
Int. J. Communications, Network and System Sciences, 2009, 3, 169-247
doi:10.4236/ijcns.2009.23021 Published Online June 2009 (http://www.SciRP.org/journal/ijcns/).

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

Fast and Noniterative Scheduling in Input-Queued Switches

Kevin F. CHEN, Edwin H.-M. SHA, S. Q. ZHENG
Department of Computer Science, University of Texas at Dallas, Richardson, Texas, USA

Email: {kchen, edsha, sizheng}@utdallas.edu
Received April 22, 2009; revised May 22, 2009; accepted May 25, 2009

ABSTRACT

Most high-end switches use an input-queued or a combined input- and output-queued architecture. The
switch fabrics of these architectures commonly use an iterative scheduling system such as iSLIP. Iterative
schedulers are not very scalable and can be slow. We propose a new scheduling algorithm that finds a
maximum matching of a modified I/O mapping graph in a single iteration (hence noniterative). Analytically
and experimentally, we show that it provides full throughput and incurs very low delay; it is fair and of low
complexity; and it outperforms traditional iterative schedulers. We also propose two switch architectures
suited for this scheduling scheme and analyze their hardware implementations. The arbiter circuit is simple,
implementing only a FIFO queue. Only half as many arbiters for an iterative scheme are needed. The arbiters
operate in complete parallel. They work for both architectures and make the hardware implementations sim-
ple. The first architecture uses conventional queuing structure and crossbar. The second one uses separate
memories for each queue at an input port and a special crossbar. This crossbar is simple and also has a re-
duced diameter and distributed structure. We also show that the architectures have good scalability and re-
quire almost no speedup.

Keywords: Switch Architecture, Switch Fabric, Fabric Scheduling, SRA

1. Introduction

There has recently been renewed interest in building new
switch fabric architectures as line rates go from 10 Gbps
to 1 Tbps and beyond. Existing architectures are not very
scalable. As memory technology evolves, switching
techniques that would otherwise be considered unwork-
able may now be implemented. New switch fabrics can
and should now be fast and highly scalable. In this paper,
we propose and analyze two such novel fabric architec-
tures.

By queuing structure, there are input-queued (IQ)
switch, output-queued (OQ) switch, and combined input-
and output-queued (CIOQ) switch. An OQ switch buff-
ers cells at the output ports. OQ switches guarantee
100% throughput since the outputs never idle as long as
there are packets to send. OQ switches are hard to im-
plement. An N × N OQ switch must operate N times
faster than the line rate. Memory technology cannot meet
that kind of high-speed requirement. Therefore, IQ and
CIOQ switches have gained widespread attention and
adoption. The most common architecture is the CIOQ

switch in which buffering occurs both at the input and at
the output. Output queues are for traffic scheduling
which provides fine-tuned service support. Both IQ and
CIOQ switches use virtual output queuing by which each
input maintains a separate queue for cells destined for
each output or of a flow of a certain service requirement.
Such a queue is called a virtual output queue (VOQ).
Virtual output queuing removes head-of-line (HOL)
blocking that can severely limit the throughput when
only a FIFO queue is used for all the packets at each in-
put.

It is customary to use a crossbar to interconnect the
input and output ports due to its simplicity and non-
blocking property. A crossbar can either have memory or
have no memory at its crosspoints. Our work is for IQ
switch architectures using unbuffered crossbars. Cross-
bar access by the input cells has to be arbitrated by the
fabric scheduler. Traffic scheduling manipulates the cells
further to meet rate and delay requirements of various
services. Fabric and traffic schedulers can be considered
as separate identities. They must work in coordination to
maximize datapath utilization.

186 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

The IQ fabric scheduling problem is key for building
efficient switches. Many algorithms have been proposed
for scheduling an IQ switch to obtain high throughput.
The algorithms all find a matching between the inputs
and outputs, but they were derived with different tech-
niques. Under the matching paradigm, the scheduler
matches an input with an output and finds the maximal
number of those pairs in a time slot. This usually takes a
few iterations for one time slot. Numerous algorithms
work in this iterative way and are hereof called iterative
algorithms. Those pairs are found globally and do not
conflict one another. The scheduler uses the information
on the states of the input queues and the output readiness
to make the matching decision.

