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Abstract

This paper provides a framework that reduces the computational complexity of the discrete logarithm prob-
lem. The paper describes how to decompose the initial DLP onto several DLPs of smaller dimensions. De-
composability of the DLP is an indicator of potential vulnerability of encrypted messages transmitted via
open channels of the Internet or within corporate networks. Several numerical examples illustrate the frame-
work and show its computational efficiency.
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1. Introduction and Problem Statement

The cryptoimmunity of numerous public key cryptogra-
phic protocols is based on the computational complexity
of the discrete logarithm problems [1,2].

A DLP finds an integer x satisfying the equation

g“modp=h. (1)
Here 2<g<p-1; 1<h<p-1 (2)

and p is a large prime. In (1) g, p and h are inputs, and
the unknown integer x must be selected on the interval
[1Lp-1].

Two trivial cases: if h =1, thenx=p-1; If h =g, then
x = 1. If his neither 1 nor g, then x must be selected on
the interval [2, p — 2].

If g is a generator, then (1) always has a solution, oth-

erwise the existence of a solution is not guaranteed.
For instance, if p = 7 and g = 2, then the DLP

2*mod7 =5 does not have a solution.

Various algorithms for solving the DLP were proposed
and their computational complexities were analyzed over
the last forty years [3-15].

This paper provides the algorithmic framework that
reduces the computational complexity of the DLP.

The paper describes step-by-step procedure for deco-
mposition of the initial DLP onto several DLPs with
smaller dimensions. Several examples illustrate the dec-
omposition algorithm and highlight its computational
efficiency.
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Let g,=0; h=h; x =X;
g =p-1 and p-1=2rr,. 3)

Here it is assumed that integer factors r, and r, in (3)

are known or can be determined using existing algo-
rithms for integer factorization [5,16,17].

Proposition:  Let R =(p-1)/q; 4)

if q|(p-1),then R, isan integer (4).
Let’s define  g,:==gmodp; ®)
h, :=h® mod p; (6)

Ifan integer x, isasolution of equation
;>mod p=h,, where x, €[0,q], (7)

then g divides x, — X, .
Proof: Let’s multiply both sides of the Equation (1) by
g, >mod p [18], and find X, , such that

hg,” mod p (8)
has a root of power .
By Euler’s criterion [5] such a root exists if and only if

(hg, )" mod p1 ©
Using notations (4)-(6), rewrite (8) as
h,g,”* mod p =1 (10)

or as Equation (7). Q.E.D.
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Therefore, the unknown x, can be represented as

X, =X, +0X, (11)
where the integer X3 must be on the interval
x; €[0,(p-1)/q]=[0,0q,] (12)

After x, is determined, we need to find an integer
X3, for which the following equation holds

g,2"** mod p=h,. (13)
This equation can be rewritten as
(9.*)" =hg,™ (mod p) (14)

where in contrast with the BSGS algorithm, the value of
X, is already known.

Let g, = 9" %= modp; (15)

and h, :=hg,>mod p . (16)

2. Divide-and-Conquer Decomposition:
Ilustrative Example-1

Let’s solve 2" mod947=273, 17

ie, here g, =2,p=947;h =273, and x [1,946] .
Let g, =p-1.

Since g, =21, =2x11x43, select

d,= minogzqa max (z,(p—1)/z) = 43.

ThenR =q,/q,=22; g, :=g,% mod p=2"mod947
=41;and h, :=h"™ mod p = 273* mod 947 = 283.

Therefore we need to solve the DLP(2):

412 mod 947 = 283 (7), (18)

where x, €[1,42].

Remarkl: Notice that the interval of uncertainty [1, 42]
for x, is much smaller than the corresponding interval

of uncertainty [1, 946] for x, .

Equation (18) can be solved using any algorithm for
the DLP [3,6,8-10,12].
In this example x, =39and g, =43.

Therefore x, =39+ 43x,, where

X, €[0,(p-1/g,)]=[0,22].
Tofind x, solve the DLP(3):

(2%)" = 273x2™ (mod 947),

which is equivalent to
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367" =273x111=946(mod947).  (19)

Therefore x, =11.

Verification: 367" mod 947 = 946. (20)
Finally, x =39+43x11=512.

3. Multi-Level Decomposition: Illustrative
Example-2

Initial DLP(1): Find an integer x, , such that

30" mod 99991 = 45636, (21)

where x €[1,99990] .
Because 99990=303*330, select g,=330 and
represent the unknown X, as X, =X, +330x,.

Since R :=(p-1)/q, =303;
then g, =g, mod 99991 =151;

and h, :=h** mod 99991 = 64099 .

Remark2: To better describe the concept of decompo-
sition, a more suitable system of notations is considered
below in the following Table 1. These notations are used
to describe the process of solving three DLPs.

DLP(2): Solve g,” mod99991=h,,
i.e., 151 mod99991= 64099,
where x, €[0,330]. (22)
The solution is x, =115; indeed

151" mod 99991 = 64099 .

