri et. al., proposed the use of
FPGA nodes that can be reconfigured to perform data
aggregation based on incoming queries [5]. The aggre-
gated data is then simply relayed to base stations for ac-
tual processing and thus no attempt is made to process
data close to its point of collection.

Addressing the issue of network interoperability, Ti-
nyWeb adapted the notion of web services to the sensor
network environment [6]. TinyWeb nodes use the Web
Service Description Language to advertise their inter-
faces. The proposed system assumes that node responses
are simple and specified in advance in order to reduce
code complexity and data overheads. The Semantic Sen-
sor Web (SSW) addresses interoperability through meta-
data and contextual information from networks. SSW
however does not address communication heterogeneity

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL. 3

[6]. IrisNet aims at providing an interface allowing users
to query data collected over various heterogeneous net-
works [7]. IrisNet does not address communication het-
erogeneity, and sensed data are processed remotely.

The use of mobile agents to render nodes reconfigur-
able has also been explored in the literature. Systems
such as Agilla [8] and ActorNet [9], to cite a few, have
introduced mobile agent platforms to allow nodes to be
reconfigured. One shortcoming of such systems is that
they do not attempt to increase the processing power of
nodes, which is crucial if such nodes are to be able to
process sensed data locally. The aforementioned systems
do not attempt to take advantage of the fact that the ap-
plications a node can support will be limited by its sens-
ing abilities. Furthermore the issues of collecting and
processing data from multiple, possibly heterogeneous
networks is ignored.

Target tracking deals with the issue of following a
particular object as it moves within an environment.
Within the scope of Sensor Networks, the environment is
limited to any area where the nodes involved in the
tracking are present. Numerous schemes, both central-
ized and distributed, have been put forth to allow sensor
nodes to track a target efficiently while minimizing the
power consumption of the network as a whole [10-12].
Such proposals have generally assumed that the network
is homogeneous in terms of its sensing ability. Distrib-
uted approaches to target tracking have led to the use of
mobile agents to perform the task [13], however, the
system still relies on a homogeneous sensing network.

To summarize, FPGAs have been proposed to increase
the processing power of nodes mainly for data aggrega-
tion or for specialized configurations, but not to allow
dynamic tasking of nodes. Proposals to address network
interoperability generally assume communication homo-
geneity. Lastly, the mobile agent paradigm has found its
niche in sensor networks, particularly for target-tracking,
although network interoperability issues have not been
addressed in such proposals. Through the introduction of
RISN, as presented in the following sections, our work
seeks to foster a networking environment that is recon-
figurable and facilitates interoperability among hetero-
geneous sensor networks while providing increased local
processing power through which users can take advan-
tage of the large sets of data being harnessed.

3. The RISN System

The ultimate aim of RISN is to promote sensor network
interoperability while allowing efficient dynamic tasking
of nodes and improving data availability to users. To
achieve these goals, RISN is, in essence, a deployed
network composed of FPGA nodes with higher computa-

tional capability than traditional sensor networks. RISN
utilizes a hardware-overlay capable of communicating
with surrounding traditional sub-networks. To abstract
the underlying heterogeneity of sub-networks from user
applications, RISN utilizes a uniform data representation
model and a common communication medium for nodes
in the RISN overlay, either of which may differ from
those of underlying sub-networks. RISN extends the tra-
ditional definition of a sensor network by viewing the
network as a system with four interacting entities,
namely 1) the RISN hardware-overlay, 2) the sub-net-
works, 3) a base station, and 4) software agents acting on
behalf of the users. The interaction among the four enti-
ties is aimed directly at improving data availability to the
user and allowing efficient processing of harnessed data.
Figure 1 depicts the RISN overlay and its interaction
with the base station, and the sub-networks. In the fol-
lowing subsections, we present the main components of
RISN, while showcasing its implementation in a
Proof-of-Principle system prototype geared towards im-
age processing applications.

3.1. RISN Overlay

The RISN Overlay is at the core of the RISN system. It is
comprised of FPGA nodes, heretofore referred to as
RISN or overlay nodes interchangeably unless otherwise
noted, each of which includes a general-purpose proces-
sor (GPP). The GPP supports a generic set of instructions
to allow software reconfigurability, while the FPGA ac-
complishes the same feat at the hardware layer. As the
nodes in the overlay are FPGA-based, we used the
ML405 evaluation board available from Xilinx [14] to
develop the prototype. The board contains a Power
PC405 microprocessor that is used as our GPP. The
overlay nodes encompass five major hardware/software
components, which are:
 Agent System
 Service Architecture
 Low-Level Tasks (LLT)
 Interoperability Interfacing System (IIS)
 Local Sensors

3.1.1. Agent System
The mobile agent-programming paradigm is focused
around the ability of a program to halt its execution, and
then move to a new environment where execution can be
resumed. Agents are prime candidates to allow deploy-
ment of user applications to remote systems, and are thus
adopted by the RISN system. The use of agents allows
RISN nodes to be dynamically tasked based on the needs
of user applications. The agents do not migrate in the
sub-networks; but instead travel through the overlay, the

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL.

Copyright © 2011 SciRes. IJCNS

4

Figure 1. RISN network.

Base Station and the user devices.

The Agent System is intended to provide the interface
between overlay nodes and user applications. Our choice
of an agent platform to use was guided by our familiarity
with agent platforms and the rankings of such platforms
based on security, availability and other features, as
conducted by Altmann et al. [15]. We thus opted for the
use of Aglets [16], as our platform of choice. Upon mi-
grating to a RISN node, the Aglets can use the resources
available on the overlay node, along with the GPP, to
perform the task at hand. Every overlay node contains a
Static Service Agent (SSA) to allow migrating user
agents to discover available resources on the current
RISN node. Further details on the SSA are provided in
the following subsection.