The cell scheduling problem for switches is conven-
tionally modeled as bipartite matching over a graph G as
follows. In each time slot, G is constructed such that
there is an edge from each input port to each output port.
The ports are represented as vertices or nodes in G. This
implies that at most one cell from a VOQ at an input port
can be sent to its destined output port, which corresponds
to one edge in G being selected. The bipartite matching
over G is the process to find a set of edges such that their
vertices do not overlap. A maximal matching contains
the largest number of edges possible to be selected in a
time slot in the number of iterations set according to an
iterative algorithm. A maximum matching selects the
maximum number of edges, i.e. every input port is
matched to a distinct output port if the input port has a
queued cell that is going to a distinct output port.

Our scheduling algorithm, called SRA, is noniterative.
Matching is done in a single iteration during a time slot
and its efficiency is much higher. SRA runs in O(1) time
and always finds a maximum matching, although the
matching is done over a graph G' modified after G as to
be detailed in Section 4. In G', the VOQs at the input
ports along with the output ports form the vertices in-
stead of just the input ports plus the output ports as in G.
Matching still aims to find the largest number of edges of
G' that do not overlap and is done in a single iteration.
The basic idea is to allow each input port to send up to
multiple cells each from a different VOQ to a different
output port in a time slot. Arbitration is implemented by
a single round-robin arbiter for each output port. The
SRA algorithm is different from the iterative algorithms
in terms of the arbitration process. In SRA, an arbiter,
consisting of a FIFO queue, is maintained for each out-
put port. The arbiter selects the input port corresponding
to the first queued cell. Hence, the arbitration done in
iSLIP and other iterative algorithms is not needed.

For hardware implementation, we propose two archi-
tectures to support SRA. Both architectures rely on the
arbiter construct which is just a FIFO queue. They differ
in queuing structure and the crossbar each uses. The first
one uses conventional queuing structure and crossbar.

The second uses separate memories for VOQs at each
input port and a special crossbar.

In this paper, we show that the SRA algorithm is
workable, simple, fast, and scalable. We analyze
SRA’s characteristics. Simulation results also demon-
strate that SRA is far more efficient than the popular
matching algorithms. We show that the SRA architec-
tures are simple, fast, and effective. We also discuss
the hardware implementations. The architectures could
be used in switches and routers. No other similar ar-
chitectures have been proposed. We hope our archi-
tectures provide viable alternatives for designing next-
generation switch fabrics.

Note that the second architecture assumes a multiple-
multiplexer structure and requires VOQs be buffered in
separate memories and connected to the custom cross-
bar differently from the first architecture. Therefore,
throughout the paper, we use the term “input-queued
switch” to refer only to the fact that traffic is buffered at
the input ports in VOQs in such a switch, regardless of
the memory makeup for the VOQs and the crossbar
structure.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related work including the very latest.
We discuss the iterative algorithms in detail. Section 3
gives an overview of the SRA fabric, in comparison with
a conventional iterative one. Section 4 contains the SRA
algorithm and its complexity analysis. Section 5 contains
the analytical results of the SRA algorithm. Section 6
contains the simulation results that show SRA’s per-
formance in handling various traffic types, scalability,
and cell blocking at input ports. Section 7 shows the
hardware aspects of SRA. It covers queuing structure,
crossbar, arbiter, and architecture scalability. It also in-
cludes a comparison of the architectures to the Knockout
Switch. Section 8 concludes the paper, where we high-
light the achievements and innovations of this research
work.

2. Related Work

The field of IQ switch scheduling boasts of an extensive
literature. Many algorithms exist, derived with different
techniques. Some of them are of more theoretical import,
whereas others are more oriented to implementation.
Here we review a representation of the works.

