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Abstract 
 
Once deployed, sensor networks are capable of providing a comprehensive view of their environment. 
However, since the current sensor network paradigm promotes isolated networks that are statically tasked, 
the full power of the harnessed data has yet to be exploited. In recent years, users have become mobile enti-
ties that require constant access to data for efficient and autonomous processing. Under the current limita-
tions of sensor networks, users would be restricted using only a subset of the vast amount of data being col-
lected; depending on the networks they are able to access. Through reliance on isolated networks, prolifera-
tion of sensor nodes can easily occur in any area that has high appeals to users. Furthermore, support for dy-
namic tasking of nodes and efficient processing of data is contrary to the general view of sensor networks as 
subject to severe resource constraints. Addressing the aforementioned challenges requires the deployment of 
a system that allows users to take full advantage of data collected in the area of interest to their tasks. Such a 
system must enable interoperability of surrounding networks, support dynamic tasking, and swiftly react to 
stimuli. In light of these observations, we introduce a hardware-overlay system designed to allow users to 
efficiently collect and utilize data from various heterogeneous sensor networks. The hardware-overlay takes 
advantage of FPGA devices and the mobile agent paradigm in order to efficiently collect and process data 
from cooperating networks. The computational and power efficiency of the prototyped system are herein 
demonstrated. Furthermore, as a proof-of-concept, we present the implementation of a distributed and 
autonomous visual object tracker implemented atop the Reconfigurable and Interoperable Sensor Network 
(RISN) showcasing the network’s ability to support ad-hoc agent networks dedicated to user’s tasks. 
 
Keywords: Pervasive Computing, Mobile Computing, RISN, Service Overlays, Overlay Architecture, Sensor 
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1. Introduction 
 
A sensor network is primarily composed of sensing 
nodes forming a network capable of reacting to envi-
ronmental stimuli. The sensor nodes are generally low- 
power, low-memory devices with highly constrained 
computational capability. The data collected by the nodes 
is relayed to a special node in the network referred to as 
a base station or sink, for processing. Traditional sensor 
network architectures advocate the deployment of stati-
cally tasked nodes that form an isolated network. Hence,  

for every new application, a network would have to be 
deployed over possibly overlapping coverage areas. Node 
proliferation is generally undesirable, especially in areas 
such as metropolitan centers, wildlife refuges or when 
the overlapping networks may contain similar sensing 
apparatuses.  

In general, the requirements and restrictions of appli-
cations are not necessarily aligned with those of the sen-
sor network. Applications generally require the ability to 
efficiently access and process data from anywhere and at 
any time. The ability for networks to interoperate is thus 
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crucial, as applications are generally impervious to the 
origins of data, but are more concerned with the accuracy 
and reliability of the data. Further exacerbating the re-
source constraints typical of sensor networks are the se-
vere constraints of end-user devices, which may be un-
able to support the computation of interest, thereby ren-
dering the data available in the network unusable. The 
ability to remotely process collected data could allow 
users to offload computations, should they be unable to 
efficiently process the data locally. Such computations 
could be carried out by nodes with processing abilities 
that deviate from those of traditional sensor nodes [1,2].  

While users may require swift reaction to environ-
mental stimuli, this requirement is in conflict with the 
general approach in sensor networks of relaying sensed 
data over multiple hops to a remote sink for processing. 
Moving computation closer to where data collection oc-
curs is an attractive possibility in reducing the reaction 
time of applications [2,3]. Furthermore, the needs of us-
ers will undoubtedly vary, and the stimulus that triggers 
collection of data by sensor nodes will change as well, 
thereby requiring nodes that can be tasked dynamically. 
Static tasking is not efficacious in a dynamic environ-
ment that supports the needs of dynamic users. 

In essence, allowing users to efficiently harness data 
collected by sensor networks requires dynamic tasking of 
nodes subsisting in a dynamic environment, as well as 
efficient processing and interoperability to increase the 
amount of data available and prevent proliferation of 
nodes. To this end, we introduce a Reconfigurable and 
Interoperable Sensor Network (RISN) overlay architec-
ture capable of harnessing and processing information 
from surrounding networks, referred to as sub-networks 
herein thereafter. RISN (read as risen) relies on Field 
Programmable Gate Arrays (FPGAs) to provide in-
creased computational capability and hardware recon-
figuration of nodes. Furthermore, relying on the use of 
mobile agents, RISN provides users the ability to migrate 
tasks to locations of interest, to collect and process data 
from surrounding nodes, and accomplish their desired 
goals. As herein discussed, RISN provides: 
 Increased processing power through the use of 

hardware accelerators to help support applications 
with severe computational constraints, 

 Interoperability with surrounding networks to en-
able data sharing and prevent node proliferation, 

 Dynamic tasking and reconfiguration of nodes 
through the use of mobile agents capable of form-
ing ad-hoc agent networks to intelligently collect 
and process data of interest, and  

 Service provision to efficiently support common 
needs of applications. 

Applications that constantly need to adapt their execu-

tion patterns based on current observations can greatly 
benefit from RISN’s ability to support dynamic tasking 
and reconfiguration of nodes. In general, object tracking 
applications are interested in continuously maintaining 
the location of an object as it traverses a sensed envi-
ronment. Such applications need to adapt to the object’s 
motion as well as the heterogeneity of the sensing envi-
ronment. By that we mean that the tracker should be able 
to adapt to the fact that an object may not be traceable at 
times from one or more nodes using a particular feature 
set. The location of the target could however still be de-
termined through other feature sets or sensing abilities of 
the network such as heat or sound signatures. Drawing 
on that logic, we implemented a distributed tracking al-
gorithm atop of RISN, that is capable of adapting to the 
environment, and maintain the location of the object of 
interest despite the potential heterogeneity of sub-net- 
works through which the object may travel. 

In presenting our work, we will first present the back-
ground and work related to our proposal in Section 2. 
Section 3 presents the requirements of the system while 
discussing the prototype implemented. Section 4 evalu-
ates our proposal and introduces a cost model for assess-
ing the potential benefits of RISN. Section 5 discusses 
the aforementioned target-tracking application imple-
mented atop RISN; finally, Section 6 concludes this dis-
cussion, highlighting our contribution and future works. 
 