3.1.2. Service Architecture
The overlay nodes can be programmed to perform vari-
ous functions, depending on their sensing abilities and
the underlying sub-network. A subset of such functions
can be provided as services to user applications, espe-
cially if there exists an efficient implementation of the
function that may benefit the system. Such functions, as

per our prototype, include the computation of histograms
or the ability to track an object. RISN requires the pres-
ence of a service-based architecture in the overlay nodes
to address that possibility. The service architecture must
enable users to discover the services available in the sys-
tem and on any particular RISN node. While the Base
Station addresses the issue of detecting the services
available in the system (see Section 3-B), service detec-
tion on a RISN node is met through provision of such
information to local user applications using the SSA. The
interaction between the SSA and user agents is accom-
plished through exchange of the following messages:
 GetAvailableServices: returns a list of names of

services available (to the user) on the current over-
lay node. It is assumed that user agents know in
advance how to interact with the services based on
their names.

 GetServiceHandler: returns a ServiceHandler ob-
ject associated with a particular service name. The
object returned can be used to access the function-
alities offered by the service.

As the SSA supports these two messages, the services
in the system can be discovered and utilized through the

E. JEAN ET AL. 5

SSA; thereby allowing complex services to be composed
from simpler ones. The ability of services to make use of
each other’s functionalities is one of the requirements of
service-based architectures, herein handled through
messages.

The ServiceHandler object, as implemented in the
Proof-of-Principle prototype, is an abstract class through
which users are provided access to the following func-
tions:
 GetServiceName: retrieves the names of the ser-

vices provided by the ServiceHandler.
 GetServiceMetaData: retrieves the metadata of the

service being provided. Currently, the metadata is
simply a string that must be parsed by user agents.

 Exec: instructs the handler to execute a particular
command on an input object.

A RISN node’s sensing ability and that of its underly-
ing sub-networks limit the services that it can provide.
Every overlay node provides communication and, when
applicable, data collection services. Communication ser-
vices allow users to send data to as well as receive data
from underlying sub-networks. Data collection services
provide access to data from local sensors. Within the
prototype, the following functions of the Service Handler
have a default implementation that can be overridden by
IIS and local sensor handlers in order to provide com-
munication and data Services.
 GetRawData: retrieves data from an underlying

channel (local sensor or IIS).
 SendData: allows data to be sent to sub-networks,

or if necessary, local sensors.
Other services that allow user applications to leverage

the processing ability of LLTs are highly recommended,
though not required, in implementations of the system.
One should, however, note that the interaction of user
applications with the LLTs of RISN nodes is expected to
occur solely through services. The SSA is primarily in-
tended to provide an interface for users to access LLTs,
the IIS, and local sensors to support the RISN aim of
yielding an interoperable sensor network with efficient
processing of data.

3.1.3. Low-Level Tasks
Under the assumption that the sensing ability of a sensor
node limits the applications that the node will be in-
volved in, we introduce the notion of LLTs. For example,
if the data streams of a node are all temperature readings,
the node in question will primarily be monitoring
changes in temperatures, and converting from one metric
system to another. On the other hand, if the data streams
originate from cameras, the node may be involved in
object tracking or feature detection. Common tasks of
applications can be abstracted and incorporated into the

FPGA hardware as LLTs [1] to improve efficiency.
The LLT in our prototype supports image processing

and is built with array processing in mind, providing
users with the ability to perform various arithmetic op-
erations on large or singular arrays. The LLT arithmetic
operations are based on IEEE-754 single precision speci-
fication, with the ability to convert to and from 32-bit
integers. The LLT also provides users with the ability to
compute the histogram of an image based on a specified
number of bins. The logic behind the provision of these
particular operations as an LLT lies in the fact that these
operations are the most basic commonalities for our
goals. The Mean-Shift tracking algorithm [17] has been
implemented using the basic LLT operations, showcas-
ing the ability of the system to build complex services
from simpler ones.

3.1.4. Interoperability Interfacing System
The Interoperability Interfacing System (IIS) is the
component responsible for managing interactions be-
tween nodes in the overlay and those of the underlying
sub-networks. In order to conduct its primary function of
providing a communication medium between the overlay
nodes and the sub-networks, IIS must deal with 1) inter-
operating communication protocols, 2) data format con-
version, and optionally, 3) data aggregation. This is ac-
complished through coordination among the hardware
and software modules incorporating the three tasks of the
subsystem. IIS is designed with the ability to communi-
cate through various protocols that may be in use by
sub-networks in its vicinity. Communication with the
underlying sub-networks may require IIS to encrypt/
decrypt data as per the requirements of such sub-net-
works. Once contact has been established with sur-
rounding sub-networks, IIS provides user applications
with the ability to communicate with such networks and
leverage their observations and sensing abilities, which
are unlikely to be resident in the overlay itself. This ul-
timately expands the amount of information available to
users in accomplishing their tasks. While allowing data
exchange between overlay nodes and underlying sub-
networks is the primary task of IIS, it also reconciles
heterogeneous data formats through automatic formatting
of incoming and outgoing data streams. As a result, users
can focus on coding the functionalities required by their
applications instead of addressing data formats. Code
snippets for format conversion can be eliminated from
user applications; potentially reducing their size.

In the prototyped RISN, the IIS performs format con-
version between the RGB-24 and YUV color formats, in
the interest of presenting a unified representation of the
image data. This conversion is performed using two

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL.

Copyright © 2011 SciRes. IJCNS

6

snapshot of the various components of an overlay node,
and their primary interactions, is presented in Figure 2.

hardware accelerators, with the overlay nodes operating
under the RGB-24 format. The format conversion is
transparent to users and agent services. For simplicity,
the prototype’s IIS communicates solely over Ethernet,
although in a real-world scenario, it could be designed to
communicate over various communication media and
protocols. Within the scope of our prototype, the system
is limited to retrieval of image data from sub-networks
by the overlay nodes. To reduce storage requirements,
potentially conserve energy, and avoid processing of
repetitive observations, IIS can also perform data aggre-
gation, a highly desirable, yet optional, feature. Users
have the option of accessing either aggregated or raw
data, collected by the underlying sub-networks.