In graph-theoretic terms, the cell scheduling problem
for switches can be modeled as a bipartite matching
problem as follows. Let Ii and Oj denote input port i and
output port j respectively. Let VOQi,j denote the VOQ at
Ii holding cells destined for Oj, and VOQi,j(t) the length
of VOQi,j at time slot t. In each time slot t, we construct a
bipartite graph G(V,E) such that V = V1 ∪ V2, V1 = {Ii|1 ≤
i ≤ N}, V2 = {Oj|1 ≤ j ≤ N}, and E = {(Ii,Oj)|VOQi,j(t) >
0}. Graph G is called an I/O mapping graph. A matching

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 187

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

is defined as the set M ⊆ E such that no two edges in M
are incident to the same node in V. A maximum match-
ing is one with the maximum number of edges, whereas
a maximal matching is one that is not contained in any
other matching found in an iteration when a matching is
done iteratively in a prefixed number of iterations in a
time slot.

Work by McKeown et al. [1,2] shows that a 100%
throughput can be achieved by using a longest queue first
(LQF) or an oldest cell first (OCF) scheduling policy for
independent identically distributed (i.i.d.) Bernoulli traf-
fic with uniform or non-uniform destinations. LQF and
OCF are both maximum weight matching algorithms.
McKeown et al. proved the result using a linear program-
ming argument and quadratic Lyapunov function. In re-
lated work, Mekkittikul and McKeown [3] used the longest
port first (LPF) scheduling policy to obtain full throughput.
Those scheduling policies appear to be too complex for
hardware implementation due to the inherent O (N3logN)
complexity of maximum weight matching.

Iterative techniques can be used to find the bipartite
matching. Example iterative algorithms include iSLIP
[4,5], 2DRR [6], and WRR [7]. These algorithms all use
round-robin; the first two are unweighted and the last one
is weighted using idling hierarchical round-robin. As
discussed in [2], these solutions can get a throughput of
more than 90% for uniform traffic but will fare worse
when traffic is nonuniform. These algorithms have an
O(N2) worst-case time complexity. Although they can
converge in O(logN) iterations, they tend to incur long
delay and have poor scalability.

Yang and Zheng [8] proposed an iterative scheduler
that uses space-division multiplexing expansion and
grouped inputs/outputs to realize speedup while switch
fabric and memory operate at line rate. They formulated
packet scheduling as a maximum bipartite k-matching
problem. They proved by a fluid model method that full
throughput can be obtained when the expansion factor is
2, with only mild restrictions on traffic arrivals. They
also proposed the kFRR scheduling algorithm to imple-
ment the multiplexing and grouping for full throughput.
Since their scheme is iterative, it is prone to long delay
and low scalability.

Chao et al. proposed and studied another matching
architecture called dual round-robin matching (DRRM)
[9-11]. DRRM is similar to iSLIP and does request,
grant, and accept slightly differently. It uses a bit-sliced
crossbar, and a token-tunneling technique to arbitrate
contending cells. DRRM can support an aggregate band-
width of over 1 Tbps using CMOS technology. DRRM
can sustain 100% throughput for uniform traffic. It is
slightly slower than iSLIP under certain types of
non-uniform traffic.

Some other matching techniques guarantee a 100%
throughput for both uniform and nonuniform traffic.
Chang et al. [12,13] developed a scheduling algorithm

based on the finding of Birkhoff and von Neumann that a
doubly stochastic matrix can be decomposed into a
weighted sum of permutation matrices. This algorithm
works for traffic of both one priority and two priorities.
For the latter, scheduling is optimized for fairness as well
as efficiency. In all cases, throughput reaches 100%.
Their work is important theoretically, but the switch ap-
pears to be too complex (of O(N4.5)) to be implemented
in hardware. In related work, Chang et al. [14] general-
ized the Pollaczek-Khinchin formula to calculate the
throughput of input-queued switches. This work is based
on an abstraction of input-queued switches and thus of-
fers limited insights into the actual workings of those
switches.