2. Background & Related Works 
 
Generally aiming at increasing the processing power of 
nodes, the notion of using Field Programmable Gate Ar-
ray (FPGA) nodes has been adopted in several research 
proposals. VAPRES was introduced to that end and 
shown to reduce processing time [4], however adoption 
of the system for large deployments appears infeasible, 
since the network remains specialized based on its local-
ized sensing ability. Commuri et. al., proposed the use of 
FPGA nodes that can be reconfigured to perform data 
aggregation based on incoming queries [5]. The aggre-
gated data is then simply relayed to base stations for ac-
tual processing and thus no attempt is made to process 
data close to its point of collection. 

Addressing the issue of network interoperability, Ti-
nyWeb adapted the notion of web services to the sensor 
network environment [6]. TinyWeb nodes use the Web 
Service Description Language to advertise their inter-
faces. The proposed system assumes that node responses 
are simple and specified in advance in order to reduce 
code complexity and data overheads. The Semantic Sen-
sor Web (SSW) addresses interoperability through meta- 
data and contextual information from networks. SSW 
however does not address communication heterogeneity 
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[6]. IrisNet aims at providing an interface allowing users 
to query data collected over various heterogeneous net-
works [7]. IrisNet does not address communication het-
erogeneity, and sensed data are processed remotely. 

The use of mobile agents to render nodes reconfigur-
able has also been explored in the literature. Systems 
such as Agilla [8] and ActorNet [9], to cite a few, have 
introduced mobile agent platforms to allow nodes to be 
reconfigured. One shortcoming of such systems is that 
they do not attempt to increase the processing power of 
nodes, which is crucial if such nodes are to be able to 
process sensed data locally. The aforementioned systems 
do not attempt to take advantage of the fact that the ap-
plications a node can support will be limited by its sens-
ing abilities. Furthermore the issues of collecting and 
processing data from multiple, possibly heterogeneous 
networks is ignored. 

Target tracking deals with the issue of following a 
particular object as it moves within an environment. 
Within the scope of Sensor Networks, the environment is 
limited to any area where the nodes involved in the 
tracking are present. Numerous schemes, both central-
ized and distributed, have been put forth to allow sensor 
nodes to track a target efficiently while minimizing the 
power consumption of the network as a whole [10-12]. 
Such proposals have generally assumed that the network 
is homogeneous in terms of its sensing ability. Distrib-
uted approaches to target tracking have led to the use of 
mobile agents to perform the task [13], however, the 
system still relies on a homogeneous sensing network. 

To summarize, FPGAs have been proposed to increase 
the processing power of nodes mainly for data aggrega-
tion or for specialized configurations, but not to allow 
dynamic tasking of nodes. Proposals to address network 
interoperability generally assume communication homo-
geneity. Lastly, the mobile agent paradigm has found its 
niche in sensor networks, particularly for target-tracking, 
although network interoperability issues have not been 
addressed in such proposals. Through the introduction of 
RISN, as presented in the following sections, our work 
seeks to foster a networking environment that is recon-
figurable and facilitates interoperability among hetero-
geneous sensor networks while providing increased local 
processing power through which users can take advan-
tage of the large sets of data being harnessed.  
 
3. The RISN System 
 
The ultimate aim of RISN is to promote sensor network 
interoperability while allowing efficient dynamic tasking 
of nodes and improving data availability to users. To 
achieve these goals, RISN is, in essence, a deployed 
network composed of FPGA nodes with higher computa-

tional capability than traditional sensor networks. RISN 
utilizes a hardware-overlay capable of communicating 
with surrounding traditional sub-networks. To abstract 
the underlying heterogeneity of sub-networks from user 
applications, RISN utilizes a uniform data representation 
model and a common communication medium for nodes 
in the RISN overlay, either of which may differ from 
those of underlying sub-networks. RISN extends the tra-
ditional definition of a sensor network by viewing the 
network as a system with four interacting entities, 
namely 1) the RISN hardware-overlay, 2) the sub-net- 
works, 3) a base station, and 4) software agents acting on 
behalf of the users. The interaction among the four enti-
ties is aimed directly at improving data availability to the 
user and allowing efficient processing of harnessed data. 
Figure 1 depicts the RISN overlay and its interaction 
with the base station, and the sub-networks. In the fol-
lowing subsections, we present the main components of 
RISN, while showcasing its implementation in a 
Proof-of-Principle system prototype geared towards im-
age processing applications. 
 
3.1. RISN Overlay 
 
The RISN Overlay is at the core of the RISN system. It is 
comprised of FPGA nodes, heretofore referred to as 
RISN or overlay nodes interchangeably unless otherwise 
noted, each of which includes a general-purpose proces-
sor (GPP). The GPP supports a generic set of instructions 
to allow software reconfigurability, while the FPGA ac-
complishes the same feat at the hardware layer. As the 
nodes in the overlay are FPGA-based, we used the 
ML405 evaluation board available from Xilinx [14] to 
develop the prototype. The board contains a Power 
PC405 microprocessor that is used as our GPP. The 
overlay nodes encompass five major hardware/software 
components, which are:  
 Agent System 
 Service Architecture 
 Low-Level Tasks (LLT) 
 Interoperability Interfacing System (IIS) 
 Local Sensors 

 
3.1.1. Agent System 
The mobile agent-programming paradigm is focused 
around the ability of a program to halt its execution, and 
then move to a new environment where execution can be 
resumed. Agents are prime candidates to allow deploy-
ment of user applications to remote systems, and are thus 
adopted by the RISN system. The use of agents allows 
RISN nodes to be dynamically tasked based on the needs 
of user applications. The agents do not migrate in the 
sub-networks; but instead travel through the overlay, the  
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Figure 1. RISN network. 
 
Base Station and the user devices. 

The Agent System is intended to provide the interface 
between overlay nodes and user applications. Our choice 
of an agent platform to use was guided by our familiarity 
with agent platforms and the rankings of such platforms 
based on security, availability and other features, as 
conducted by Altmann et al. [15]. We thus opted for the 
use of Aglets [16], as our platform of choice. Upon mi-
grating to a RISN node, the Aglets can use the resources 
available on the overlay node, along with the GPP, to 
perform the task at hand. Every overlay node contains a 
Static Service Agent (SSA) to allow migrating user 
agents to discover available resources on the current 
RISN node. Further details on the SSA are provided in 
the following subsection.  
 