3.2. Base Station and Underlying Networks

The Base Station performs the same duties as its coun-
terpart in a traditional sensor network, in that it essen-
tially manages the network. We build on that notion to
instill new functionalities in the Base Station to achieve
our goals of interoperability and dynamic tasking. The
Base Station in RISN executes an agent system with a
stationary Base Station Agent (BSA). The BSA serves as
an operating interface to users, providing the latter with
pertinent information to help locate overlay nodes of
interest and identify their capabilities. Interaction be-
tween the BSA and users occurs through the exchange of
the following messages:

In short, IIS provides three main functionalities to the
RISN system: 1) the ability to communicate with under-
lying sub-networks, 2) data format consistency, and op-
tionally, 3) data aggregation to improve the overall per-
formance of the system.

 LocateNode: Based on the geographic location or
service names provided, the base station returns the
identity of overlay nodes that could facilitate ac-
complishment of the user’s task

3.1.5. Local Sensors

 GetAllServices: Returns a list of all services avail-
able in the overlay nodes. Users can analyze the
returned list to determine whether their applica-
tions can be supported. Note that users can still
accomplish their tasks by relying more heavily on
the GPP.

The overlay nodes may also sense data from their envi-
ronments. They are, however, not required to have any
sensing ability and could exist solely for the purpose of
maintaining network connectivity. The format of data
sensed by sensors in the overlay must, however, be in
compliance with the data format in use by the corre-
sponding overlay. The prototyped RISN system utilizes
overlay nodes with no local sensors for simplicity. A

 GetNodeServices: Returns the services associated
with a particular overlay node.

Figure 2. RISN network and components of a RISN overlay node.

E. JEAN ET AL.

Copyright © 2011 SciRes. IJCNS

7

In order to accomplish its task, the BSA needs to
maintain the list of available services along with location
and identity information for the overlay nodes. The Base
Station in the prototyped system consists of a work-
station with 1 GB of RAM and a 2.2 GHz Intel Xeon
processor executing the Aglet server.

3.3. User Agents

The users in the system interact with other entities
through the agent interface. To accomplish a task, a user
contacts the Base Station and discovers the services
available in the network, along with the location and
identification of overlay nodes of interest. The user can
then determine the overlay node to which an agent
should be deployed. Users can deploy agents to the ini-
tial overlay node in one of two fashions; directly, if the
overlay node is addressable from the user’s location, or
indirectly, by relaying the agent to the Base Station,
where the agent can then migrate to the overlay node of
interest. Note that the Base Station can address every
overlay node in the system. The deployed agent can
clone itself as necessary to form an ad-hoc agent network,
as it carries out its goals. Authenticated agents must be
allowed to traverse the overlay network and the RISN
Base Station in search of data of interest. As RISN uses a
homogenous data format, developers of user agents can
focus on specifying the migration pattern of agents,
along with access to and processing of information from
any particular overlay node. While the computing device
of the user may be resource-constrained and mobile, the
user within the prototype developed resides on the same
computer as the Base Station.

The user agent in the prototyped system is concerned
with locating a target within the environment monitored
by the overlay and underlying sub-networks. To imple-
ment the tracker, the user agent migrates to an initial
overlay node, where the target of interest is expected to
make its first appearance. The agent then migrates and
clones itself accordingly in the overlay, for the purpose
of maintaining and relaying the path taken by the target.
Upon arriving at overlay nodes of interest, the user agent
obtains the appropriate ServiceHandlers in order to ac-
cess services harnessing the processing power and data
of underlying components of the system. The Service-
Handlers in turn provide access to the services of the
overlay node, by interacting with the “RisnNetwork”
library through the Java Native Interface. The library
provides access to the various drivers, implemented in C,
that manage the IIS and LLT components. Note that in a
full implementation of the system, the ServiceHandler
would also interact with local sensors through the
“RisnNetwork” library.

4. System Evaluation

4.1. RISN Overlay Node on the Xilinx ML405

The resources available on any FPGA board are limited.
The same holds true for our underlying hardware plat-
form, the Xilinx ML405. The ML405 board contains a
Virtex-4 FPGA with 8,544 slices, and one PowerPC405
processor core, used as our GPP. The PowerPC405
processor is set to run at 300MHz, with 128 MB of RAM.
The processor interacts with the peripherals on the sys-
tem through the Processor Local Bus, running at 100
MHz. The prototyped overlay node encompasses hard-
ware modules for IIS, LLT, Ethernet, RS-232 serial
connection, and other system peripherals. The IIS and
LLT were designed with memory limitations in mind.
Figure 3 depicts the resource utilization achieved by the
Xilinx tools for the LLT subsystem, the IIS converters,
and the general system, excluding the components re-
ported separately. The programmed board is used to
evaluate the computational and power efficiencies of our
proposal, as presented in the following subsections.

4.2. RISN Overhead and Computational

Efficiency

The proposed RISN system is general-purpose and useful
for a broad array of applications, however, as noted ear-
lier, our prototype specifically targets image processing.
Our evaluation of the RISN overhead is intended to de-
termine whether the agent-based computational model
promoted by RISN degrades the performance seen by
user applications, as compared to traditional models.
Similarly, the goal of evaluating the system’s computa-
tional efficiency is to determine the speedup in execution
time afforded by the hardware accelerators as they are
accessed through RISN.

Figure 3. FPGA resource utilization.

E. JEAN ET AL. 8

As per our goal, three distinct execution times are
measured: PPCSoftTime measures the time it takes a
regular application to perform the computation of interest
on the FPGA node. AgentSoftTime measures the execu-
tion time of a user agent that does not take advantage of
the available hardware accelerators. Lastly, RISN_Time
measures the execution time of a user agent harnessing
the power of the hardware accelerators. Note that our
experimental setup highlights the potential agent over-
head as the difference between PPCSoftTime and
AgentSoftTime. For each of the aforementioned execu-
tion times being measured, we experimented with dif-
ferent LLT floating-point operations, such as division,
multiplication, addition, and square roots, with a varying
number of array elements. We also measured the execu-
tion times of interest for the IIS operation of converting
RGB-24 images to the YUV color space.