Using fluid model techniques, Dai and Prabhakar [15]
extended the result of McKeown et al. [1,2]. Dai and
Prabhakar proved that one can get 100% throughput us-
ing a maximum weight matching algorithm in an IQ
switch subject to arbitrarily distributed input traffic as
long as the traffic obeys the strong law of large numbers
and does not oversubscribe any input or output. Dai and
Prabahakar’s work is theoretical in that it is not schedul-
ing algorithm specific.

When a scheduling algorithm sustains 100% through-
put, the IQ switch can emulate an OQ switch. For in-
stance, 2DRR achieves the same saturation throughput as
output queuing [6]. There has also been attempt to ex-
plicitly emulate an OQ switch by an IQ switch. The work
of Gourgy and Szymanski [16] shows that the emulation
can be done by tracking the behavior of an ideal OQ
switch and matching it to the IQ switch by metrics such
as “lag”. Based on those metrics, Gourgy and Szymanski
designed several algorithms that perform as well as other
existing ones in terms of fairness and complexity. OQ
emulation studies are theoretical and offer no practical
solutions to IQ switching.

In particular, the iSLIP class of iterative matching al-
gorithms, which are designed for finding maximal
matchings, is the most widely used in commercial IQ and
CIOQ switches. High-end routers of late are Cisco
CRS-1 and Juniper TX Matrix. Both are for lumping
together multiple smaller routers to form a single larger
router. CRS-1 can interconnect up to 72 boxes for a total
capacity of 92 Tbps. TX Matrix connects up to 4 T-640
routers for a capacity of up to 2.56 Tbps. While CRS-1
uses a 3-stage Benes switch fabric, TX Matrix uses a
standard iterative switch fabric. However, the constituent
smaller routers for both CRS-1 and TX Matrix all use a
standard iterative switch fabric.

Of latest research work is the π-RGA iterative algo-
rithm proposed by Mneimneh in [17]. This algorithm
does request, grant, and accept in every iteration of a
time slot. If a maximal matching is found in the first it-
eration, then the switching is done in one iteration for the
time slot. Otherwise, the result is carried over for match-

188 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

ing calculation in the next time slot. As any other itera-
tive algorithm, π-RGA needs a speedup of 2. The paper
shows that for certain uniform and non-uniform traffic
patterns, one iteration is enough to achieve maximal
matching, which thus amounts to shortened time slots
and increased speed.

However, π-RGA does not appear to have overcome
the efficiency hindrances as with other iterative algo-
rithms. In both throughput and delay, π-RGA apparently
performs worse than iSLIP under uniform traffic.

A variant of iSLIP itself is DSRR. Matching algo-
rithms also include randomized ones. A precursory ran-
domized matching algorithm is PIM. Later ones include
those proposed in [18,19]. As we are to compare SRA to
PIM, iSLIP, and DSRR in simulations, here we review
these three algorithms.

The parallel iterative matching (PIM) algorithm of
Anderson et al. [20] is the first randomized iterative al-
gorithm. With enhancements, PIM can ensure certain
fairness and throughput. By PIM, each input sends a bid
to all the outputs for which it has a buffered cell. An
output randomly selects a bid to grant access and notifies
each input whether its request was granted. If an input
receives any grants, it chooses one to accept and notifies
the output. Randomization is relatively expensive. PIM
performs poorly when run in one iteration and finds
maximal matching in O(logN) iterations.

The iSLIP algorithm works in iterations each consist-
ing of three steps as described in [4]:

Step 1: Request. Each unmatched input sends a request
to every output for which it has a queued cell.

Step 2: Grant. If an unmatched output receives any
requests, it chooses the one that a pointer gi points to in a
round-robin schedule in descending priority order. The
output notifies each input if its request was granted. Then
gi is advanced (modulo N) one location beyond the
granted input if the grant is accepted in Step 3 of the first
iteration.

Step 3: Accept. If an unmatched input receives a grant,
it accepts the one that a pointer ai points to in a
round-robin schedule in descending priority order. Then
ai is advanced (modulo N) one location beyond the ac-
cepted output.