3.1.2. Service Architecture 
The overlay nodes can be programmed to perform vari-
ous functions, depending on their sensing abilities and 
the underlying sub-network. A subset of such functions 
can be provided as services to user applications, espe-
cially if there exists an efficient implementation of the 
function that may benefit the system. Such functions, as 

per our prototype, include the computation of histograms 
or the ability to track an object. RISN requires the pres-
ence of a service-based architecture in the overlay nodes 
to address that possibility. The service architecture must 
enable users to discover the services available in the sys-
tem and on any particular RISN node. While the Base 
Station addresses the issue of detecting the services 
available in the system (see Section 3-B), service detec-
tion on a RISN node is met through provision of such 
information to local user applications using the SSA. The 
interaction between the SSA and user agents is accom-
plished through exchange of the following messages: 
 GetAvailableServices: returns a list of names of 

services available (to the user) on the current over-
lay node. It is assumed that user agents know in 
advance how to interact with the services based on 
their names. 

 GetServiceHandler: returns a ServiceHandler ob-
ject associated with a particular service name. The 
object returned can be used to access the function-
alities offered by the service. 

As the SSA supports these two messages, the services 
in the system can be discovered and utilized through the 
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SSA; thereby allowing complex services to be composed 
from simpler ones. The ability of services to make use of 
each other’s functionalities is one of the requirements of 
service-based architectures, herein handled through 
messages.  

The ServiceHandler object, as implemented in the 
Proof-of-Principle prototype, is an abstract class through 
which users are provided access to the following func-
tions: 
 GetServiceName: retrieves the names of the ser-

vices provided by the ServiceHandler. 
 GetServiceMetaData: retrieves the metadata of the 

service being provided. Currently, the metadata is 
simply a string that must be parsed by user agents. 

 Exec: instructs the handler to execute a particular 
command on an input object. 

A RISN node’s sensing ability and that of its underly-
ing sub-networks limit the services that it can provide. 
Every overlay node provides communication and, when 
applicable, data collection services. Communication ser-
vices allow users to send data to as well as receive data 
from underlying sub-networks. Data collection services 
provide access to data from local sensors. Within the 
prototype, the following functions of the Service Handler 
have a default implementation that can be overridden by 
IIS and local sensor handlers in order to provide com-
munication and data Services. 
 GetRawData: retrieves data from an underlying 

channel (local sensor or IIS).  
 SendData: allows data to be sent to sub-networks, 

or if necessary, local sensors. 
Other services that allow user applications to leverage 

the processing ability of LLTs are highly recommended, 
though not required, in implementations of the system. 
One should, however, note that the interaction of user 
applications with the LLTs of RISN nodes is expected to 
occur solely through services. The SSA is primarily in-
tended to provide an interface for users to access LLTs, 
the IIS, and local sensors to support the RISN aim of 
yielding an interoperable sensor network with efficient 
processing of data.  
 
3.1.3. Low-Level Tasks 
Under the assumption that the sensing ability of a sensor 
node limits the applications that the node will be in-
volved in, we introduce the notion of LLTs. For example, 
if the data streams of a node are all temperature readings, 
the node in question will primarily be monitoring 
changes in temperatures, and converting from one metric 
system to another. On the other hand, if the data streams 
originate from cameras, the node may be involved in 
object tracking or feature detection. Common tasks of 
applications can be abstracted and incorporated into the 

FPGA hardware as LLTs [1] to improve efficiency.  
The LLT in our prototype supports image processing 

and is built with array processing in mind, providing 
users with the ability to perform various arithmetic op-
erations on large or singular arrays. The LLT arithmetic 
operations are based on IEEE-754 single precision speci-
fication, with the ability to convert to and from 32-bit 
integers. The LLT also provides users with the ability to 
compute the histogram of an image based on a specified 
number of bins. The logic behind the provision of these 
particular operations as an LLT lies in the fact that these 
operations are the most basic commonalities for our 
goals. The Mean-Shift tracking algorithm [17] has been 
implemented using the basic LLT operations, showcas-
ing the ability of the system to build complex services 
from simpler ones. 
 
3.1.4. Interoperability Interfacing System 
The Interoperability Interfacing System (IIS) is the 
component responsible for managing interactions be-
tween nodes in the overlay and those of the underlying 
sub-networks. In order to conduct its primary function of 
providing a communication medium between the overlay 
nodes and the sub-networks, IIS must deal with 1) inter-
operating communication protocols, 2) data format con-
version, and optionally, 3) data aggregation. This is ac-
complished through coordination among the hardware 
and software modules incorporating the three tasks of the 
subsystem. IIS is designed with the ability to communi-
cate through various protocols that may be in use by 
sub-networks in its vicinity. Communication with the 
underlying sub-networks may require IIS to encrypt/ 
decrypt data as per the requirements of such sub-net- 
works. Once contact has been established with sur-
rounding sub-networks, IIS provides user applications 
with the ability to communicate with such networks and 
leverage their observations and sensing abilities, which 
are unlikely to be resident in the overlay itself. This ul-
timately expands the amount of information available to 
users in accomplishing their tasks. While allowing data 
exchange between overlay nodes and underlying sub- 
networks is the primary task of IIS, it also reconciles 
heterogeneous data formats through automatic formatting 
of incoming and outgoing data streams. As a result, users 
can focus on coding the functionalities required by their 
applications instead of addressing data formats. Code 
snippets for format conversion can be eliminated from 
user applications; potentially reducing their size. 

In the prototyped RISN, the IIS performs format con-
version between the RGB-24 and YUV color formats, in 
the interest of presenting a unified representation of the 
image data. This conversion is performed using two 

Copyright © 2011 SciRes.                                                                                IJCNS 



E. JEAN  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                IJCNS 

6 

snapshot of the various components of an overlay node, 
and their primary interactions, is presented in Figure 2. 

hardware accelerators, with the overlay nodes operating 
under the RGB-24 format. The format conversion is 
transparent to users and agent services. For simplicity, 
the prototype’s IIS communicates solely over Ethernet, 
although in a real-world scenario, it could be designed to 
communicate over various communication media and 
protocols. Within the scope of our prototype, the system 
is limited to retrieval of image data from sub-networks 
by the overlay nodes. To reduce storage requirements, 
potentially conserve energy, and avoid processing of 
repetitive observations, IIS can also perform data aggre-
gation, a highly desirable, yet optional, feature. Users 
have the option of accessing either aggregated or raw 
data, collected by the underlying sub-networks.  