The results of our experiments are presented in Fig-
ures 4 and 5. Figure 4 showcases the improved execu-
tion time that RISN can provide in maintaining format
consistency across overlay nodes. AgentSoftTime con-
verts 180000 pixels in 4.0746 seconds, while RISN_Time
accomplishes the same feat in 0.5144, an 87.4% reduc-
tion in execution time. Figure 4 also highlights the negli-
gible agent overhead incurred through the use of RISN’s
agent-based computational model, as the difference be-
tween AgentSoftTime and PPCSoftTime.

Figure 5 depicts the improvement in execution time
RISN provides for applications involved in multiplying
numbers or other operations in floating point format. For
an array of 150000 elements, AgentSoftTime requires
1.576 seconds to compute their square; RISN reduces
this execution time by 70.1% by performing the required
computations in 0.471079 seconds. We should note that
the RISN time presented in Figure 4 and Figure 5 does
not include the time RISN takes to locate the appropriate
ServiceHandler in the system, as this overhead, while not

Figure 4. IIS computational efficiency.

a constant, is incurred only once per execution on an
overlay node. Similar to Figure 4, the agent overhead
displayed in Figure 5 is negligible, especially in light of
the improved performance afforded to user applications
by the hardware accelerators. There is a considerable
difference between the RISN_Time for computing square
roots and software approaches, which we attribute to the
fact that the square root is not a primitive operator in
Java (The execution times of the square root operations
are logarithmically scaled and presented in Figure 5(d)).
Lastly, we must note that Figure 5 also shows some
variations in the execution time exhibited by RISN_Time.
Such variations can be attributed to the following issues:
 The delay of the operating system in migrating data

from user space to kernel space for usage by the
hardware accelerators.

 Maintenance work by the Java Virtual Machine
(JVM), as the agent system in use is Java-based.

 Inaccuracies of the JVM in reporting precise time
durations.

4.3. RISN Power Consumption

The benefits and limitations of RISN are dependent upon
the application and underlying networking infrastructure.
We herein present a deployment model geared towards
determining whether RISN is beneficial towards a par-
ticular application and networking system. The intro-
duced model is used to study the power efficiency of our
prototype.

4.3.1. RISN Strategic Deployment Model
RISN aims at improving data availability to users, while
increasing responsiveness through hardware accelerators.
In general, RISN must be cost-effective to warrant its
application. Through RISN, applications can process
data close to its point of collection; rather than relaying it
to a processing center. In order to determine whether
RISN’s processing model should be employed for a par-
ticular application, we present a strategic deployment
model that incorporates the two main factors in efficacy:
communication load and power consumption. The pro-
posed model analyzes the cost of utilizing RISN’s local
processing, versus relaying the data to a processing cen-
ter.

CommC NCB (1)

The cost of communication is a function of the number
of bytes, B, that need to be transferred. Since the data
may need to traverse multiple nodes to reach its destina-
tion, the number of hops, N, must also be taken into ac-
count. CComm, as presented in Equation (1), represents the
cost of sending data from a node to the Base Station, with

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL.

Copyright © 2011 SciRes. IJCNS

9

(a) (b)

(c) (d)

Figure 5. LLT computational efficiency.

LLT of an overlay node will be active. D and Q, respec-
tively, represent the dynamic and quiescent power con-
sumption of each overlay node.

C representing the cost per byte. At first glance, Equation
(1) implies that simply reducing the amount of data that
needs to be transferred is sufficient to justify the use of
RISN for a particular application. However, the cost of
communication is only one aspect of the system’s overall
cost. By implementing tasks in hardware, RISN intro-
duces an execution cost in terms of power consumption.
For every LLT implemented, there is an associated cost
of dynamic and quiescent power usage. Dynamic power
refers to the energy used by the LLT while it is in use,
while quiescent power refers to the energy used by the
hardware module when it is powered, yet inactive. The
energy cost of implementing functionality in hardware
also depends on the number of overlay nodes, M, that the
application requires. This relationship is captured in
Equation (2), where CExec is the power consumption; and
L represents the load factor, i.e., the likelihood that the

 1ExecC M L Q LD     (2)

Note that determining whether an application should
make use of RISN’s local processing is not equivalent to
evaluating whether RISN itself should be used in the
network. Instead, our deployment model aims to help
designers determine, based on the amount of data to be
transferred, and the expected overhead of power con-
sumption, whether the data for a particular application
should be relayed to a Base Station for processing, or be
processed in the overlay.

In summary, the strategic deployment model intro-
duces a means by which designers can determine whether
the decrease in response time, and communication load

E. JEAN ET AL. 10

achieved by RISN justifies the overhead incurred in
terms of power usage. Further insight on the deployment
model can be acquired through the next subsection,
which evaluates two tracking applications.

4.3.2. Communication Cost
Using the strategic deployment model, we compare the
communication cost associated with performing target
tracking, using the Mean-Shift tracking algorithm [17],
based on RISN’s processing model, with that of the
traditional approach. The trackers implemented utilize
the RGB-24 color format and process images of 640 ×
480 pixels. The location of the target is maintained in
both implementations as two 32-bit values representing
the x and y coordinate. For clarity, we named the two trac-
kers RISN_Tracker and Soft_Tracker, with RISN_Tracker
being the implementation that uses the RISN processing
model.

In our experiments, the cost associated with sending a
byte of data over a network link is assumed constant for
both RISN_Tracker and Soft_Tracker, as is the number
of hops, N, that the data must traverse. CComm then be-
comes completely dependent upon the number of bytes
that needs to be transferred. Both trackers, as imple-
mented, are solely interested in the location of the target.
RISN_Tracker needs to periodically relay eight bytes of
data representing the target’s new location. Soft_Tracker,
however, must relay the image frames to be processed.
As each pixel consists of 3 bytes, Soft_Tracker relays a
total of 640 × 480 × 3 = 921,600 bytes, to the Base Sta-
tion. The number of bytes that Soft_Tracker relays is
directly dependent on the resolution of the cameras in the
system. Figure 6 depicts the theoretical effect of the im-
age size on the communication cost associated with each
tracker. The figure shows that RISN_Tracker is inde-
pendent of image resolution, while Soft_Tracker is not.
Figure 6 also demonstrates that considerably less data
needs to be relayed by RISN_Tracker to locate targets of
interest. This is significant, as the energy cost associated
with communication is generally high in any system;
further detail on this statement is provided in the next
section, where we evaluate the energy usage of the sys-
tem.

