
Int. J. Communications, Network and System Sciences, 2010, 3, 901-906
doi:10.4236/ijcns.2010.312123 Published Online December 2010 (http://www.SciRP.org/journal/ijcns)

Copyright © 2010 SciRes. IJCNS

Enhanced Euclid Algorithm for Modular Multiplicative
Inverse and Its Application in Cryptographic Protocols

Boris S. Verkhovsky
Computer Science Department, New Jersey Institute of Technology,

University Heights, Newark, USA
E-mail: verb@njit.edu

Received August 21, 2010; revised October 4, 2010; accepted November 16, 2010

Abstract

Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of
modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced
Euclid Algorithm, for modular multiplicative inverse (MMI). Analysis of the proposed algorithm shows that
it is more efficient than the Extended Euclid algorithm (XEA). In addition, if a MMI does not exist, then it is
not necessary to use the Backtracking procedure in the proposed algorithm; this case requires fewer opera-
tions on every step (divisions, multiplications, additions, assignments and push operations on stack), than the
XEA. Overall, XEA uses more multiplications, additions, assignments and twice as many variables than the
proposed algorithm.

Keywords: Extended-Euclid Algorithm, Modular Multiplicative Inverse, Public-Key Cryptography, RSA

Cryptocol, Rabin Information Hiding Algorithm, ElGamal Encryption/Decryption, NTRU
Cryptosystem, Computer Simulation, Low Memory Devices

1. Introduction

Elements of modular arithmetic are essential for pub-
lic-key encryption algorithms such as the RSA crypto-
graphic algorithm [1-3], and RSA with digital signature
[4]; ElGamal cryptocol [5]; Rabin encryption/decryption
scheme based on extraction of square roots [6]; NTRU
cryptosystem [7]; and extensions of some of these algo-
rithms in Gaussian arithmetic require computation of a
modular multiplicative inverse (MMI) [8-10]. The MMI
is also computed for cryptanalysis of public-key crypto-
graphic protocols [11-13].

A new algorithm, called the Enhanced-Euclid Algo-
rithm (NEA), for modular multiplicative inverse (MMI)
is described and validated in this paper.

Definition 1: Given relatively prime integers and
, there exists an unique integer x such that

0p

1p

1 1 modp x p 0 . (1)

Then x is defined as the modular multiplicative inverse
of 1p modulo or, for short, MMI. 0

The NEA finds for two relatively prime integers 0
and 1 an integer number x that satisfies the Equation
(1). And if and are not relatively prime, then

NEA finds a gcd(0 , 1). The Extended-Euclid algo-
rithm (XEA) also finds a MMI of modulo if
and only if gcd(,) = 1 [1,2,7].

p
p

p

0p 1p

p

p

p

1p 0p

0 1

This paper proves the validity of NEA and provides its
analysis. The analysis demonstrates that NEA is faster
than the Extended Euclid algorithm. Preliminary results
of this paper are published in [8].

p

2. Basic Arrays and Their Properties

Let’s consider five finite integer arrays:

        ; ;k kt w kz; ;i ip c (2)

Definition 2: Let  ip and  ic be integer arrays
defined according to the following generating rules:

Given two relatively prime integers 0p and 1p su

that 0p  1i  while ip 
ch

1 , p , for do 2

1 1: mi i  1d ; :i i i ip c p p o .p p (3)

Definition 3: Let  kt be an arbitrary integer array
for all ; let for initially specified 0 1 0
and 1 the following generating rules be defined for all

:

1k  ,w ,w z
z

2k 

902 B. S. VERKHOVSKY

1 1 2:k k k kw w t w    ;

and

1 1 2:k k k kz z t z    . (4)

Proposition 1: Let’s define for 1k 

1

1

: k k
k

k k

w w
D

z z




 . (5)

Then

  1

11
k

kD
  D . (6)

Proof: Consider k and substitute in the left column
the values of k and defined in (4). After simpli-
fications we derive that

D
w kz

1k kD D   , which recursively
implies (6).

Proposition 2: Consider the integer arrays  kt ,
, and (4)  kw  kz

where 0 0 1: 1; :w z 0; : 1z   .
Then is a multiplicative inverse of   1

11
k

kz z
 1kw 

modulo for every . k

Proof: Indeed, since , then (5) implies that
w 1w

1D   1z

1

1kz 



 1 1 1
k

k k k kw z z w z    , (7)

or that

   1 12
1 1 1 11 1

k k

k k kw z z z w z
 


       

Then from (7) it follows that

   1 1

1 1 11 1 1
k k

k k kw z z w z
 


      1kz  ,

i.e.,   1

11
k

kx z z
  .