The double static round-robin (DSRR) algorithm [21]
is an enhancement to iSLIP and works similarly to iSLIP.
It also has request, grant, and accept steps and differs
from the iSLIP in the following ways: 1) The g pointers
at the outputs are set to some initial pattern such that
there is no duplication. 2) The a pointers at the inputs and
the g pointers at the outputs are set to the same pattern. 3)
In Step 2, gi is advanced one location no matter the grant is
to be accepted or not by the input, i.e., it moves down a
location in each iteration. 4) In Step 3, ai is advanced one
location no matter there is an accept or not.

The initialization and pointer assignment peculiar to
the DSRR makes a big difference in improving the per-
formance of the iSLIP algorithm as we will see in Sec-
tion 6.

Iterative matching algorithms like the three above ap-
pear to have some drawbacks. First, they are not scalable.
They are very sensitive to the problem size. Their per-
formance degrades considerably when N becomes large.
Second, they require the fast feedback of the states of
both the input and the output ports. As a result, the
scheduler is centralized and has to be placed in a central
location. This not only impedes scalability, but also
worsens the fault-tolerance of the system.

3. Switch Fabric

Here we give a general description of the SRA switch
fabrics. We will describe the detailed hardware structures
of their components in Section 7. Figure 1(a) shows the
switch fabric architecture of an IQ switch according to
SRA. For easy comparison and review, Figure 1(b)
shows the switch fabric used for a typical iterative
scheme.

In both scenarios, the switch consists of N input ports,
an N×N memoryless crossbar interconnect, and N output
ports. Ingress traffic in cells is queued at the input ports.
There are N VOQs at each input port, one for each output
port.

Figure 1(a) is a drawing that applies to both architec-
tures that we are proposing in this paper. A typical fea-
ture of the architectures is that the output arbiters are
placed in a distributed manner. These N arbiters are in-
dependent of each other. Each arbiter implements a sin-
gle FIFO queue. Of course, the arbiters can be put in a
single chip in hardware.

Figure 1(b) represents the conventional input-queued
architecture initially studied by such works as [1,5,20].
In this architecture, the output arbiters (actually 2 lay-
ers of them) must be placed in a single-chip centralized
scheduler. In Figure 1(b), only the scheduler is shown.
The circuitries of the arbiters in the two layers are dif-
ferent as are they in the iterative and noniterative types
of fabrics. Arbiters will be discussed in detail in Sec-
tion 7.

The switch fabric excludes other functionalities that
may reside in the port cards such as IP lookup, segmen-
tation of cells in input cards, and demultiplexing and
reassembly of cells in output cards. The switch fabric
operates in a timing reference of its own. If the frequency
of the fabric’s timing is S times faster than the frequency
of the link feed, we say that the speedup of the fabric is S.
In this paper, we want to discern how much speedup is
needed for full throughput. We consider the cells as of
equal size. Cells are easier to synchronize and hence
implify scheduling. s

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 189

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

Input Ports/VOQs

1 1

NN

1

N

N

1

N

1

(Scheduler)
Output Arbiters

Output Ports

Crossbar
(N X N)

(a)

1 1

N

N

1

N

Input Ports/VOQs

N

N

Data Path

S
ch

ed
u

le
r

2

1

Crossbar
(N X N)

N

N

Output Ports

Data Path

(b)

Figure 1. IQ switch fabrics. (a) An SRA architecture. It has distributed arbiters. (b) An iterative architecture. This typically
has a centralized scheduler.

A crossbar is nonblocking and has a unified self-
routing algorithm to switch cells at its crosspoints as
needed. Fabric scheduling is to arbitrate how the cells
access the crossbar in an orderly fashion so as to maxi-
mize the crossbar utilization in a time slot.

Traffic feeds up to one cell into the fabric at each input
port every time slot of the line timing. If traffic exits the
switch one cell at each output port every line timing slot
if the output port is not empty, we say that the switch
achieves full throughput (100%) [1].

Our first architecture uses the same crossbar as any it-
erative switch fabric. Our second architecture has a
crossbar that is not entirely the same. The architecture is
thereof called “multiple-multiplexer switch”. In addition,
the VOQs at an input port are operated and connected to
the crossbar differently between the two architectures.
Architectural details will be discussed in Section 7.