4.3.3. Energy Cost of Execution
Determining the load factor of the system required ex-
tensive simulations. We used the Xilinx tools to generate
the simulation model of the RISN node. We then relied
on ModelSim to generate the Value Change Dump (VCD)
used to estimate the power usage of the system through
Xilinx’s XPower power estimation tools. The tools esti-
mated the toggle rate at 9.5% for the system as a whole.
We use the toggle rate as our load factor for the system,

Figure 6. Communication cost.

as it measures the ratio of time that the system state
changes relative to a clock input. Table 1 shows the dy-
namic and quiescent power reported for various compo-
nents of the RISN node (NR stands for Not Reported).
Note that Ethernet uses more power than IIS and LLT
combined; this is not surprising, as the energy cost of
communication is expected to be high.

As the overlay nodes are FPGA-based, hardware
modules, such as LLTs, are subject to quiescent power
drainage. Intuitively, the benefits, with respect to the
execution time, of performing a task in hardware must
outweigh the potential drawbacks. In the case of the
hardware modules in RISN, while communication load
can be reduced, this must not occur at the expense of
increasing the power usage of the system as a whole.
Using Equation (2) and the estimated power usage from
Table 1, the power consumption of an overlay node, with
hardware accelerators, can be computed as (1 − 0.095) 
(0.36191) + (0.095  1.7188) = 0.49081 W. On the other
hand, the cost of execution with no hardware accelerators
is (1 − 0.095)  (0.36191) + (0.095)  (1.7188 − 0.01717
− 0.00784) = 0.48844 W, as the application does not use
the hardware modules.

The amount of energy used for an operation can then
be determined, based on the time it takes for the opera-
tion to execute. Figure 7 presents the energy (in J) used
in the system, based on the number of array elements
being processed. The figure clearly shows that even
though RISN has higher power consumption, when the
speedup afforded by the hardware accelerators is fac-
tored in; RISN actually uses less energy to perform the
computation requested.

Lastly, Figure 8 shows the theoretical effect of the
percentage of dynamic power used by the RISN hard-
ware modules (IIS and LLT). As the percentage of dy-
namic power used by the RISN hardware modules in-
creases, the traditional software approach becomes more
efficient in terms of required wattage when compared to
RISN. Therefore, in order to maximize the benefits af-

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL. 11

Table 1. Estimated power usage.

 Quiescent (W) Dynamic (W)

System as a whole 0.36191 1.7188

IIS NR 0.00784

LLT NR 0.01718

Ethernet NR 0.03454

Figure 7. Energy used for multiplication.

Figure 8. Theoretical effect of percentage of RISN hard-
ware modules’ dynamic power.

forded by RISN, namely, reduction of execution time and
energy consumption, the percentage of a node’s power
used by the hardware accelerators should be minimized.

5. Autonomous and Distributed

Target-Tracking

As a proof-of-concept of RISN’s ability to ease devel-
opment of distributed applications capable of executing
in heterogeneous environments, we now present a dis-
tributed target-tracking implementation, independent of
the RISN_Tracker discussed earlier, that continuously
tracks and maintains the location of an object despite the

network’s heterogeneity and limited coverage of any one
sensor.

5.1. Tracking System Architecture

Target tracking aims at continuously determining the
location of an object of interest as it moves within an
environment. With the assumption that the object of in-
terest is the only mobile physical entity in the environ-
ment, target tracking must inevitably deal with the issue
of the object moving out-of-range of one or more sensors
or an entire isolated network. Furthermore, the potential
heterogeneity of the sensors and their spatial deployment,
their limited field of view and the potential for unex-
pected occlusions of the object of interest greatly com-
plicates the task of determining the target’s current loca-
tion. However, since the primary function of all trackers
is to return the location of an object in space, a distrib-
uted tracker can be independent of any one tracking al-
gorithm implemented on a contributing sensor node. The
distributed tracker can instead simply rely on the per-
ceived location relayed by each sensor. As RISN lever-
ages the data available from sub-networks, abstracts the
heterogeneity of such networks while providing support
for dynamic tasking and efficient processing, it is an at-
tractive platform to develop such a distributed tracking
application capable of continuously maintaining the lo-
cation of the target despite the possibility of the object
moving out-of-range of any one sensor as well as the
heterogeneity of nodes’ sensing abilities and required
feature set used in tracking.

Our implementation relies on two main components,
namely an Ad-Hoc Agent Network (AHAN), and a
Tracking Service Handler (TSH) for each possible con-
tributing overlay node. The two components interact to
allow the location of the object of interest to be deter-
mined as it travels through the network despite the po-
tential sensing heterogeneity of the nodes. The system
works by deploying an agent to the overlay node with
sensing coverage of where the object of interest is ex-
pected to appear initially. The deployed agent uses the
appropriate representation of the object as specified in
the Target field of the agent, to determine the current
location of the object through communication with the
TSH of the overlay node. Using the returned location, the
agent clones itself and dispatches the clones to overlay
nodes with sensing coverage of the target’s perceived
path as determined by TSH. The initial agent and its
clones form the AHAN, which is described in the next
section.

