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Abstract 
 
Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of 
modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced 
Euclid Algorithm, for modular multiplicative inverse (MMI). Analysis of the proposed algorithm shows that 
it is more efficient than the Extended Euclid algorithm (XEA). In addition, if a MMI does not exist, then it is 
not necessary to use the Backtracking procedure in the proposed algorithm; this case requires fewer opera-
tions on every step (divisions, multiplications, additions, assignments and push operations on stack), than the 
XEA. Overall, XEA uses more multiplications, additions, assignments and twice as many variables than the 
proposed algorithm. 
 
Keywords: Extended-Euclid Algorithm, Modular Multiplicative Inverse, Public-Key Cryptography, RSA 

Cryptocol, Rabin Information Hiding Algorithm, ElGamal Encryption/Decryption, NTRU 
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1. Introduction 
 
Elements of modular arithmetic are essential for pub-
lic-key encryption algorithms such as the RSA crypto-
graphic algorithm [1-3], and RSA with digital signature 
[4]; ElGamal cryptocol [5]; Rabin encryption/decryption 
scheme based on extraction of square roots [6]; NTRU 
cryptosystem [7]; and extensions of some of these algo-
rithms in Gaussian arithmetic require computation of a 
modular multiplicative inverse (MMI) [8-10]. The MMI 
is also computed for cryptanalysis of public-key crypto-
graphic protocols [11-13]. 

A new algorithm, called the Enhanced-Euclid Algo-
rithm (NEA), for modular multiplicative inverse (MMI) 
is described and validated in this paper.  

Definition 1: Given relatively prime integers  and 
, there exists an unique integer x such that  

0p

1p

1 1 modp x p 0 .               (1) 

Then x is defined as the modular multiplicative inverse 
of 1p  modulo  or, for short, MMI. 0

The NEA finds for two relatively prime integers 0  
and 1  an integer number x that satisfies the Equation 
(1). And if  and  are not relatively prime, then 

NEA finds a gcd( 0 , 1 ). The Extended-Euclid algo-
rithm (XEA) also finds a MMI of  modulo  if 
and only if gcd( , ) = 1 [1,2,7]. 

p
p

p

0p 1p

p

p

p

1p 0p

0 1

This paper proves the validity of NEA and provides its 
analysis. The analysis demonstrates that NEA is faster 
than the Extended Euclid algorithm. Preliminary results 
of this paper are published in [8]. 

p

 
2. Basic Arrays and Their Properties 
 
Let’s consider five finite integer arrays:  

        ; ;k kt w kz; ;i ip c             (2) 

Definition 2: Let  ip  and  ic  be integer arrays 
defined according to the following generating rules:  

Given two relatively prime integers 0p  and 1p  su  

that 0p  1i  while ip 
ch

1  ,  p , for  do 2

1 1: mi i  1d ; :i i i ip c p p o .p p        (3) 

Definition 3: Let  kt  be an arbitrary integer array 
for all ; let for initially specified 0  1  0  
and 1  the following generating rules be defined for all 

: 

1k  ,w ,w z
z

2k 
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1 1 2:k k k kw w t w    ; 

and 

1 1 2:k k k kz z t z    .             (4) 

Proposition 1: Let’s define for  1k 

1

1

: k k
k

k k

w w
D

z z




 .              (5) 

Then 

  1

11
k

kD
  D .              (6) 

Proof: Consider k  and substitute in the left column 
the values of k  and  defined in (4). After simpli-
fications we derive that 

D
w kz

1k kD D   , which recursively 
implies (6). 

Proposition 2: Consider the integer arrays  kt , 
, and  (4)  kw  kz

where 0 0 1: 1;  :w z 0;  : 1z   . 
Then  is a multiplicative inverse of   1

11
k

kz z
 1kw   

modulo  for every . k

Proof: Indeed, since , then (5) implies that 
w 1w

1D   1z

1

1kz 



 1 1 1
k

k k k kw z z w z    ,           (7) 

or that 

   1 12
1 1 1 11 1

k k

k k kw z z z w z
 


         

Then from (7) it follows that 

   1 1

1 1 11 1 1
k k

k k kw z z w z
 


      1kz  , 

i.e.,   1

11
k

kx z z
  . 