Proposition 3: If for all 0 k r 

:k rt c  k k, and , (8) :k rw p 

then and are the initial values that generate the
arrays

0p 1p
 , ,i ic p

       : and :k r k k rt c w p   k .

Remark 1: Notice that =  kt
R

ic and    R

k iw p ,
where the superscript R means that the arrays  ic

1k
z z



 and
 are written in a reverse order.  ip

Theorem 1: For all k = 1, , r, is the
inverse of modulo p.

  11 k
1r k

Proof follows from Propositions 1-3.
p  

Theorem 1 implies the following assertions:
1) if k is odd and , 1 1z 

then x:= > 0; kz

2) if k is even and , 1 1z  

then x:= < 0. kz

In the latter case select

0: kx p z  . (9)

3. Enhanced Euclid Algorithm for MMI

The proposed algorithm uses stack as a data structure,
[2].

vars: r; L; M; S; t: all integer numbers; b: Boolean;
procedure Forward:

0:L p ; 1:M p ; b: = 0; {r: = 0};

repeat :t L M    ; :S L Mt  ;

 : 1 ; : 1 ;b b r r    (10)

push t {onto the top of the stack};

L: = M; M: = S; (11)

until S = 1;
Remark 2: if S = 0, then ; therefore

the MMI does not exist;
 0 1gcd ,p p t

procedure Backtracking:
S: = 0;  : 1

b
M   ; {by (9) in the Theorem 1};

repeat pop t {from the top of the stack};

L: = Mt + S; (12) : ; :S M M L  ;

until the stack is empty;
output x: = L; {if x < 0, then x: = x + }. 0

Remark 3: r is the height of the stack and is used be-
low for analysis of the proposed algorithm.

p

4. Two Illustrative Examples

Let’s demonstrate how NEA finds a multiplicative in-
verse x of 27,182,845 modulo 31,415,926. Table 1 be-
low shows the computation of remainders in the upper
row and stores the quotients in the middle row (the
stack). Then the Backtracking procedure is used to com-
pute from right to left until the stack is empty. The
inputs and MMI are shown in bold, and the stack val-
ues are in italics. Since the total number of steps (the
height of the stack) is equal to fourteen (i.e., even), then
x = 13,939,773.

Direct verification confirms that indeed

27182845 * 13939773 mod 31415926 = 1.

In the second numerical example we need to find the
MMI z of 27,319,913 modulo 177,276,627 {see Table
2}. Since the height of the stack is odd, then

z = 177276627-34480855 = 142795772.

Direct computation verifies that z is indeed the MMI
of 27319913, since

27319913 * 142795772 mod 177276627 = 1.

5. Complexity Analysis of MMI Algorithm

Consider four non-negative integer arrays ,  kq  kd ,

Copyright © 2010 SciRes. IJCNS

B. S. VERKHOVSKY

Copyright © 2010 SciRes. IJCNS

903

Table 1. Modular multiplicative inverse algorithm in progress.

31415926 2718 208730 2845 4233081 1784359 664363 455633

Stack 1 6 2 2 1 2

1 120 84 187 89 79 29 20 92 7 3939773 614 82 1750 4789 2172 61

(continuation)

208730 38173 17865 2443 151 9 7 2 1 764

2 5 2 7 3 5 16 1 3 ***

92 7 16 8 7927 1084 3 61 93 39 67 4 3 1 0

Table 2. nd num al illus ion.

177276627 27319913 1 36 5 1

 Seco eric trat

3357149 605615 33619 473

Stack 6 2 22 18 71 13 7 ***

3 531 08 259 07 11 4 6 4480855 38 80 779 539 92 7 1 0

ed as fo   and i ip c defin llows:

1 1

1:k k kd q q    ; (13)

satisfy (3) and a

 (14)

Then (3) and (14) imply that

mod ip

Hence both arrays and ar -
creasing, and all term corres arrays

    and i ip c re defined as

1 1 1 1: ; :i i i k k k kp p c q q q d     ip 

1 1:i i i ip p p c    1ip 

  ip
s of the

 kq
ponding

e strictly de
 c i

d  kd are positive er num
Definition 4: 

an integ bers.
j s

x is a (s + 1)-dimensional ve
consisting of the first s + 1 terms of a

ctor,
n array

0 1 1, ,..., , ,j jx x x x i.e.,

   0: , ,..., ,

 …,

1 1j s ss
x x x x x . 

Theorem 2: Consider



and

  1;i ir
c p     ; ; 1k ks s s

d q

  1i r
p  .