5.1.1. Ad-Hoc Agent Network
The Ad-Hoc Agent Network (AHAN) is made up of co-

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL. 12

ordinating agents dispatched to locations of interest. The
network determines the current location of the target
based on the individual tracking results received. The
agents contain a Target field that represents the object
being tracked. Target maintains past locations of the ob-
ject and the possibly diverse set of features that may be
used to locate the object. To illustrate the latter point,
consider that an object’s appearance and location, within
the scope of computer vision, can be represented as pa-
rametric and non-parametric probability densities, as
well as active appearance models [18]. Furthermore,
various other features such as heat and sound signatures
can also be used to represent the object. To deal with
such a vast set of possible feature representations of an
object, Target is represented as a class capable of main-
taining various representations of the object of interest,
each of which is accessible through their statically pre-
defined names. The appropriate representation of the
object can be retrieved in order to determine the object’s
current location on any particular overlay node by using
the retrieveObjectModel (String modelName) method of
Targets. Note that there is an underlying assumption that
Target is pre-configured with any necessary object model
parameterization that might be required by a TSH in or-
der to perform tracking under possibly changing envi-
ronments.

Using the Target and its path, clones of the initial
agent are dispatched to appropriate neighboring overlay
nodes forming the AHAN. The clones and the initial
agent communicate through the following messages:
 cmdGetTargetLocation: instructs clones to deter-

mine the current location of the target of interest
using the sensor data streams managed by the
clone.

 DestinationAddress: specifies the address to which
the clone should migrate to and which sensor data
stream it will manage at the destination.

 cmdTerminateClone: terminates execution of the
receiving clone and frees up used resources.

The initial agent migrates through the network as the
object moves; clones are terminated when they are no
longer capable of helping in determining the current lo-
cation of the target. The initial agent creates a polygon
consisting of the retrieved locations of the object for the
current iteration. The center of the constructed polygon is
used as the location of the target perceived by the sys-
tem.

As we mentioned earlier, the agent network is built
starting with an initial agent, executing on a node from
which the target is supposed to be locatable. The initial
agent consults with the TSH in order to determine which
neighborhood overlay nodes can help in determining the
location of the target. Details regarding the interaction

between the agent network and the TSH are provided in
the following section.

5.1.2. Tracking Service Handler
TSH abstracts the heterogeneity of various implementa-
tions of trackers or associated feature sets from the Agent
Network, thereby allowing for the object to be located
based on suitable features for the current overlay node.
TSH is essentially a RISN tracking service available
through a handler. TSH is initialized by specifying the
size of the 2D virtual space being monitored as well as
specification of the sensors available on the overlay node
along with the address of neighboring overlay nodes. For
each sensor on the local overlay node, the handler im-
plements the appropriate and possibly optimal tracking
algorithm for the sensor. The handler also determines
and maintains the Field Of View (FOV) of each local
sensor, defined as a mapping of the area covered by the
sensor onto the virtual space. Lastly, the FOV covered by
sensors of neighboring overlay nodes is retrieved through
communication with remote SSAs. In essence the han-
dler allows execution of the following commands:
 GetNodeFOV: retrieves the FOV of a particular

sensor stream available on an overlay node.
 cmdFutureAddressesOfPoint: returns the address

and IDs of known sensor streams whose FOVs in-
tersect with the specified point.

 cmdFutureAddressesOfSegment: returns the ad-
dress and IDs of known sensor streams whose
FOVs intersect with the specified segment.

 cmdFutureAddressesOfLine: returns the address
and IDs of known sensor streams whose FOVs in-
tersect with the specified line.

 cmdFOVIntersectPoint: returns true if the FOV of
the specified sensor intersects with the specified
point.

 cmdFOVIntersectSegment: returns true if the FOV
of the specified sensor intersects with the specified
segment.

 cmdFOVIntersectLine: returns true if the FOV of
the specified sensor intersects with the specified
line.

 cmdTrack: retrieves the required feature represen-
tation of the target and attempts to locate the cur-
rent location of the object in the neighborhood of
the target’s last known location. The new location
of the object is returned, without any mapping to
the virtual space.

 cmdMapFromVirtual: maps the specified location
in world coordinates to the sensor’s local coordi-
nate indicated on the overlay node.

 cmdMapToVirtual: maps the specified sensor’s
local coordinate to the system’s world coordinates.

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL. 13

Details of the interaction between the components of
the distributed tracker are provided in the next section as
we walk through an implementation of the tracker.

5.2. Tracking System Implementation

The tracking system herein implemented ultimately re-
lies on the RISN framework herein introduced. As such,
in introducing the tracking system implementation, this
section also highlights RISN’s ability to leverage data
from isolated networks, intelligently process sensor ob-
servations and abstract the potential heterogeneity of
underlying networks. The proposed distributed tracker is
implemented through the use of 2 RISN nodes (Node-1
and Node-2) attached to the base station from our earlier
experiments. Each RISN node manages 4 cameras whose
FOV are mapped onto a two dimensional “virtual” space
representing the X and Y world coordinates of the object.
Node-1 manages Cam1, Cam2, Cam6 and Cam4; while
Node-2 manages the remaining four cameras. The reason
behind this setup is to emulate an overlay network con-
sisting of the RISN nodes managing two potentially iso-
lated and heterogeneous sub-networks with overlapping
coverage areas.

The cameras act as sensors of the sub-networks con-
trolled by RISN; while the 2 nodes embody nodes in the
RISN overlay that the distributed tracker depends on in
accomplishing its task. The cameras do not share the
same resolutions; they were calibrated offline and their
projection matrices, mapping individual image coordi-
nates to world coordinates, were computed and loaded
onto the appropriate TSH. The handler uses these matri-
ces to determine the FOV of each corresponding camera
and to perform bi-directional mapping from the camera’s
local coordinate to the world coordinates of the distrib-
uted tracker. In so doing, user agents only need to deal
with world coordinates, as the TSH abstracts the hetero-
geneous image coordinate system of each camera.

Once the handler is setup, having acquired the FOV of
neighboring sensors, the user agent is deployed on
Node-1, which maintains Cam2. The user agent, upon
arriving at Node-1, initializes the target based on the
specified location of the target in the initial frame. The
target in question is a red ball whose appearance is mod-
eled using a color histogram. For the purpose of experi-
mentation, we work with a target whose representation is
independent of the viewing angle of any one camera,
thereby abstracting issues that may arise due the fact that
the histogram representing an object can be very differ-
ent depending on the viewing angle used to compute the
histogram. For each frame of the test video sequence,
and the last known location of the object, the user agent
intelligently determines which sensors on which overlay

node can be used to track the target. If there is no clone
managing a suitable sensor, one is dispatched; else a
message is relayed to the clone asking for the updated
location of the object.