Proposition 3: If for all  0 k r 

:k rt c  k k, and ,           (8) :k rw p 

then  and  are the initial values that generate the 
arrays  

0p 1p
 , ,i ic p

       : and :k r k k rt c w p   k . 

Remark 1: Notice that =  kt
R

ic  and    R

k iw p , 
where the superscript R means that the arrays  ic

1k
z z



 and 
 are written in a reverse order.  ip

Theorem 1: For all k = 1, , r,  is the 
inverse of  modulo p. 

  11 k
1r k

Proof follows from Propositions 1-3. 
p  

Theorem 1 implies the following assertions: 
1) if k is odd and , 1 1z 

then x:= > 0; kz

2) if k is even and , 1 1z  

then x:= < 0. kz

In the latter case select 

0: kx p z  .                (9) 

3. Enhanced Euclid Algorithm for MMI 
 
The proposed algorithm uses stack as a data structure, 
[2]. 

vars: r; L; M; S; t: all integer numbers; b: Boolean; 
procedure Forward: 

0:L p ; 1:M p ; b: = 0; {r: = 0}; 

repeat :t L M    ; :S L Mt  ; 

 : 1 ;  : 1 ;b b r r                (10) 

push t {onto the top of the stack}; 

L: = M; M: = S;               (11) 

until S = 1; 
Remark 2: if S = 0, then ; therefore 

the MMI does not exist; 
 0 1gcd ,p p t

procedure Backtracking: 
S: = 0;  : 1

b
M   ; {by (9) in the Theorem 1}; 

repeat pop t {from the top of the stack};  

L: = Mt + S;      (12) : ;  :S M M L  ;

until the stack is empty;  
output x: = L; {if x < 0, then x: = x + }. 0

Remark 3: r is the height of the stack and is used be-
low for analysis of the proposed algorithm. 

p

 
4. Two Illustrative Examples 
 
Let’s demonstrate how NEA finds a multiplicative in-
verse x of 27,182,845 modulo 31,415,926. Table 1 be-
low shows the computation of remainders in the upper 
row and stores the quotients in the middle row (the 
stack). Then the Backtracking procedure is used to com-
pute from right to left until the stack is empty. The 
inputs and MMI are shown in bold, and the stack val-
ues are in italics. Since the total number of steps (the 
height of the stack) is equal to fourteen (i.e., even), then 
x = 13,939,773. 

Direct verification confirms that indeed  

27182845 * 13939773 mod 31415926 = 1. 

In the second numerical example we need to find the 
MMI z of 27,319,913 modulo 177,276,627 {see Table 
2}. Since the height of the stack is odd, then  

z = 177276627-34480855 = 142795772. 

Direct computation verifies that z is indeed the MMI 
of 27319913, since 

27319913 * 142795772 mod 177276627 = 1. 

 
5. Complexity Analysis of MMI Algorithm 
 
Consider four non-negative integer arrays ,  kq  kd ,   

Copyright © 2010 SciRes.                                                                                IJCNS 
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Table 1. Modular multiplicative inverse algorithm in progress. 

31415926 2718 208730 2845 4233081 1784359 664363 455633 

Stack 1 6 2 2 1 2 

1 120 84 187 89 79 29 20 92 7 3939773 614 82 1750 4789 2172 61

(continuation) 

208730 38173 17865 2443 151 9 7 2 1  764 

2 5 2 7 3 5 16 1 3 *** 

92 7 16 8 7927 1084 3  61 93 39 67 4 3 1 0 

 
Table 2. nd num al illus ion. 