Let p q0 0 ;    i ks s
c d ,

j = l suc
following in

i.e., for all j = 1, , s
 e ists at least one h that . Th or

al the
there x

j s
l l

l 1 equalities hold:

if 1 1j l   , then

c d en f

j jp q

otherwise

j jp q . (15)

Proof: Assuming that the stat
, it can also be demonstrated by

Consi

ement (15) holds for all
 induction that 1i j 

(15) also holds for i j .
der

1 1 .

j j j j j j

j j

q q p p

q p p

 

j jp 

jt d c          
  

 (16)
   

If 1j l 
lows: if

, then else . Hence from (16)
it fol

0jt 
1

 0jt 
j l  , then j jp q otherwise j jp q .

Since 0 0p q , then (14) holds for all j  s .
 Q.E.D.

nsider a f relatively prime
s an arr

Co pair o seeds 0 1and p p
that generate ay  ic r 1

r
ir of relatively prime seeds 0 1 and p q ge

. Consider also a
pa tha
an array

nothe
t nerates

  1kd  ,

1

s
ual to one. Let r and s be the number of steps

respectively to find MM e first and the second
pair using either XEA or NEA. This mption implies
that sq

i.e l its
eq

. such that

Is for th

not al

 assu

 te
 required
rms are

 . Then by Theorem 2    i ks s
p q and

1s sp q  . Hence r s .
Corollary: A pair of seeds, that for a given 0p re-

quires the maximal number of steps for computation of a
MMI rates an unary array of ., all

s in
i.e, gene quotients,

component  ic 1
r
 . Thus, as it follows)

an
from (3

lowd (14), this pair of seeds must generate the fol ing
array of integer numbers: 2 0 1:p p p  ; 3 1 2:p p p  ; ;

2 1: 1r r rp p p    . It is easy to verify that this array is
equivalent to the of Fibonacci numbers sequence

 2 1,r r 4 3 2,..., , ,F F 

In other words, for every 0,...,i r 2:i rp F

F F F .

i  , [14].
Remark 4: The pair ;p F p F is 0 2r

) a unary a
1 1r

rray f q
not the

only one that generates a uotients and
b) a decreasing integer array where the rth remainder
eq

 pairs of seeds hav

 o

uals one.
Indeed, the following e the same

B. S. VERKHOVSKY

904

 of the Lucas

3)

1

zero and negative
indices are computed in acc dance with the formula:

property for all non-negative integer numbers t and u:
1) 0 2r rp F tF  ; 1 1 1r rp F tF   ; for t = 1

   1; ;
R

ip L  is a sequence2 1r

mbers 1, 3, 4, 7, 11, 18, [15];
2)  0 2 11 ;r rp tF t F    1t  ;

;L  L
nu

 1p tF t F   ; 1 1r r 

;p F tF  t 
2

0 1r r 1; 1 1;r rp F tF  
4)  0 21 ;r r rp t F tF uF    2

 1p t F tF uF   

1 1 3r r r 

Here the Fibonacci num
.

bers with
or

  1
1

m

m mF F


   .

For all pairs, listed above, exactly r steps are required
to find the MMI. However, all these pairs are special
cases of a pair of seeds where

b ; and

Consider

0 1r rp bF F   and 1 1 2r rp bF F   .

Therefore for all 0 i r 

1i r i r ip bF F    , rp 1  1rp  .

 1 5v   2 and  1 5 2w   .

Using a z
k r 

-transform approach, we deduce that for all
0

   5kw w k
r kp b v b v      . (17)

Then for a large r

    5 1 0
kkk

r kp b v w w b v     

since

1v  . (18)

The relation (18) implies that for a large r

   0 5 1rp w b v w      . (19)

Let    0 0
2

: max , , 2
b

z r p b r p


  .
Therefore

   p (20) 0 0 0log 5 2 log 1w wz p v p           

implies that the height of a stack satisfies
the following inequality:

 [8].

Example 3: In this example (see

Table 3 illustrates the case where the height of the
sta in the Inequality
(2

Thus (20)

 0 0log 1wr p p        , (21)

the table below)
11919 mod3105 1364  .

Indeed, 1919 * 1364 mod3105 = 1.

ck is approaching the upper bound
1).
Remark 5: Although this upper bound is achievable if

0 1p b r rF F  and 1 1 2r r p bF F   , for this pair of

inp
1r

uts the MMI can be computed explicitly: indeed, it

equals  1 rF
 .

Remark If in RSA public-key encryption [3],
p c 

6:
, then c100

0 10 100 / log logr w10 10  ; therefore
479 log cr   .

housand emonstrate
ge

Over one t computer simulations d
that the avera height of the stack is actually almost
40

A)

 modulo
 provided that gcd = 1, [2,7].