Figure 9 presents a pictorial representation of the FOV
of all eight cameras available in the system, with that of
Cam2 highlighted in green. Figure 9 also displays the
locations of the object as it is tracked by the dispatched
user agent based on the location of the object in the ini-
tial frame, represented as F1 in the figure. From the first
frame, F1, to the 27th frame (F27), the object is visible in
the FOV of Cam2. On the 28th frame however, the user
agent must rely on the other cameras in the system to
maintain the location of the object. It is worth noting that
at frame 43 (F43), the target leaves the FOV of all cam-
eras under the control of Node-1. In order to maintain the
location of the object, as per our experimental setup, the
user agent must thus rely on data from neighboring net-
works. The AHAN takes over by dispatching an agent to
Node-2 based on the expected path of the object and its
intersection with the coverage area of the sensors man-
aged by Node-2. In our experiment, this resulted in the
system tracking the object using Cam3, Cam5 and Cam8
from Node-2, thus leveraging, and intelligently process-
ing data from isolated and heterogeneous networks to
accomplish a common goal.

The initial location, (F1), of the object being tracked
as seen by Cam2 is displayed in Figure 10(a); while
Figure 10(b) shows the location of the object seen by
Cam2 after 27 frames (F27) have been processed. On the
28th frame (F28), the object is no longer visible by Cam2;
however, it is still visible by Cam1 in the same
sub-network. In the 43rd frame (F43), the object also
leaves the FOV of Cam1, thereby becoming invisible to
Node-1. The tracker is able to maintain the location of
the object in world coordinates, despite the fact that it is
no longer visible from the initial camera or sub-network.

Figure 9. Overview of tracking system.

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL. 14

(a)

(b)

(c)

Figure 10. Distributed tracking system.

When the object reappears in frame 62, (F62), it is accu-
rately located by the user agent using Cam2 as shown in
Figure 10(c), by relying on the information harnessed

from the other sensors in the system. In frame 68 (F68),
the object again becomes visible to Cam1.

As the handlers for each camera is responsible for im-
plementing the suitable target-tracking algorithm, the
system makes no assumption of the homogeneity of each
tracker. As a result, each Tracking Service Handler could,
in theory, implement a different tracking algorithm.
However, in our implementation, we only used one
tracking algorithm, namely the Mean-Shift algorithm.
The only requirement is that the Target is able to supply
to the handler the necessary parameters on which to op-
erate by using the retrieveObjectModel method.

Although we assume that the representation of the ob-
ject is independent from the sensors’ point of views and
that the sensing devices in the system consist solely of
cameras; the size of the object however varies depending
on its distance from any particular camera. Thusly, it is
important that the TSH of each node is able to maintain
and adjust the size of the object from each camera inde-
pendently. This is accomplished by dynamically adjust-
ing the bandwidth parameter of each Mean-Shift tracker
using the method proposed in [17]. Figure 11(a), Figure
11(b), and Figure 11(c) showcase how the TSH adjusts
to the changing size of the object in successive frames
from Cam7.

6. Conclusions

Our work has introduced a novel approach to sensor
networks that aims to allow existing sub-networks to
interoperate, while granting applications the ability to
efficiently harness and process data. We have also pro-
posed a strategic deployment model to help decide
whether harnessing the processing power of LLTs can
help improve the reaction time of applications while not
imposing severe strain on the network’s power consump-
tion. Abstraction of the network and heterogeneity of
data formats allows user applications to focus on their
tasks.

The use of services enables developers to maximize
the efficiency of the system by providing efficient im-
plementations of common tasks, while balancing speed
and power requirements. We have also shown how an
autonomous distributed target tracking application that is
independent of the sensing abilities of any one node can
be implemented on the system. The tracking application
discussed simply requires the presence of a Tracking
Service Handler, which abstracts the sensing heterogene-
ity of nodes, along with the presence of all possible fea-
ture set representation of the object of interest, in order to
maintain the continuous locations traversed by the object
as it moves in and out of the view of any nodes.

One stated goal of sensor networks is to occupy an

Copyright © 2011 SciRes. IJCNS

E. JEAN ET AL. 15

(a)

(b)

(c)

Figure 11. Dynamic adjustment of tracking bandwidth.

area with minimal disturbances to the environment and
its occupants. With the deployment of a new network for
every new task, this goal is fated to be breached by lead-

ing to proliferation of nodes. With RISN’s ability to
interoperate with other networks, the number of net-
works with similar sensing abilities that need to be de-
ployed in an area can be greatly reduced, as the system
facilitates interoperation and leverages available resource
for processing by user agents. Furthermore, we have
shown through our analysis that RISN can reduce execu-
tion time by over 70% and considerably reduce commu-
nication load over network links. The latter can be cru-
cial to traditional sensor networks, as communication ty-
pically consumes considerably more energy than any
other task in the system.

Future work will investigate if RISN can increase the
lifetime of one or more power-starved networks. Ad-
dressing the security of overlay nodes will also be stud-
ied to prevent intruders from controlling sub-networks.
The work described in this paper assumed that the com-
munication protocols and data formats of underlying
sub-networks are known in advance. Future work will
address location of existing sub-networks by the IIS
components, as well as reconciling heterogeneity of pro-
tocols and data without a priori knowledge of their exact
nature. Methods for communicating encrypted data and
preventing compromise of the encryption keys in the
course of “discovering” new sub-networks will also be
investigated. The prototype presented utilized wired
Ethernet, as opposed to wireless communication. Future
works will take into account the complications that RISN
will face in wireless environments.

7. Acknowledgements

The National Science Foundation under the contract
IIS-0324835 in part has supported this work.

We gratefully acknowledge the tools and hardware
provided by Xilinx.