177276627 27319913 1 36 5 1 

 Seco eric trat  

3357149 605615 33619 473 

Stack 6 2 22 18 71 13 7 *** 

3 531 08 259 07 11 4 6  4480855 38 80 779 539 92 7 1 0 

 
ed as fo   and i ip c  defin llows: 

1 1

1:k k kd q q    ;                (13) 

satisfy (3) and a

     (14) 

Then (3) and (14) imply that 

mod ip

Hence both arrays  and ar -
creasing, and all term corres arrays 

    and i ip c  re defined as 

1 1 1 1: ; :i i i k k k kp p c q q q d     ip   

1 1:i i i ip p p c    1ip   

  ip
s of the 

 kq  
ponding 

e strictly de
 c  i

d  kd  are positive er num  
Definition 4: 

an integ bers.
j s

x  is a (s + 1)-dimensional ve  
consisting of the first s + 1 terms of a

ctor,
n array 

0 1 1, ,..., , ,j jx x x x i.e., 

   0: , ,..., ,

 …, 

1 1j s ss
x x x x x . 

Theorem 2: Consider 



and 

  1;i ir
c p     ; ; 1k ks s s

d q  

  1i r
p  . 

Let p q0 0 ;    i ks s
c d , 

j = l suc
following in

i.e., for all j = 1, , s 
 e ists at least one h that . Th or 

al the 
there x

j s  
l l

l 1 equalities hold: 

if 1 1j l   , then 

c d en f

j jp q  

otherwise 

j jp q .                (15) 

Proof: Assuming that the stat
, it can also be demonstrated by

Consi

ement (15) holds for all 
 induction that 1i j 

(15) also holds for i j . 
der 

1 1 .

j j j j j j

j j

q q p p

q p p

 

j jp 

jt d c          
  

    (16) 
   

If 1j l 
lows: if 

, then  else . Hence from (16) 
it fol

0jt 
1

 0jt 
j l  , then j jp q  otherwise j jp q .  

Since 0 0p q , then (14) holds for all j  s . 
 Q.E.D. 

nsider a f relatively prime
s an arr

Co  pair o  seeds 0 1and p p  
that generate ay  ic r 1

r
ir of relatively prime seeds 0 1 and p q ge

. Consider also a
pa tha
an array 

nothe
t nerates  

  1kd  , 

1

s
ual to one. Let r and s be the number of steps  

respectively to find MM e first and the second 
pair using either XEA or NEA. This mption implies 
that sq

i.e l its
eq

. such that 

Is for th

not al

 assu

 te
 required
rms are 

 . Then by Theorem 2    i ks s
p q  and 

1s sp q  . Hence r s . 
Corollary: A pair of seeds, that for a given 0p  re-

quires the maximal number of steps for computation of a 
MMI rates an unary array of ., all 

s in 
i.e, gene quotients, 

component  ic 1
r
 . Thus, as it follows ) 

an
from (3

lowd (14), this pair of seeds must generate the fol ing 
array of integer numbers: 2 0 1:p p p  ; 3 1 2:p p p  ; ; 

2 1: 1r r rp p p    . It is easy to verify that this array is 
equivalent to the  of Fibonacci numbers sequence

 2 1,r r 4 3 2,..., , ,F F 

In other words, for every 0,...,i r  2:i rp F

F F F . 

i  , [14]. 
Remark 4: The pair ;p F  p F  is 0 2r

) a unary a
1 1r

rray f q
not the 

only one that generates a uotients and 
b) a decreasing integer array where the rth remainder 
eq

 pairs of seeds hav

 o

uals one. 
Indeed, the following e the same 
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 of the Lucas 

3) 

1

zero and negative 
indices are computed in acc dance with the formula: 

property for all non-negative integer numbers t and u: 
1) 0 2r rp F tF  ; 1 1 1r rp F tF   ; for t = 1 

   1;  ;
R

ip L   is a sequence2 1r

mbers 1, 3, 4, 7, 11, 18, [15]; 
2)  0 2 11 ;r rp tF t F     1t  ;  

;L  L
nu

 1p tF t F   ; 1 1r r 

;p F tF   t 
2

0 1r r 1; 1 1;r rp F tF    
4)  0 21 ;r r rp t F tF uF    2

 1p t F tF uF   
 

1 1 3r r r 

Here the Fibonacci num
. 

bers with 
or

  1
1

m

m mF F


   . 