3 = g {there is n -
ve

if = 1 return Y3 = gcd);

% smaller than the upper bound in (21).

6. Extended-Euclid Algorithm (XE

XEA also finds a multiplicative inverse of 1p

0 0 1

1) Assign (X1, X2,X3):= (1, 0, 0p); (Y1,Y2,Y3) (0,1, 1p);
2) if Y3 = 0 return X cd(p , 1p);

p (p , p)
:=

0

rse};
3) Y3

o in

(0p ,
nv

1p
rseelse Y2 is the multiplicative i e ;

4) : 3Q X Y 3 ;   (22)

5)    3 3QY1, 2, 3 : 1 1, 2 2,T T T X QY X QY X   ;(23)

6)   , 3 : 1, 2 1, 2 , 3X X Y ; (24) X Y Y

7)    1, 2, 3 : 1, 2, 3Y Y Y T T T ;

7. Comparative analysis of NEA vs. XEA

 for
ard

rocedure in (10), and Q in (22), respectively.

 division,
th

Table 3. {Worst-case space co

3105 1919 1186 733 9 7 2 1

 (25)

8) goto 2.

Both algorithms require equal number of steps r
computation of all quotients: values of t on the Forw
p

In addition, NEA requires r more steps on the Back-
tracking procedure to compute the values of L in (12).

Therefore each step of XEA requires one
ree multiplications, three long algebraic additions and

ten assignments, see (22)-(25).

mplexity}: Size of stack.

453 280 173 107 66 41 25 16

Stack 1 1 1 1 1 1 1 1 1 1 1 1 1 3 ***

1364 843 521 322 199 123 76 47 29 18 11 7 4 3 1 0

Copyright © 2010 SciRes. IJCNS

B. S. VERKHOVSKY

905

XEA Yet in bo pro ures NEA

uses one division, two multiplications, two long additions,
o stac ra , (a nd ht assign-

n NEA I
han XEA:

 uses ten variables. th ced

tw
m

k ope tions push nd pop), a eig
ents, see (10)-(12). NEA uses four integer variables,

one binary variable and, in addition,  0logw p of
memory to store the stack.

Notice that if a MMI does not exist, then there is no
need to use the Backtracking procedure i . n this
case NEA requires even fewer operations t one
division, one multiplication, one addition, one push op-
eration and five assignments per every step. Yet XEA
still requires the same number of operations per step as
in the case if a MMI does exist. Hence, overall XEA uses
more multiplications, more additions, more assignments
and twice as many variables than the proposed algorithm.

8. Average Complexity of XEA and NEA

 both inputs are chosen randomly, then the If 0 1 and p p
probability that  0 1gcd , 1p p  equals 26  [2].

Let us consider the following notations:

xeaw -worst-case specific complexity (per step) of
XEA;

; neaw -worst-case specific complexity of NEA

xeaa -average-case specific complexity of XEA;

neaa rage-case specific complexity of NEA;
let ;

-ave
on,

mu ations
push a

hen

 ; ; ; m a s stt t t t be time complexities of divisid

ltipl
t

ication, addition, assignment and stack oper
nd pop respectively.

T

3 + 3 + 10 ;xea d m a sw t t t t  (26)

2 +w t t  2 + 8 + 2 ;nea d m a s stt t t (27)

 
   2

26stt2 + 2 + 8 + 2

+ + 5 + 1 6

nea d m a s

d m a s st

a t t t t

t t t t t





 

   

Notice that


 (28)

xea xeaa w ; and

t

9) implies

d m a s st t t t t   (29)

Then (27)-(2 that

 2 2: 2 3 1.538  (30) xea neaR a a    

9. Conclusions

nalysis of the proposed algorithm (NEA) for modular
rse demonstrates that its execution
 53.8% less time, than the execution

e ed K-bit level for ubl r on algo-
rithm, where the inputs are integers on the

interval

A
multiplicative inve

quires on averagere
of the Extended Euclid algorithm.

Theoretical analysis of space complexity of the En-
hanced-Euclid algorithm shows that it requires relatively
small bit-storage for its execution. This storage does not

xce a 2 a p ic-key enc ypti

0 1 and p p

 100 40010 ,10 .

e y mode
-Euclid algorithm

r implementation of encryption in low memory
en

 of this
aper; and to A. Koripella for her assistance in running

. van Oorschot and S. A. Vanstone,
“Handbook of Applied Cryptography,” CRC Press, Boca

] R. L. Rivest, A. Shamir and L. Adleman, “A Method for

On the other hand, computer simulations demonstrate
that the average bit-storage is actually 40% smaller than
2K. Hence NEA can be executed if necessary by a cus-
tom-built chip with relativ l st memory, [7]. This
property of the Enhanced is especially
useful fo

vironments such as smart or PC cards, cell phones,
wearable computers and other integrated devices.