Therefore 30% =30"°"*3% mod 99991 = 45636 .
Consider the equation

(30°)" =307 x 45636(mod 99991)
Let g, =30 mod99991= 2593; and

h, :=307""° x 45636
=96658""° x 45636 (mod 99991)
= 49845
Therefore, we need to solve
DLP(3): 2593 mod 99991 = 49845 , where

X, €[0,303] (23)

It is easy to verify that x, = 47. Finally,
X, =X, +0,%; =115+330x47 =15625.
Decomposition of DLP(2): Solve

ymodp=h,, (24)
where x, €[0,q,]=1[0,330].
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Table 1. Solutions of DLP(1) via the decomposition of DLP(2) and DLP(3).

DLP(1): g,*modp=h Problem A Problem B Problem C
Inputs {g,; p; h} {2,947, 273} {2; 947; 641} {30; 99991; 45636}
g =p-1=2rr..r 2x11x43 2x11x43 2% 3 x11x101
DLP(2): g,=min, max(z,q,/z) q,=43 q,=43 q,=330
R,=(p-1)/q, R, =22 R, =22 R, =303
g,’=0g,>mod p g,=41 g,=41 g, =30*°mod99991 = 151
h,:=h mod p h, =283 h, =283 h,=45636""mod99991 = 64099
g;:modp =h,, x, €[0,q,] x, €[0,43]; x,=39 x,€[0,43]; x,=23 x, €[0,330]; x,=115
DLP@3): q,=0q,,, R :=(p-1)/q, R,=43 R, =43 R, =330
g, = 0,° mod p g, =367 g, =367 g, =30°°mod99991 = 2593
h,:=h,g,™ mod p h, =946 h, =643 f=30"modp = 96658, h=96658"modp=9381

X, €[0,22]7 x,=11
X,= 39 + 43 x 11=512

gy mod p=h,. x, €[0,0;,]
Solution of DLP(1): x, =X, +0,X,

%, €[0,22] x, =14
X,;= 23+ 43x14 =625

X, €[0,303]: x, =47
X,=115+ 330 x 47 = 15625

Remark3: Notice that the interval of uncertainty in
DLP(2) is not [1, p — 1], but X, €[1,0,], which is much
smaller than [1, p — 1].

Instead of solving (24) directly using an existing DLP
algorithm, we can again apply the method of decomposi-
tion described above. Consider a factor g, of g, that

is close to the square root of g, = 330:

d=min,_,_ o max (z,0,/2)

(25)
=min, max(z,330/z)=30
Let’s represent the unknown in (24) as
Xy =X, + 0, %, (26)
where X, €11,0,[=11,30
. €[La,]=[130] . 27)
and X €[Las=0q,/q,]=[111]

Let us now investigate whether h, has an integer

root of power 30 modulo p.

By Euler’s criterion, such a root exists if and only if
h{""% mod p =1. (28)

However, if h{""'% mod p=1, find an integer x,,
which satisfies the equation

(ho)" " modp=1. (29

Let 9, =0 % mod p; (30)

and h, =h{" "% mod p . (31)
Now we need to solve the equation

g, mod p=h,, (32)

where x, €[0,30]. And again, the Equation (32) itself is
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also a DLP with a much smaller interval (27) for x4 than
the interval for x, in (24), and so on.

4. Multi-Level Decomposition: Illustrative
Example-3

First level: Let’s solve the equation g,* mod p = h,, where

g =2, p=4,000,000,003,231; and h = 3,024,336,139,227.
Then p — 1 = 863*2310*2006491, where 863 and
2,006,491 are primes.

In this case the initial DLP(1) g, mod p=h,; is de-

composable into two sub-problems: DLP(2) and DLP(3).
DLP(2): Compute

9= g}pil)lqz
= 29 mod 4000000003231
=3278213345371,

and h, :=h{Pe

=3024336139227"%5% mod 4000000003231

=2084778340641.
Solve g, mod 4000000003231 = h,, where

0<x, £qg, =2006491;
It is easy to verify the solution
X, =1853979 < 2006491 .
DLP(3):Compute
g; = g{" V% = 22! mod 4000000003231

= 3767306619080;
and
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h,:=hg,”*

= 3024336139227 x 2000000001616 -
mod 4000000003231

=3024336139227 x 629308445687 -
mod4000000003231

=2623468766941.

Solve g3 =h;(mod p), where
0<x,=14622<q, =(p-1)/q, =1993530;
and 0, =Q,9; -
Then
X =X +0y%

=1,853,979 + 2,006,491"14,622

=29, 340,765, 381.
It is easy to verify that the solution

X, =14622 <1993530.

Comparison of complexities: While the size of the
required memory/storage for DLP(1) equals

T, =| y/p—1] = 2000000;

the corresponding memory requirement for DLP(2) and
DLP(3) are respectively

T, =| Ja, -1|=| V2006491 | <1416

and T, =| Jo, ~1 | =| 11993530 | ~1411.
Therefore the speed-up ratio
S =T,/(T,+T;)=2000000/ (1416 +1411) = 707.

Thus the decomposition algorithm for solving DLP(1)
via DLP(2) and DLP(3) is 707 times faster than a direct
solution of the original DLP(1).

