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Abstract 
 
This paper proposes two nonlinear blind equalizers: the nonlinear constant modulus algorithm (NCMA) and 
the nonlinear modified constant modulus algorithm (NCMA) by applying a nonlinear transfer function (NTF) 
into constant modulus algorithm (CMA) and modified constant modulus algorithm (MCMA), respectively. 
The effect of the NTF on CMA and MCMA is theoretically analyzed, which implies that the NTF can make 
their decision regions much sharper so that the proposed two nonlinear blind equalizers are more robust 
against the convergency error compared to their linear counterparts. The embedded single layer in NCMA 
and NMCMA simultaneously guarantees a comparably speedy convergency. On 16-quadrature amplitude 
modulation (QAM) symbols, computer simulations show that NCMA achieves an 8dB lower convergency 
mean square error (MSE) than CMA, and NMCMA achieves a 15dB lower convergency MSE than MCMA. 
 
Keywords: Nonlinear Blind Equalizer, Nonlinear Transfer Function (NTF), CMA, Nonlinear CMA 
         (NCMA), Nonlinear MCMA (NMCMA) 

1. Introduction 
 
Constant modulus algorithm (CMA) [1-6] is widely used 
for blind equalization [2,5,6,7-10] for constant modulus 
transmissions in communication systems in order to over-
come the propagation channel corruption, mitigate the in-
ter-symbol interference (ISI) and recover the transmitted 
symbols, which usually has a satisfied performance in 
common situations. However, under a complicated multi-
path channel, the transmitted symbols suffer from severe 
distortion and CMA will perform poor for multi-modulus 
symbols, i.e. for high-order quadrature amplitude modula-
tion (QAM) symbols, mainly due to the inability of CMA 
on phase error correction [11]. 

To suppress the convergence error and improve the 
equalization performance for multi-modulus symbols, 
[11-14] proposed a classical modified constant modulus 
algorithm (MCMA), in which the real component and the 
imaginary component of the equalizer output are respec-
tively considered to compress the phase error, leading to a 
better performance. However, its performance is not good 
enough in some severe cases, since its decision region is 
comparably smooth, which does not tolerate the conver-
gency error very much. 

The method for further improvement is to bring in non-
linearity instead of linearity, which can be realized by util-
izing multilayer architecture, nonlinear transfer function 

(NTF) [15] or neural network [16-18]. However, as a tra-
deoff, the complicated multiple architecture results in a 
slower convergency. As we all know, the speedy conver-
gency is significant for adaptive blind equalization. Con-
sequently, in this paper, we preferentially consider intro-
ducing a NTF into blind equalization to improve the per-
formance. A NTF, ( ) sin( )f x x x   , is proposed in 

[18] for blind equalizer according to its provided properties. 
However, there is a remaining unsolved question: in es-
sence, why can this NTF be helpful for equalization per-
formance? Or equivalently, what is the theoretical effect of 
NTF on equalization performance? This paper will answer 
this question via theoretical analysis. The following theo-
retical derivation provides that the NTF can make the deci-
sion region much sharper so that the proposed nonlinear 
blind equalizers are more robust against the convergency 
error. Based on this discovery, by applying the nonlinear 
transfer function (NTF) to CMA and MCMA, the non-  
linear CMA (NCMA) and nonlinear modified CMA 
(NMCMA) are thus proposed, and their adaptive learning 
rules are also theoretically derived in this paper. 

The remainder of this paper is organized as follows. Sec-
tion II theoretically analyzes the effect of the NTF on blind 
equalizers. Based on the analysis given in Section 2, the 
nonlinear blind equalizer, NCMA, is proposed in Section 
III. Moreover, another blind equalizer, NMCMA, is pro-
posed in Section 4. Simulation results of the proposed 
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nonlinear blind equalizers on 16-QAM symbols are re-
ported in Section 5, which are compared to their linear 
counterparts, followed by conclusion in Section 6.  

Notation:  E   represents expectation of a random va-

riable.   denotes the modulus of a complex number or 

the absolute value of a real number. The superscripts  *  

and  
Re

 denote the conjugate and derivative, respectively. 

Both  and    R


 
 denote the real component while 

both  and  Im
I
  denote the imaginary component. 

 
2. Effect of NTF 
 
2.1. CMA 
 
The cost function of CMA can be expressed as [1] 

    22

2

1

4CMAJ n E y n R
    

       (1) 

where  denotes the time index; n  y n

 
 represents the 

equalized symbol; assuming that s n  is the com-

plex-valued transmitted symbol, the constant modulus, 

, is given by 2R
 

 

4

2 2

E s n
R

E s n

 
 
 
  

. The 3D performance 

function of CMA, CMAJ , is shown versus  y n  in [1]. 