 
3.2. Base Station and Underlying Networks 
 
The Base Station performs the same duties as its coun-
terpart in a traditional sensor network, in that it essen-
tially manages the network. We build on that notion to 
instill new functionalities in the Base Station to achieve 
our goals of interoperability and dynamic tasking. The 
Base Station in RISN executes an agent system with a 
stationary Base Station Agent (BSA). The BSA serves as 
an operating interface to users, providing the latter with 
pertinent information to help locate overlay nodes of 
interest and identify their capabilities. Interaction be-
tween the BSA and users occurs through the exchange of 
the following messages: 

In short, IIS provides three main functionalities to the 
RISN system: 1) the ability to communicate with under-
lying sub-networks, 2) data format consistency, and op-
tionally, 3) data aggregation to improve the overall per-
formance of the system. 

 LocateNode: Based on the geographic location or 
service names provided, the base station returns the 
identity of overlay nodes that could facilitate ac-
complishment of the user’s task 

 
3.1.5. Local Sensors 

 GetAllServices: Returns a list of all services avail-
able in the overlay nodes. Users can analyze the 
returned list to determine whether their applica-
tions can be supported. Note that users can still 
accomplish their tasks by relying more heavily on 
the GPP. 

The overlay nodes may also sense data from their envi-
ronments. They are, however, not required to have any 
sensing ability and could exist solely for the purpose of 
maintaining network connectivity. The format of data 
sensed by sensors in the overlay must, however, be in 
compliance with the data format in use by the corre- 
sponding overlay. The prototyped RISN system utilizes 
overlay nodes with no local sensors for simplicity. A  

 GetNodeServices: Returns the services associated 
with a particular overlay node. 

 

 

Figure 2. RISN network and components of a RISN overlay node. 
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In order to accomplish its task, the BSA needs to 
maintain the list of available services along with location 
and identity information for the overlay nodes. The Base 
Station in the prototyped system consists of a work-
station with 1 GB of RAM and a 2.2 GHz Intel Xeon 
processor executing the Aglet server. 
 
3.3. User Agents 
 
The users in the system interact with other entities 
through the agent interface. To accomplish a task, a user 
contacts the Base Station and discovers the services 
available in the network, along with the location and 
identification of overlay nodes of interest. The user can 
then determine the overlay node to which an agent 
should be deployed. Users can deploy agents to the ini-
tial overlay node in one of two fashions; directly, if the 
overlay node is addressable from the user’s location, or 
indirectly, by relaying the agent to the Base Station, 
where the agent can then migrate to the overlay node of 
interest. Note that the Base Station can address every 
overlay node in the system. The deployed agent can 
clone itself as necessary to form an ad-hoc agent network, 
as it carries out its goals. Authenticated agents must be 
allowed to traverse the overlay network and the RISN 
Base Station in search of data of interest. As RISN uses a 
homogenous data format, developers of user agents can 
focus on specifying the migration pattern of agents, 
along with access to and processing of information from 
any particular overlay node. While the computing device 
of the user may be resource-constrained and mobile, the 
user within the prototype developed resides on the same 
computer as the Base Station.  

The user agent in the prototyped system is concerned 
with locating a target within the environment monitored 
by the overlay and underlying sub-networks. To imple-
ment the tracker, the user agent migrates to an initial 
overlay node, where the target of interest is expected to 
make its first appearance. The agent then migrates and 
clones itself accordingly in the overlay, for the purpose 
of maintaining and relaying the path taken by the target. 
Upon arriving at overlay nodes of interest, the user agent 
obtains the appropriate ServiceHandlers in order to ac-
cess services harnessing the processing power and data 
of underlying components of the system. The Service-
Handlers in turn provide access to the services of the 
overlay node, by interacting with the “RisnNetwork” 
library through the Java Native Interface. The library 
provides access to the various drivers, implemented in C, 
that manage the IIS and LLT components. Note that in a 
full implementation of the system, the ServiceHandler 
would also interact with local sensors through the 
“RisnNetwork” library.  

4. System Evaluation 
 
4.1. RISN Overlay Node on the Xilinx ML405 
 
The resources available on any FPGA board are limited. 
The same holds true for our underlying hardware plat-
form, the Xilinx ML405. The ML405 board contains a 
Virtex-4 FPGA with 8,544 slices, and one PowerPC405 
processor core, used as our GPP. The PowerPC405 
processor is set to run at 300MHz, with 128 MB of RAM. 
The processor interacts with the peripherals on the sys-
tem through the Processor Local Bus, running at 100 
MHz. The prototyped overlay node encompasses hard-
ware modules for IIS, LLT, Ethernet, RS-232 serial 
connection, and other system peripherals. The IIS and 
LLT were designed with memory limitations in mind. 
Figure 3 depicts the resource utilization achieved by the 
Xilinx tools for the LLT subsystem, the IIS converters, 
and the general system, excluding the components re-
ported separately. The programmed board is used to 
evaluate the computational and power efficiencies of our 
proposal, as presented in the following subsections. 
 
4.2. RISN Overhead and Computational  

Efficiency 
 
The proposed RISN system is general-purpose and useful 
for a broad array of applications, however, as noted ear-
lier, our prototype specifically targets image processing. 
Our evaluation of the RISN overhead is intended to de-
termine whether the agent-based computational model 
promoted by RISN degrades the performance seen by 
user applications, as compared to traditional models. 
Similarly, the goal of evaluating the system’s computa-
tional efficiency is to determine the speedup in execution 
time afforded by the hardware accelerators as they are 
accessed through RISN. 
 

 

Figure 3. FPGA resource utilization. 
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As per our goal, three distinct execution times are 
measured: PPCSoftTime measures the time it takes a 
regular application to perform the computation of interest 
on the FPGA node. AgentSoftTime measures the execu-
tion time of a user agent that does not take advantage of 
the available hardware accelerators. Lastly, RISN_Time 
measures the execution time of a user agent harnessing 
the power of the hardware accelerators. Note that our 
experimental setup highlights the potential agent over-
head as the difference between PPCSoftTime and 
AgentSoftTime. For each of the aforementioned execu-
tion times being measured, we experimented with dif-
ferent LLT floating-point operations, such as division, 
multiplication, addition, and square roots, with a varying 
number of array elements. We also measured the execu-
tion times of interest for the IIS operation of converting 
RGB-24 images to the YUV color space. 