Research sponsored by the Laboratory Directed Re-
search and Development Program of Oak Ridge National
Laboratory (ORNL) managed by UT-Battelle, LLC, for
the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

8. References

[1] E. Jean, R. T. Collins, A. R. Hurson, S. Sedigh and Y.

Jiao, “Pushing Sensor Network Computation to the Edge,”
Proceedings of 5th International Conference on Wireless
Communications, Networking and Mobile Computing,
Beijing, 24-26 September 2009, pp. 1-4. doi:10.1109/
WICOM.2009.5302659

[2] E. Jean, Y. Jiao, A. R. Hurson and V. Kumar, “Pushing
Sensor Network Computation to the Edge while Enabling
Inter-Network Operability and Securing Agents,” Pro-
ceedings of 3rd International Innovations and Real-Time

Copyright © 2011 SciRes. IJCNS

http://dx.doi.org/10.1109/WICOM.2009.5302659
http://dx.doi.org/10.1109/WICOM.2009.5302659

E. JEAN ET AL.

Copyright © 2011 SciRes. IJCNS

16

Applications of Distributed Sensor Networks Symposium,
Shreveport, 26-27 November 2007, pp. 66-75.

[3] Y. Jiao and A. R. Hurson, “Performance Analysis of Mo-
bile Agents in Mobile Distributed Information Retrieval
System—A Quantitative Case Study,” Journal of Inter-
connection Networks, Vol. 5, No. 3, pp. 351-372.
doi:10.1142/S0219265904001210

[4] R. Garcia, A. Gordon-Ross and A. D. George, “Exploit-
ing Partially Reconfigurable FPGAs for Situation-Based
Reconfiguration in Wireless Sensor Networks,” Proceed-
ings of 17th IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa, 5-7 April 2009, pp.
243-246. http://doi.ieeecomputersociety.org/10.1109/FCCM.
2009.45

[5] S. Commuri, V. Tadigotla and M. Atiquzzaman, “Recon-
figurable Hardware Based Dynamic Data Aggregation in
Wireless Sensor Networks,” International Journal of
Distributed Sensor Networks, Vol. 4, No. 2, pp. 194-212.
doi:10.1080/15501320802001234

[6] A. Sheth, C. Henson and S. S. Sahoo, “Semantic Sensor
Web,” IEEE Internet Computing, Vol. 12, No. 4, pp.
78-83. doi:10.1109/MIC.2008.87

[7] P. B. Gibbons, B. Karp, Y. Ke, S. Nath and S. Seshan,
“IrisNet: An Architecture for a Worldwide Sensor Web,”
IEEE Pervasive Computing, Vol. 2, No. 4, pp. 22-33.
http://doi.ieeecomputersociety.org/10.1109/MPRV.2003.
1251166

[8] C. Fok, G. Roman and C. Lu, “Rapid Development and
Flexible Deployment of Adaptive Wireless Sensor Net-
work Applications,” Proceedings of the 25th IEEE Inter-
national Conference on Distributed Computing Systems,
Columbus, 10 June 2005, pp. 653-662.

[9] Y. Kwon, S. Sundresh, K. Mechitov and G. Agha, “Ac-
torNet: An Actor Platform for Wireless Sensor Net-
works,” Proceedings of the 5th International Joint Con-
ference on Autonomous Agents and Multiagent Systems,
Hakodate, 8-12 May 2006, pp. 1297-1300.

[10] S. Pattem, S. Poduri and B. Krishnamachari, “Energy-

Quality Tradeoffs for Target Tracking in Wireless Sensor
Networks,” Proceedings of 2nd International Workshop
of Information Processing in Sensor Networks, Palo Alto,
22-23 April 2003, pp. 32-46.

[11] H. Yang and B. Sikdar, “A Protocol for Tracking Mobile
Targets Using Sensor Networks,” Proceedings of 1st
IEEE International Workshop on Sensor Network Proto-
cols and Applications, Anchorage, 11 May 2003, pp.
71-81. doi:10.1109/SNPA.2003.1203358

[12] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-
Based Collaboration for Target Tracking in Sensor Net-
works,” IEEE Transactions on Wireless Communications,
Vol. 3, No. 5, pp. 1689-1701. doi:10.1109/TWC.2004.
833443

[13] L. Szumel, J. LeBrun and J. D. Owens, “Towards a Mo-
bile Agent Framework for Sensor Networks,” Proceedings
of 2nd IEEE Workshop on Embedded Networked Sensors,
Sydney, 30-31 May 2005, pp. 79-88. http://doi.ieeecom-
putersociety.org/10.1109/EMNETS.2005.1469102

[14] Anonymous Xilinx Documentation for ML405 Board,
July 2008.

[15] J. Altmann, F. Gruber, L. Klug, W. Stockner and E.
Weippl, “Using Mobile Agents in Real World: A Survey
and Evaluation of Agent Platforms,” Proceedings of 2nd
Workshop on Infrastructure for Agents, MAS and Sca-
lable MAS at Autonomous Agents, Montreal, 28 May-1
June 2001, pp. 10-16.

[16] D. B. Lange and M. Oshima, “Programming and De-
ploying Java Mobile Agents with Aglets,” Addison-
Wesley, Boston, 1998.

[17] D. Comaniciu, V. Ramesh and P. Meer, “Real-Time
Tracking of Non-Rigid Objects Using Mean Shift,” Pro-
ceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Hilton Head Island,
13-15 June 2000, pp. 142-149.

[18] A. Yilmaz, O. Javed and M. Shah, “Object Tracking: A
Survey,” ACM Computing Surveys, Vol. 38, No. 4, pp.
1-45.

http://dx.doi.org/10.1142/S0219265904001210
http://dx.doi.org/10.1080/15501320802001234
http://dx.doi.org/10.1109/MIC.2008.87
http://dx.doi.org/10.1109/SNPA.2003.1203358
http://dx.doi.org/10.1109/TWC.2004.833443
http://dx.doi.org/10.1109/TWC.2004.833443