 
2.2. Performance Function without NTF 
 
Considering the case without a NTF in CMA [1], 

     
1
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m
m

y n X n W x n m w




         (2) 

where,  is the 

corrupted signal at the receiver, which is also the input 

signal of the equalizer, and  is 

the adaptive weight vector. Assuming keeping all weights 
unchanged except 

       , 1 , , 1
T

X n x n x n x n M     

0 1, , , MW w w w   1

T

pw 0 1p M  , , (2) can be ex-

pressed as 

     

 

1

0,

M

m p
m m p

p

y n x n m w x n p

C x n p w



 

   

  

 w
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     (3) 

where  is a constant in this case. 

Using (3) together with (1), the 2D performance function, 

 
1

0,

M

m
m m p

C x n m


 

 

CMAJ , is shown versus Re pw  in Figure 1, similar as  
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Figure 1. Comparison of performance functions, J , versus 

 Re pw , where  f   represents the NTF,  and  

correspond to two stable minimum values and corre-

sponds to an unstable local maximum. 
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Figure 2. Architecture representation for the proposed non-
linear blind equalizers: NCMA and NMCMA, where it is 
noticed that the real component and the imaginary compo-
nent of the received symbols are separately considered. 
 

CMAJ  versus  y n  in [1]. In Figure 2, two stable 

points,  and , are given by1S 2S 1S   

 
2

jR e

x n



Re
C

p
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2 Re
jR e C

S
x n p
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, re-

spectively,  denotes an arbitrary phase; ReZ   

 
C

x n p

 
Z  is given by 

2
2

1 4

R
V .  
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; and the value at 

 
2.3. Performance Function with NTF 
 
Let us consider the blind equalizer with a NTF, i.e. 
NCMA. Define its corresponding cost function by 

   NCMA CMAJ n J n , i.e. 

      22

2

1

4NCMA CMAJ n J n E y n R
     

 

  Without loss of generality, a NTF with the expression 
of ( ) sin(2 )f x x fx   , where   is a nonlinear 
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coefficient and f  denotes the frequency of the sine 

function, is considered in this paper for performance 
analysis. With this NTF, based on the proposed architec-
ture as shown in Figure 2, we have 

        
 
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  Since the performance function is symmetrical around 
the J axis , i.e. the cost function is independent with 
the phase of  y n  or pw , without loss of generality, 

let us consider the simplest case, i.e. pw  is real. In this 

case, (4) can be approximated as 
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(5) 
where, the approximation  is based on the fact that 

the closer the directions of two vectors with fixed mod-
ules, the bigger their summation, and the approximation 

 is true because  in (5) is a constant, same as that 

in (3) and the value of the sine function in (5) is deter-
mined by the item containing 

( )a

( )b C

pw . Furthermore, we have 

      sin 2p py n C x n p w f x n p w         

(6) 
  Based on (6) together with (1), the 2D performance 

function, NCMAJ , is shown versus  Re pw  in Figure 1, 

compared to that without NTF. One can see that using 
this NTF, its performance function becomes sharper than 
its previous linear counterpart. Once the convergency 
point is not exactly the minimum value but one of its 
surrounding points, namely, there is an estimation bias, 
i.e. W , its estimation error gets smaller after implant-
ing this NTF. In other words, NCMA is more robust 
against the convergency error than CMA. It is noticed 
that, the NTF will provide a good equalization perform-

ance under the constraint that  2
2

f x n p
   , i.e. 

2

1
0

4
f 

R
. Particularly, when 

2

1

4
f

R
 , the NTF 

exhibits the optimal equalization performance. 
 
2.4. Discussion and Extension 
 
As shown in Figure 1, where the cost function, J , is 

plotted versus the adaptive weights,  Re pw , NCMJ A  

looks similar with CMAJ  except that it has a sharper 

decision region than CMAJ . The resulting sharper deci-

sion region will lead to a better equalization performance 
in the end. On the other hand, denote by MCMAJ  and 

NMCMAJ  the cost functions for MCMA and NMCMA, 

respectively. Since MCMA is similar to CMA except 
that in NMCA, the real part and the imaginary part are 
separately considered, after adding a NTF into the linear 
equalizer, the relationship between NMCMAJ  and MCMAJ  

is the same with that between MCMAJ  and CMAJ . 

Therefore, one can know that NMCJ MA  also looks similar 

with MCMAJ  except that it has a sharper decision region 

than MCMAJ . 