The results of our experiments are presented in Fig-
ures 4 and 5. Figure 4 showcases the improved execu-
tion time that RISN can provide in maintaining format 
consistency across overlay nodes. AgentSoftTime con-
verts 180000 pixels in 4.0746 seconds, while RISN_Time 
accomplishes the same feat in 0.5144, an 87.4% reduc-
tion in execution time. Figure 4 also highlights the negli-
gible agent overhead incurred through the use of RISN’s 
agent-based computational model, as the difference be-
tween AgentSoftTime and PPCSoftTime. 

Figure 5 depicts the improvement in execution time 
RISN provides for applications involved in multiplying 
numbers or other operations in floating point format. For 
an array of 150000 elements, AgentSoftTime requires 
1.576 seconds to compute their square; RISN reduces 
this execution time by 70.1% by performing the required 
computations in 0.471079 seconds. We should note that 
the RISN time presented in Figure 4 and Figure 5 does 
not include the time RISN takes to locate the appropriate 
ServiceHandler in the system, as this overhead, while not  

 

 

Figure 4. IIS computational efficiency. 

a constant, is incurred only once per execution on an 
overlay node. Similar to Figure 4, the agent overhead 
displayed in Figure 5 is negligible, especially in light of 
the improved performance afforded to user applications 
by the hardware accelerators. There is a considerable 
difference between the RISN_Time for computing square 
roots and software approaches, which we attribute to the 
fact that the square root is not a primitive operator in 
Java (The execution times of the square root operations 
are logarithmically scaled and presented in Figure 5(d)). 
Lastly, we must note that Figure 5 also shows some 
variations in the execution time exhibited by RISN_Time. 
Such variations can be attributed to the following issues: 
 The delay of the operating system in migrating data 

from user space to kernel space for usage by the 
hardware accelerators. 

 Maintenance work by the Java Virtual Machine 
(JVM), as the agent system in use is Java-based. 

 Inaccuracies of the JVM in reporting precise time 
durations. 

 
4.3. RISN Power Consumption 
 
The benefits and limitations of RISN are dependent upon 
the application and underlying networking infrastructure. 
We herein present a deployment model geared towards 
determining whether RISN is beneficial towards a par-
ticular application and networking system. The intro-
duced model is used to study the power efficiency of our 
prototype. 
 
4.3.1. RISN Strategic Deployment Model 
RISN aims at improving data availability to users, while 
increasing responsiveness through hardware accelerators. 
In general, RISN must be cost-effective to warrant its 
application. Through RISN, applications can process 
data close to its point of collection; rather than relaying it 
to a processing center. In order to determine whether 
RISN’s processing model should be employed for a par-
ticular application, we present a strategic deployment 
model that incorporates the two main factors in efficacy: 
communication load and power consumption. The pro-
posed model analyzes the cost of utilizing RISN’s local 
processing, versus relaying the data to a processing cen-
ter.  

CommC NCB               (1) 

The cost of communication is a function of the number 
of bytes, B, that need to be transferred. Since the data 
may need to traverse multiple nodes to reach its destina-
tion, the number of hops, N, must also be taken into ac-
count. CComm, as presented in Equation (1), represents the 
cost of sending data from a node to the Base Station, with  
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(a)                                                           (b) 

 

   
(c)                                                           (d) 

Figure 5. LLT computational efficiency. 
 

LLT of an overlay node will be active. D and Q, respec-
tively, represent the dynamic and quiescent power con-
sumption of each overlay node.  

C representing the cost per byte. At first glance, Equation 
(1) implies that simply reducing the amount of data that 
needs to be transferred is sufficient to justify the use of 
RISN for a particular application. However, the cost of 
communication is only one aspect of the system’s overall 
cost. By implementing tasks in hardware, RISN intro-
duces an execution cost in terms of power consumption. 
For every LLT implemented, there is an associated cost 
of dynamic and quiescent power usage. Dynamic power 
refers to the energy used by the LLT while it is in use, 
while quiescent power refers to the energy used by the 
hardware module when it is powered, yet inactive. The 
energy cost of implementing functionality in hardware 
also depends on the number of overlay nodes, M, that the 
application requires. This relationship is captured in 
Equation (2), where CExec is the power consumption; and 
L represents the load factor, i.e., the likelihood that the  

 1ExecC M L Q LD                (2) 

Note that determining whether an application should 
make use of RISN’s local processing is not equivalent to 
evaluating whether RISN itself should be used in the 
network. Instead, our deployment model aims to help 
designers determine, based on the amount of data to be 
transferred, and the expected overhead of power con-
sumption, whether the data for a particular application 
should be relayed to a Base Station for processing, or be 
processed in the overlay. 

In summary, the strategic deployment model intro-
duces a means by which designers can determine whether 
the decrease in response time, and communication load 
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achieved by RISN justifies the overhead incurred in 
terms of power usage. Further insight on the deployment 
model can be acquired through the next subsection, 
which evaluates two tracking applications.  
 
4.3.2. Communication Cost 
Using the strategic deployment model, we compare the 
communication cost associated with performing target 
tracking, using the Mean-Shift tracking algorithm [17], 
based on RISN’s processing model, with that of the 
traditional approach. The trackers implemented utilize 
the RGB-24 color format and process images of 640 × 
480 pixels. The location of the target is maintained in 
both implementations as two 32-bit values representing 
the x and y coordinate. For clarity, we named the two trac- 
kers RISN_Tracker and Soft_Tracker, with RISN_Tracker 
being the implementation that uses the RISN processing 
model. 