For all pairs, listed above, exactly r steps are required 
to find the MMI. However, all these pairs are special 
cases of a pair of seeds where 

b ; and 

Consider 

0 1r rp bF F    and 1 1 2r rp bF F   . 

Therefore for all 0 i r   

1i r i r ip bF F    , rp 1  1rp  . 

 1 5v   2  and  1 5 2w   . 

Using a z
k r   

-transform approach, we deduce that for all 
0

   5kw w     k
r kp b v b v      .  (17) 

Then for a large r 

    5 1 0  
kkk

r kp b v w w b v     

since 

1v  .                  (18) 

The relation (18) implies that for a large r 

   0 5 1rp w b v w      .       (19) 

Let    0 0
2

: max , , 2
b

z r p b r p


  . 
Therefore 

   p   (20) 0 0 0log 5 2 log 1w wz p v p           

implies that the height of a stack satisfies 
the following inequality: 

 [8].     

Example 3: In this example (see 

Table 3 illustrates the case where the height of the 
sta  in the Inequality 
(2

Thus (20) 

 0 0log 1wr p p        ,   (21) 

the table below) 
11919 mod3105 1364  . 

Indeed, 1919 * 1364 mod3105 = 1. 

ck is approaching the upper bound
1). 
Remark 5: Although this upper bound is achievable if 

0 1p b r rF F   and 1 1 2r r p bF F   , for this pair of 

inp
1r

uts the MMI can be computed explicitly: indeed, it 

equals  1 rF
 . 

Remark If in RSA public-key encryption [3], 
p c 

6: 
, then c100

0 10  100 / log logr w10 10  ; therefore 
479 log cr   . 

housand emonstrate 
ge 

Over one t  computer simulations d
that the avera height of the stack is actually almost 
40

A) 

 modulo 
 provided that gcd  = 1, [2,7]. 

3 = g {there is n -
ve

if  = 1 return Y3 = gcd );  

% smaller than the upper bound in (21). 
 
6. Extended-Euclid Algorithm (XE
 
XEA also finds a multiplicative inverse of 1p

0 0 1

1) Assign (X1, X2,X3):= (1, 0, 0p ); (Y1,Y2,Y3) (0,1, 1p ); 
2) if Y3 = 0 return X cd( p , 1p ); 

p ( p , p )
:= 

0

rse}; 
3)  Y3

o in

( 0p ,
nv

1p
rseelse Y2 is the multiplicative i e ; 

4)              : 3Q X Y 3 ;               (22) 

5)    3 3QY1, 2, 3 : 1 1, 2 2,T T T X QY X QY X   ;(23) 

6)          , 3 : 1, 2 1, 2 , 3X X Y ;       (24) X Y Y

7)      1, 2, 3 : 1, 2, 3Y Y Y T T T ;            

 
7. Comparative analysis of NEA vs. XEA 
 

 for 
ard 

rocedure in (10), and Q in (22), respectively. 

 division, 
th

 
Table 3. {Worst-case space co

3105 1919 1186 733 9 7 2 1 

 (25) 

8) goto 2. 

Both algorithms require equal number of steps r
computation of all quotients: values of t on the Forw
p

In addition, NEA requires r more steps on the Back-
tracking procedure to compute the values of L in (12). 

Therefore each step of XEA requires one
ree multiplications, three long algebraic additions and 

ten assignments, see (22)-(25). 

mplexity}: Size of stack. 

453 280 173 107 66 41 25 16 

Stack 1 1 1 1 1 1 1 1 1 1 1 1 1 3 ***

1364 843 521 322 199 123 76 47 29 18 11 7 4 3 1 0 
   

Copyright © 2010 SciRes.                                                                                IJCNS 
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XEA Yet in bo pro ures NEA

uses one division, two multiplications, two long additions, 
o stac ra , (  a nd ht assign-

n NEA  I  
han XEA: 

 uses ten variables. th ced  

tw
m

k ope tions push nd pop), a  eig
ents, see (10)-(12). NEA uses four integer variables, 

one binary variable and, in addition,  0logw p  of 
memory to store the stack. 