10. Acknowledgements

I express my appreciation to R. Rubino, J. Runnells, M.
Sikorski, C. Washington and to anonymous reviewer for
comments and suggestions that improved the style
p
computer experiments.

11. References

[1] R. Crandall and C. Pomerance, “Prime Numbers: A

Computational Perspective,” Springer, Berlin, 2001.

[2] A. J. Menezes, P. C

Raton, 1997.

[3
Obtaining Digital Signature and Public-Key Cryptosys-
tems,” Communications of the ACM, Vol. 21, No. 2, 1978,
pp. 120-126.

[4] B. Verkhovsky, “Overpass-Crossing Scheme for Digital
Signature,” Keynote Address, Proceedings of Interna-
tional Conference on System Research, Informatics and
Cybernetics, Baden-Baden, 30 July-4 August 2001.

[5] T. ElGamal, “A Public-Key Cryptosystem and a Signa-
ture Scheme Based on Discrete Logarithms,” IEEE Trans-
actions on Information Theory, Vol. 31, No. 4, 1985, pp.
469-472.

[6] M. Rabin, “Digitized Signatures and Public Key Func-
tions as Intractable as Factorization,” Technical Report:
MIT/LCS/TR-212, MIT Laboratory for Computer Science,
Cambridge, 1979.

[7] J. Hoffstein, J. Pipher and J. H. Silverman, “An Introduc-
tion to Mathematical Cryptography,” Springer, Berlin,
2008.

[8] B. Verkhovsky, “Multiplicative Inverse Algorithm and Its
Complexity,” Proceedings of International Conference-
InterSYMP-99, Baden-Baden, July 1999, pp. 62-67.

[9] B. Verkhovsky, “Accelerated Cyber-Secure Communica-
tion Based on Reduced Encryption/Decryption and In-
formation Assurance Protocols,” Journal of Telecommu-
nications Management, Vol. 2, No. 3, 2009, pp. 284-293.

Copyright © 2010 SciRes. IJCNS

B. S. VERKHOVSKY

906

riza-

International Journal of Communications, Net-

p. 1-8.

. 276-288.

ppendix

omputer experiments

 decimal-digit long integers A and B were
 B;

dulo A was computed; in

era

Table A1. Results of computer experiments.

Range of S

[10] B. Verkhovsky, “Hybrid Authentication Cybersystem Based
on Discrete Logarithm, Entanglements and Facto
tion,” International Journal of Communications, Network
and System Sciences, Vol. 3, No. 7, 2010, 579-584.

[11] B. Verkhovsky, “Generalized Baby-Step Giant-Step Al-
gorithm for Discrete Logarithm Problem,” Advances in
Decision Technology and Intelligent Information Systems,
International Institute for Advanced Studies in Systems
Research and Cybernetics, Baden-Baden, 2008, pp. 88-
89.

[12] B. Verkhovsky, “Integer Factorization: Solution via Al-
gorithm for Constrained Discrete Logarithm Problem,”
Journal of Computer Science, 2009, Vol. 5, No. 9, 674-

679.

[13] B. Verkhovsky, “Potential Vulnerability of Encrypted
Messages: Decomposability of Discrete Logarithm Prob-
lems,”
work and System Sciences, Vol. 3, No. 8, 2010, pp.
639-644.

[14] R. B. McClenon, “Leonardo of Pisa and His Liber Quad-
ratorum,” American Mathematical Monthly, Vol. 26, No.
1, 1919, p

[15] D. Harkin, “On the Mathematical Works of Francois-
Edouard-Anatole Lucas,” Enseignement Mathematique,
Vol. 3, No. 2, 1957, pp

A

C N Average S

) Pairs of N1

generated randomly, where A >
2) Then MMI C of B mo

other words we found an integer C, for which holds BC
modA = 1;

3) 125 experiments have been carried out for each
value of N = {6, 8, 10, ,18, 20};

4) The values of S (size of stack-storage) for each N
were tabulated; (not shown in the Table A1).

5) The values of av ge S for every N and the range
of S for each N are presented in the Table A1.

[min, max]

6 12.65 [7, 17]

8 16.20 [9, 21]

10 19.96 [14, 29]

12 24.91 [19, 33]

14 28.53 [18, 36]

16 32.30 [20, 41]

18 36.70 [23, 50]

20 40.29 [26, 54]

Copyright © 2010 SciRes. IJCNS