In our experiments, the cost associated with sending a 
byte of data over a network link is assumed constant for 
both RISN_Tracker and Soft_Tracker, as is the number 
of hops, N, that the data must traverse. CComm then be-
comes completely dependent upon the number of bytes 
that needs to be transferred. Both trackers, as imple-
mented, are solely interested in the location of the target. 
RISN_Tracker needs to periodically relay eight bytes of 
data representing the target’s new location. Soft_Tracker, 
however, must relay the image frames to be processed. 
As each pixel consists of 3 bytes, Soft_Tracker relays a 
total of 640 × 480 × 3 = 921,600 bytes, to the Base Sta-
tion. The number of bytes that Soft_Tracker relays is 
directly dependent on the resolution of the cameras in the 
system. Figure 6 depicts the theoretical effect of the im-
age size on the communication cost associated with each 
tracker. The figure shows that RISN_Tracker is inde-
pendent of image resolution, while Soft_Tracker is not. 
Figure 6 also demonstrates that considerably less data 
needs to be relayed by RISN_Tracker to locate targets of 
interest. This is significant, as the energy cost associated 
with communication is generally high in any system; 
further detail on this statement is provided in the next 
section, where we evaluate the energy usage of the sys-
tem. 
 
4.3.3. Energy Cost of Execution 
Determining the load factor of the system required ex-
tensive simulations. We used the Xilinx tools to generate 
the simulation model of the RISN node. We then relied 
on ModelSim to generate the Value Change Dump (VCD) 
used to estimate the power usage of the system through 
Xilinx’s XPower power estimation tools. The tools esti-
mated the toggle rate at 9.5% for the system as a whole. 
We use the toggle rate as our load factor for the system,  

 

Figure 6. Communication cost. 
 
as it measures the ratio of time that the system state 
changes relative to a clock input. Table 1 shows the dy-
namic and quiescent power reported for various compo-
nents of the RISN node (NR stands for Not Reported). 
Note that Ethernet uses more power than IIS and LLT 
combined; this is not surprising, as the energy cost of 
communication is expected to be high. 

As the overlay nodes are FPGA-based, hardware 
modules, such as LLTs, are subject to quiescent power 
drainage. Intuitively, the benefits, with respect to the 
execution time, of performing a task in hardware must 
outweigh the potential drawbacks. In the case of the 
hardware modules in RISN, while communication load 
can be reduced, this must not occur at the expense of 
increasing the power usage of the system as a whole. 
Using Equation (2) and the estimated power usage from 
Table 1, the power consumption of an overlay node, with 
hardware accelerators, can be computed as (1 − 0.095)  
(0.36191) + (0.095  1.7188) = 0.49081 W. On the other 
hand, the cost of execution with no hardware accelerators 
is (1 − 0.095)  (0.36191) + (0.095)  (1.7188 − 0.01717 
− 0.00784) = 0.48844 W, as the application does not use 
the hardware modules.  

The amount of energy used for an operation can then 
be determined, based on the time it takes for the opera-
tion to execute. Figure 7 presents the energy (in J) used 
in the system, based on the number of array elements 
being processed. The figure clearly shows that even 
though RISN has higher power consumption, when the 
speedup afforded by the hardware accelerators is fac-
tored in; RISN actually uses less energy to perform the 
computation requested.  

Lastly, Figure 8 shows the theoretical effect of the 
percentage of dynamic power used by the RISN hard-
ware modules (IIS and LLT). As the percentage of dy-
namic power used by the RISN hardware modules in-
creases, the traditional software approach becomes more 
efficient in terms of required wattage when compared to 
RISN. Therefore, in order to maximize the benefits af- 
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Table 1. Estimated power usage. 

 Quiescent (W) Dynamic (W) 

System as a whole 0.36191 1.7188 

IIS NR 0.00784 

LLT NR 0.01718 

Ethernet NR 0.03454 

 

 

Figure 7. Energy used for multiplication. 
 

 

Figure 8. Theoretical effect of percentage of RISN hard-
ware modules’ dynamic power. 
 
forded by RISN, namely, reduction of execution time and 
energy consumption, the percentage of a node’s power 
used by the hardware accelerators should be minimized.  
 
5. Autonomous and Distributed  

Target-Tracking 
 
As a proof-of-concept of RISN’s ability to ease devel-
opment of distributed applications capable of executing 
in heterogeneous environments, we now present a dis-
tributed target-tracking implementation, independent of 
the RISN_Tracker discussed earlier, that continuously 
tracks and maintains the location of an object despite the 

network’s heterogeneity and limited coverage of any one 
sensor. 
 
5.1. Tracking System Architecture 
 
Target tracking aims at continuously determining the 
location of an object of interest as it moves within an 
environment. With the assumption that the object of in-
terest is the only mobile physical entity in the environ-
ment, target tracking must inevitably deal with the issue 
of the object moving out-of-range of one or more sensors 
or an entire isolated network. Furthermore, the potential 
heterogeneity of the sensors and their spatial deployment, 
their limited field of view and the potential for unex-
pected occlusions of the object of interest greatly com-
plicates the task of determining the target’s current loca-
tion. However, since the primary function of all trackers 
is to return the location of an object in space, a distrib-
uted tracker can be independent of any one tracking al-
gorithm implemented on a contributing sensor node. The 
distributed tracker can instead simply rely on the per-
ceived location relayed by each sensor. As RISN lever-
ages the data available from sub-networks, abstracts the 
heterogeneity of such networks while providing support 
for dynamic tasking and efficient processing, it is an at-
tractive platform to develop such a distributed tracking 
application capable of continuously maintaining the lo-
cation of the target despite the possibility of the object 
moving out-of-range of any one sensor as well as the 
heterogeneity of nodes’ sensing abilities and required 
feature set used in tracking.  

Our implementation relies on two main components, 
namely an Ad-Hoc Agent Network (AHAN), and a 
Tracking Service Handler (TSH) for each possible con-
tributing overlay node. The two components interact to 
allow the location of the object of interest to be deter-
mined as it travels through the network despite the po-
tential sensing heterogeneity of the nodes. The system 
works by deploying an agent to the overlay node with 
sensing coverage of where the object of interest is ex-
pected to appear initially. The deployed agent uses the 
appropriate representation of the object as specified in 
the Target field of the agent, to determine the current 
location of the object through communication with the 
TSH of the overlay node. Using the returned location, the 
agent clones itself and dispatches the clones to overlay 
nodes with sensing coverage of the target’s perceived 
path as determined by TSH. The initial agent and its 
clones form the AHAN, which is described in the next 
section. 
 