Notice that if a MMI does not exist, then there is no 
need to use the Backtracking procedure i . n this 
case NEA requires even fewer operations t one 
division, one multiplication, one addition, one push op-
eration and five assignments per every step. Yet XEA 
still requires the same number of operations per step as 
in the case if a MMI does exist. Hence, overall XEA uses 
more multiplications, more additions, more assignments 
and twice as many variables than the proposed algorithm. 
 
8. Average Complexity of XEA and NEA 
 

 both inputs are chosen randomly, then the If 0 1 and p p  
probability that  0 1gcd , 1p p   equals 26   [2]. 

Let us consider the following notations:  

xeaw -worst-case specific complexity (per step) of 
XEA; 

; neaw -worst-case specific complexity of NEA

xeaa -average-case specific complexity of XEA; 

neaa rage-case specific complexity of NEA; 
let ;

-ave
on, 

mu ations 
push a

hen  

 ;  ;  ;  m a s stt t t t  be time complexities of divisid

ltipl
t

ication, addition, assignment and stack oper
nd pop respectively. 

T

3 + 3 + 10 ;xea d m a sw t t t t             (26) 

2 +w t t  2 + 8 + 2 ;nea d m a s stt t t         (27) 

 
   2

26stt2 + 2 + 8 + 2

+ + 5 + 1 6

nea d m a s

d m a s st

a t t t t

t t t t t





 

   

Notice that 


   (28) 

xea xeaa w ; and 

t         

9) implies

d m a s st t t t t       (29) 

Then (27)-(2  that 

 2 2: 2 3 1.538     (30) xea neaR a a    

 
9. Conclusions 
 

nalysis of the proposed algorithm (NEA) for modular
rse demonstrates that its execution 
 53.8% less time, than the execution 

e ed K-bit level for ubl r on algo-
rithm, where the inputs are integers on the 

interval 

A  
multiplicative inve

quires on averagere
of the Extended Euclid algorithm. 

Theoretical analysis of space complexity of the En-
hanced-Euclid algorithm shows that it requires relatively 
small bit-storage for its execution. This storage does not 

xce a 2 a p ic-key enc ypti

0 1 and  p p  

 100 40010 ,10 . 

e y mode
-Euclid algorithm

r implementation of encryption in low memory 
en

 of this 
aper; and to A. Koripella for her assistance in running 

. van Oorschot and S. A. Vanstone, 
“Handbook of Applied Cryptography,” CRC Press, Boca 

] R. L. Rivest, A. Shamir and L. Adleman, “A Method for 

On the other hand, computer simulations demonstrate 
that the average bit-storage is actually 40% smaller than 
2K. Hence NEA can be executed if necessary by a cus-
tom-built chip with relativ l st memory, [7]. This 
property of the Enhanced  is especially 
useful fo

vironments such as smart or PC cards, cell phones, 
wearable computers and other integrated devices. 
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C N Average S 
 
) Pairs of N1

generated randomly, where A >
2) Then MMI C of B mo

other words we found an integer C, for which holds BC 
modA = 1; 

3) 125 experiments have been carried out for each 
value of N = {6, 8, 10, ,18, 20}; 

4) The values of S (size of stack-storage) for each N 
were tabulated; (not shown in the Table A1). 

5) The values of av ge S for every N and the range 
of S for each N are presented in the Table A1. 

[min,  max] 

6 12.65 [7,  17] 

8 16.20 [9,  21] 

10 19.96 [14, 29] 

12 24.91 [19, 33] 

14 28.53 [18, 36] 

16 32.30 [20, 41] 

18 36.70 [23, 50] 

20 40.29 [26, 54] 
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