5. Second-Level Decomposition: Solution of
DLP(3)

Remark4: The second problem, DLP(2), cannot be sol-
ved by decomposition since g2 = 2,006,491 is a prime
integer. However, the third problem, DLP(3), is decom-
posable, therefore the speed-up ratio S can be further
increased.

Indeed, select g, :=min,_,_ . max (g, /z,z) =2310.
Let’s represent X, as X, = Xg +QgX, , where
0<xs <0y =2310 and O0<Xx, <g, =863,

and solve DLP(3) by decomposition into DLP(6) and
DLP(7).
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DLP(6): Compute g, = g,"" ™% mod p ;
and h, = h," ™% mod p ;
0s0; = 0; =1993530;
gs® = hs (Mod1993531) ;
{0<x;<q,=2310}.
g,=9;""" mod p;

where

and solve

DLP(7): Compute
and h, :=h,g, ™ mod p ;
g9, =h, (mod1993531);
{0<x, <qg, =863}

Then T, =| o, | =48 and T, =[ 4, [=29.

Therefore

and solve

S=T,/(T,+T;+T,)

=2000000/ (1416 + 48+ 29)

=2000000/1493

=1339.6,
which implies that by decomposing the original problem
DLP(1) into three sub-problems {DLP(2), DLP(6) and
DLP(7)}, we can solve the initial DLP(1) 1340 times
faster than if we directly solve it without employing de-
composition.

In general, the speed-up increases as the size of p in-

Ccreases.

6. Computational Considerations

It is quite reasonable to ask under what conditions should
we stop the decomposition of a DLP(k) and try to solve it
directly. Here are the major issues that must be taken into
the consideration:

1) Feasibility of factoring q,=0,,0,.,, in such away
that

0, =0 "% mod p= +1. (33)

For instance, if q,q, |2(p-1), then
-1)/
W, = ngfl)/% = [W{ p-1)/4; :|(p )/
2(p-1)/ (p-1)/2 ) (34)
:[Wl p qz%] _ +1(mod p)

where w = {g, h}. In such a case Equation (32) has only
trivial solutions {0 or 1} or no solution

if g,=land h, =-1.

2) Magnitude of the overhead computations required
to find g,, andg,,,, and then to solve these two DLPs,
provided that these intermediate computations do not
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become too “costly”.

Remark 4: Analogously, we can solve DLP(3) by de-
composing it into two DLPs with smaller intervals of
uncertainty for the corresponding unknowns.

7. Algorithmic Decomposition of DLP(k)

Suppose that we need to solve DLP(k)
g mod p=h,, (33)

where u, €[0,q,].
If g, is a prime or if factors of ¢, are unknown,

then (33) can be solved by an algorithm for DLP such as:
BSGS, Pollard’s rho-algorithm, Lenstra’s number field
algorithm etc. However, if g, =cd , where both ¢ and d
are integers, then the DLP(k) can be reduced to solving
two less complex DLPs: DLP(2k) and DLP(2k + 1).

Let Ok = UokAoksa >
DLP(2k): Solve g, mod p=h,, ; (34)
where 0y =C and u, e[0,c]; (35)
R.:=(p-1)/qy; (36)
Oz =0 mod p ; (37)
and hy, == h mod p; (38)

DLP(2k+1): Solve

9okt mod p=hy,; (39)
where Uy €[0,0, /€], (40)
R2k+1 = ( p _1)/ SP (41)
Ozin = G mod p; (42)
and h,...:=h g.,"* modp . (43)

8. Conclusions

Provided that we know how to factor p — 1, we can reduce
the initial DLP(1) to two discrete logarithm problems:
DLP(2) and DLP(3), for solution of which the best known
algorithms can be implemented. The decomposition can
be implemented recursively for solution of the DLP(k) by
reducing it to a pair of DLP(2k) and DLP(2k + 1).
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APPENDIX

Numeric example as an exercise
Let p =5,000,491; then p—-1=990x5051 Let

g, =2 and h, =1020305 .

In this case DLP(1) is 2™ =1020305(mod5000491),

where the unknown x, €[1, p-1].
The DLP(1) is decomposable into two sub-problems:
DLP(2): g;2 =h,(mod p) {see (4)-(6)}, where

X € [L.g,] = [1,501]

and DLP(3): g;°* =h,(modp) {see (15) and (16)},
where
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dratic Sieve Algorithm,” SIAM Journal on Computing,
Vol. 17, No. 2, 1988, pp. 387-403.

[18] B. Verkhovsky, “Multiplicative Inverse Algorithm and its
Complexity,” Proceedings of International Conference
on System Research, Informatics & Cybernetics, Baden-
Baden, 28-30 July 1999, pp. 62-67.

x3e[1,q3]:[1,990].

Therefore X, =X, +0,X; .

Remark5: The reader now has an opportunity to solve
this problem himself since values required for the de-
composition are purposely omitted.

From DLP(2) and DLP(3) we find that

X, =1947 <5051;
and X; =470 <990.
Finally,
X, =1947 +5051x 470 = 2375917.

Overall complexity: the storage requirement for DLP
(2) and DLP(3) equal to 71 and 31 respectively, yet the
size of required storage for the DLP(1) is 2236, i.e. al-
most 32 times larger.
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