5.1.1. Ad-Hoc Agent Network 
The Ad-Hoc Agent Network (AHAN) is made up of co-
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ordinating agents dispatched to locations of interest. The 
network determines the current location of the target 
based on the individual tracking results received. The 
agents contain a Target field that represents the object 
being tracked. Target maintains past locations of the ob-
ject and the possibly diverse set of features that may be 
used to locate the object. To illustrate the latter point, 
consider that an object’s appearance and location, within 
the scope of computer vision, can be represented as pa-
rametric and non-parametric probability densities, as 
well as active appearance models [18]. Furthermore, 
various other features such as heat and sound signatures 
can also be used to represent the object. To deal with 
such a vast set of possible feature representations of an 
object, Target is represented as a class capable of main-
taining various representations of the object of interest, 
each of which is accessible through their statically pre- 
defined names. The appropriate representation of the 
object can be retrieved in order to determine the object’s 
current location on any particular overlay node by using 
the retrieveObjectModel (String modelName) method of 
Targets. Note that there is an underlying assumption that 
Target is pre-configured with any necessary object model 
parameterization that might be required by a TSH in or-
der to perform tracking under possibly changing envi-
ronments. 

Using the Target and its path, clones of the initial 
agent are dispatched to appropriate neighboring overlay 
nodes forming the AHAN. The clones and the initial 
agent communicate through the following messages:  
 cmdGetTargetLocation: instructs clones to deter-

mine the current location of the target of interest 
using the sensor data streams managed by the 
clone.  

 DestinationAddress: specifies the address to which 
the clone should migrate to and which sensor data 
stream it will manage at the destination. 

 cmdTerminateClone: terminates execution of the 
receiving clone and frees up used resources. 

The initial agent migrates through the network as the 
object moves; clones are terminated when they are no 
longer capable of helping in determining the current lo-
cation of the target. The initial agent creates a polygon 
consisting of the retrieved locations of the object for the 
current iteration. The center of the constructed polygon is 
used as the location of the target perceived by the sys-
tem. 

As we mentioned earlier, the agent network is built 
starting with an initial agent, executing on a node from 
which the target is supposed to be locatable. The initial 
agent consults with the TSH in order to determine which 
neighborhood overlay nodes can help in determining the 
location of the target. Details regarding the interaction 

between the agent network and the TSH are provided in 
the following section. 
 
5.1.2. Tracking Service Handler 
TSH abstracts the heterogeneity of various implementa-
tions of trackers or associated feature sets from the Agent 
Network, thereby allowing for the object to be located 
based on suitable features for the current overlay node. 
TSH is essentially a RISN tracking service available 
through a handler. TSH is initialized by specifying the 
size of the 2D virtual space being monitored as well as 
specification of the sensors available on the overlay node 
along with the address of neighboring overlay nodes. For 
each sensor on the local overlay node, the handler im-
plements the appropriate and possibly optimal tracking 
algorithm for the sensor. The handler also determines 
and maintains the Field Of View (FOV) of each local 
sensor, defined as a mapping of the area covered by the 
sensor onto the virtual space. Lastly, the FOV covered by 
sensors of neighboring overlay nodes is retrieved through 
communication with remote SSAs. In essence the han-
dler allows execution of the following commands: 
 GetNodeFOV: retrieves the FOV of a particular 

sensor stream available on an overlay node. 
 cmdFutureAddressesOfPoint: returns the address 

and IDs of known sensor streams whose FOVs in-
tersect with the specified point. 

 cmdFutureAddressesOfSegment: returns the ad-
dress and IDs of known sensor streams whose 
FOVs intersect with the specified segment. 

 cmdFutureAddressesOfLine: returns the address 
and IDs of known sensor streams whose FOVs in-
tersect with the specified line. 

 cmdFOVIntersectPoint: returns true if the FOV of 
the specified sensor intersects with the specified 
point. 

 cmdFOVIntersectSegment: returns true if the FOV 
of the specified sensor intersects with the specified 
segment. 

 cmdFOVIntersectLine: returns true if the FOV of 
the specified sensor intersects with the specified 
line. 

 cmdTrack: retrieves the required feature represen-
tation of the target and attempts to locate the cur-
rent location of the object in the neighborhood of 
the target’s last known location. The new location 
of the object is returned, without any mapping to 
the virtual space. 

 cmdMapFromVirtual: maps the specified location 
in world coordinates to the sensor’s local coordi-
nate indicated on the overlay node. 

 cmdMapToVirtual: maps the specified sensor’s 
local coordinate to the system’s world coordinates. 
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Details of the interaction between the components of 
the distributed tracker are provided in the next section as 
we walk through an implementation of the tracker. 
 
5.2. Tracking System Implementation 
 
The tracking system herein implemented ultimately re-
lies on the RISN framework herein introduced. As such, 
in introducing the tracking system implementation, this 
section also highlights RISN’s ability to leverage data 
from isolated networks, intelligently process sensor ob-
servations and abstract the potential heterogeneity of 
underlying networks. The proposed distributed tracker is 
implemented through the use of 2 RISN nodes (Node-1 
and Node-2) attached to the base station from our earlier 
experiments. Each RISN node manages 4 cameras whose 
FOV are mapped onto a two dimensional “virtual” space 
representing the X and Y world coordinates of the object. 
Node-1 manages Cam1, Cam2, Cam6 and Cam4; while 
Node-2 manages the remaining four cameras. The reason 
behind this setup is to emulate an overlay network con-
sisting of the RISN nodes managing two potentially iso-
lated and heterogeneous sub-networks with overlapping 
coverage areas.  

The cameras act as sensors of the sub-networks con-
trolled by RISN; while the 2 nodes embody nodes in the 
RISN overlay that the distributed tracker depends on in 
accomplishing its task. The cameras do not share the 
same resolutions; they were calibrated offline and their 
projection matrices, mapping individual image coordi-
nates to world coordinates, were computed and loaded 
onto the appropriate TSH. The handler uses these matri-
ces to determine the FOV of each corresponding camera 
and to perform bi-directional mapping from the camera’s 
local coordinate to the world coordinates of the distrib-
uted tracker. In so doing, user agents only need to deal 
with world coordinates, as the TSH abstracts the hetero-
geneous image coordinate system of each camera. 