 
3. Proposed NCMA 
 
In Figure 2,     , 1 , ,x n x n x n M 1  

1

, as men-

tioned, are the corrupted symbols at the receiver, 

0 1, , , Mw w w  , as mentioned, are the equalizer taps 

with the length of M , and the variable  is an in-
termediate variable for convenience. For a time index of 

, the input and its corresponding output can be formu-
lated as 

net

n

   Tnet n X n W                (7) 

  and 

     ,R I y n y n jy n              (8) 

where 

    R Ry n f net n              (9) 

  and 

    .I Iy n f net n              (10) 

  Furthermore, the real component and the imaginary 
component of  net n  can be obtained as 

     
1

, ,
0

M

R R m R I
m

net n x n m w x n m w



m I       (11) 

  and 

     
1

, ,
0

.
M

I R m I I
m

net n x n m w x n m w



m R       (12) 

Based on (1), using the statistic gradient descent (SGD) 
in terms of pw , we have 
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  (15) 

Assuming   is the learning rate, the weights update 

from the  step to the nth  1n t h  step can be ex-

pressed as 
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(16) 
 
4. Proposed NMCMA 
 
The cost function of NMCMA is the same as MCMA 
shown in [11] and [12]. In order to derive the NMCMA 
using SGD, the expectation operation is removed and the 
resulting cost function, NMCMAJ , is given by 

    NMCMA R I J n J n J n           (17) 

where 
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  Similar to the derivation in NCMA, considering pw , 

we have 
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  Organizing (19)-(21), and assuming   as the learn-

ing rate, the weights update from the  step to the thn

 1n t h  step can be expressed as 
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5. Computer Simulations 
 
The proposed NCMA and NMCMA are demonstrated by 
using the 16-QAM symbols through a multipath channel. 
Their performances are compared to those of the pre- 
existing CMA and MCMA. A typical complex-valued 
10-path communication propagation channel, labeled 

( )H z  [18], is used in this simulation, which is given by 
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(27) 
  We set signal-to-noise ratio (SNR) to 30dB for all 
cases. For 16-QAM symbols, the constant modulus, 

2
, 

is equal to 13.2. The real component, 
R

2,RR , and the im-

aginary component, 2, IR , are both equal to 8.2. The 

length of NCMA, M , is set as 15, the same as CMA. 
The length of NMCMA, M , is set as 21, the same as 
MCMA. The adaptation step-size is set as 0.00001 for all. 
All initialized weights are set randomly with small val-
ues of approximately 510  except for the center weights, 
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which are set as 1.0 + j0. The NTF ( )f x x   

sin(2 )fx   is used, where the nonlinear coefficient 

 is set as 0.3 and the frequency of the sine function, f , 

is chosen as 
2

1

4 R
 for NCMA, and 

2,

1

4 RR
 or 

2,

1

4 IR
 for NMCMA. 

  After 12000 training symbols, the following 2000 re-
ceived symbols are tested for evaluating the equalization 
performance. The symbols’ constellation after CMA 
equalizer is illustrated in Figure 3, whose estimation 
error is comparatively large. For comparison, the sym-
bol's constellation after NCMA equalizer is shown in 
Figure 4, where the equalized symbols more concentrate 
on their supposed position and their bias are much 
smaller. To be clear, the MSEs of CMA and MCMA are 
plotted in Figure 5. One can see that, NCMA, with the 

 
Figure 3. Constellation of 16-QAM symbols after CMA 
equalizer. 

 
Figure 4. Constellation of 16-QAM symbols after the pro-
posed NCMA equalizer. 

 
Figure 5. Performance comparison of CMA and the pro-
posed NCMA in terms of MSE. 
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MSE of approximate –13 dB, performs better than CMA, 
with the MSE of approximately –7 dB. 
  Similarly, the symbols’ constellation after MCMA 
equalizer is illustrated in Figure 6, whose estimation 
error is comparatively large. For comparison, the sym-
bol's constellation after NMCMA equalizer is shown in 
Figure 7, where the equalized symbols much more con-
centrate on their supposed position and their bias are 
much smaller. To be clear, the MSEs of MCMA and 
NMCMA are plotted in Figure 8. One can see that, 
NMCMA, with the MSE of approximately –30 dB, per-
forms better than MCMA, with the MSE of approxi-
mately –15 dB. 
 
5. Conclusions 
 
Two Nonlinear blind equalizers: NCMA and NMCMA, 
were proposed in this paper by applying the NTF into the 
existing CMA and MCMA, respectively. The NTF effect  

 
Figure 6. Constellation of 16-QAM symbols after MCMA 
equalizer. 
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Figure 7. Constellation of 16-QAM symbols after the pro-
posed NMCMA equalizer. 
 

 
Figure 8. Performance comparison of MCMA and the pro-
posed NMCMA in terms of MSE. 
 
on linear blind equalizers was theoretically analyzed. It is 
shown that the NTF can make their decision regions 
sharper so that the proposed NCMA and NMCMA are 
more robust against the convergency error than CMA 
and MCMA, respectively. Computer simulations demon-
strate that, for 16-QAM symbols, NCMA can reach up to 
approximately –13 dB MSE compared with –7 dB by 
CMA, and NMCMA can reach up to approximately –30 
dB MSE compared with –15 dB by MCMA. 
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