Once the handler is setup, having acquired the FOV of 
neighboring sensors, the user agent is deployed on 
Node-1, which maintains Cam2. The user agent, upon 
arriving at Node-1, initializes the target based on the 
specified location of the target in the initial frame. The 
target in question is a red ball whose appearance is mod-
eled using a color histogram. For the purpose of experi-
mentation, we work with a target whose representation is 
independent of the viewing angle of any one camera, 
thereby abstracting issues that may arise due the fact that 
the histogram representing an object can be very differ-
ent depending on the viewing angle used to compute the 
histogram. For each frame of the test video sequence, 
and the last known location of the object, the user agent 
intelligently determines which sensors on which overlay 

node can be used to track the target. If there is no clone 
managing a suitable sensor, one is dispatched; else a 
message is relayed to the clone asking for the updated 
location of the object. 

Figure 9 presents a pictorial representation of the FOV 
of all eight cameras available in the system, with that of 
Cam2 highlighted in green. Figure 9 also displays the 
locations of the object as it is tracked by the dispatched 
user agent based on the location of the object in the ini-
tial frame, represented as F1 in the figure. From the first 
frame, F1, to the 27th frame (F27), the object is visible in 
the FOV of Cam2. On the 28th frame however, the user 
agent must rely on the other cameras in the system to 
maintain the location of the object. It is worth noting that 
at frame 43 (F43), the target leaves the FOV of all cam-
eras under the control of Node-1. In order to maintain the 
location of the object, as per our experimental setup, the 
user agent must thus rely on data from neighboring net-
works. The AHAN takes over by dispatching an agent to 
Node-2 based on the expected path of the object and its 
intersection with the coverage area of the sensors man-
aged by Node-2. In our experiment, this resulted in the 
system tracking the object using Cam3, Cam5 and Cam8 
from Node-2, thus leveraging, and intelligently process-
ing data from isolated and heterogeneous networks to 
accomplish a common goal. 

The initial location, (F1), of the object being tracked 
as seen by Cam2 is displayed in Figure 10(a); while 
Figure 10(b) shows the location of the object seen by 
Cam2 after 27 frames (F27) have been processed. On the 
28th frame (F28), the object is no longer visible by Cam2; 
however, it is still visible by Cam1 in the same 
sub-network. In the 43rd frame (F43), the object also 
leaves the FOV of Cam1, thereby becoming invisible to 
Node-1. The tracker is able to maintain the location of 
the object in world coordinates, despite the fact that it is 
no longer visible from the initial camera or sub-network. 
 

 

Figure 9. Overview of tracking system. 
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Figure 10. Distributed tracking system. 
 
When the object reappears in frame 62, (F62), it is accu-
rately located by the user agent using Cam2 as shown in 
Figure 10(c), by relying on the information harnessed 

from the other sensors in the system. In frame 68 (F68), 
the object again becomes visible to Cam1. 

As the handlers for each camera is responsible for im-
plementing the suitable target-tracking algorithm, the 
system makes no assumption of the homogeneity of each 
tracker. As a result, each Tracking Service Handler could, 
in theory, implement a different tracking algorithm. 
However, in our implementation, we only used one 
tracking algorithm, namely the Mean-Shift algorithm. 
The only requirement is that the Target is able to supply 
to the handler the necessary parameters on which to op-
erate by using the retrieveObjectModel method.  

Although we assume that the representation of the ob-
ject is independent from the sensors’ point of views and 
that the sensing devices in the system consist solely of 
cameras; the size of the object however varies depending 
on its distance from any particular camera. Thusly, it is 
important that the TSH of each node is able to maintain 
and adjust the size of the object from each camera inde-
pendently. This is accomplished by dynamically adjust-
ing the bandwidth parameter of each Mean-Shift tracker 
using the method proposed in [17]. Figure 11(a), Figure 
11(b), and Figure 11(c) showcase how the TSH adjusts 
to the changing size of the object in successive frames 
from Cam7. 
 
6. Conclusions 
 
Our work has introduced a novel approach to sensor 
networks that aims to allow existing sub-networks to 
interoperate, while granting applications the ability to 
efficiently harness and process data. We have also pro-
posed a strategic deployment model to help decide 
whether harnessing the processing power of LLTs can 
help improve the reaction time of applications while not 
imposing severe strain on the network’s power consump-
tion. Abstraction of the network and heterogeneity of 
data formats allows user applications to focus on their 
tasks.  

The use of services enables developers to maximize 
the efficiency of the system by providing efficient im-
plementations of common tasks, while balancing speed 
and power requirements. We have also shown how an 
autonomous distributed target tracking application that is 
independent of the sensing abilities of any one node can 
be implemented on the system. The tracking application 
discussed simply requires the presence of a Tracking 
Service Handler, which abstracts the sensing heterogene-
ity of nodes, along with the presence of all possible fea-
ture set representation of the object of interest, in order to 
maintain the continuous locations traversed by the object 
as it moves in and out of the view of any nodes. 

One stated goal of sensor networks is to occupy an  
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Figure 11. Dynamic adjustment of tracking bandwidth. 
 
area with minimal disturbances to the environment and 
its occupants. With the deployment of a new network for 
every new task, this goal is fated to be breached by lead-

ing to proliferation of nodes. With RISN’s ability to 
interoperate with other networks, the number of net-
works with similar sensing abilities that need to be de-
ployed in an area can be greatly reduced, as the system 
facilitates interoperation and leverages available resource 
for processing by user agents. Furthermore, we have 
shown through our analysis that RISN can reduce execu-
tion time by over 70% and considerably reduce commu-
nication load over network links. The latter can be cru-
cial to traditional sensor networks, as communication ty- 
pically consumes considerably more energy than any 
other task in the system.  

Future work will investigate if RISN can increase the 
lifetime of one or more power-starved networks. Ad-
dressing the security of overlay nodes will also be stud-
ied to prevent intruders from controlling sub-networks. 
The work described in this paper assumed that the com-
munication protocols and data formats of underlying 
sub-networks are known in advance. Future work will 
address location of existing sub-networks by the IIS 
components, as well as reconciling heterogeneity of pro-
tocols and data without a priori knowledge of their exact 
nature. Methods for communicating encrypted data and 
preventing compromise of the encryption keys in the 
course of “discovering” new sub-networks will also be 
investigated. The prototype presented utilized wired 
Ethernet, as opposed to wireless communication. Future 
works will take into account the complications that RISN 
will face in wireless environments. 
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