In an SRA architecture (Figure 1(a)), for each output
port, there is an arbiter that keeps track of the input ports
having packets destined to it and their order of arrival.
Those arbiters can be placed near the input ports to keep
track of VOQ status easily. At each time slot, the arbiter
grants a send to the input whose cell arrived the earliest.
There is no memory existing for arbitration at an output
port. Neither is there backpressure applied from the out-
put ports. Backpressure is needed by many CIOQ archi-
tectures. Backpressure involves sending signals toward
input ports when certain congestion thresholds are
crossed in the queues at the output ports. Backpressure
exerts flow control. No backpressure usage is a distinct
feature of our architecture.

4. The SRA Algorithm

SRA stands for single round-robin arbitration. Each
output port uses a round-robin arbiter to select the input
port to send in a time slot. PIM, iSLIP, and DSRR all
have round-robin arbiters at both the input and output

190 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

ports. SRA has several significant advantages. In this
section, we describe the algorithm and then analyze its
properties that make it simple, fast, and scalable. The IQ
switch architecture supporting SRA is illustrated in Fig-
ure 1(a).

4.1. Description

Let G'(V', E') denote the bipartite graph defined as fol-
lows: V' = V'1 ∪ V'2, V'1 = {VOQi,j|1≤i, j≤N}, V'2 =
{Oj|1≤ j ≤ N}, and E' = {(VOQi,j,Oj) | VOQi, j(t) > 0, 1 ≤ i,
j≤N}. We call G' the modified I/O mapping graph. The
SRA algorithm is designed to find a maximum matching
in G'. Note that G' is different from G defined in Section 1
and the matching is done differently over G' than over G.

SRA is not iterative. It selects a set of up to N cells
to send to up to N outputs in a single time slot. Each
cell goes to a different output. In theory, these cells can
come from one, N, or any other number of inputs. That
is, each input can send up to N cells in a time slot. This
is where SRA differs from existing algorithms which
allow each input to send at most only one cell out in
each time slot. Apparently this increases efficiency
since there is little reason not to let the input send more
than one cell in a time slot when other inputs have no
cells to send.

The pseudocode of the SRA algorithm is shown in
Algorithm 1. In the pseudocode, the notation qstatus[ip]
represents whether the VOQs at input port ip is empty or
not. The notation IsEmpty(q[op]) represents whether the
queue at the arbiter for output port op is empty or not.
The notation Enqueue(ip, q[op]) means to add the num-
ber of input port ip to the tail of the queue at the arbiter
for output port op, whereas Dequeue(q[op]) means to
remove the head element from the queue at the arbiter
for output port op.

The SRA algorithm works as follows:
(1) At the outputs. Each output arbiter maintains a

again into the tail of the status queue, else the status ele-
ment for that input is gone.

(2) At the inputs. Upon receiving a grant, the input
checks if the corresponding VOQ is to become empty
if the cell has been sent. If yes, it sends a status signal
to the output arbiter indicating the VOQ is to be empty,
so the output arbiter will not keep an element for this
input in its FIFO queue again. Then the input port
sends a cell to the crossbar with the designated output
information. The input sends status information about
any of its VOQs to the corresponding output (arbiter)
only when the VOQ changes from being empty to
having a cell arrived and from having cells to becom-
ing empty.

Algorithm 1 The SRA Algorithm

Arbiter at output port op:

Initialization:

 1: for ip = 0 to N − 1 do
 2: qstatus[ip] ← 0
 3: end for

Arbitration:

 1: // Loop forever
 2: // Each iteration represents 1 time slot
 3: loop
 4: // Check for newly backlogged VOQs
 5: for ip = 0 to N − 1 do
 6: if VOQ[ip, op] is not empty and qstatus[ip] = 0 then
 7: Enqueue(ip, q[op])
 8: qstatus[ip] ← 1
 9: end if

10: end for
11: if !IsEmpty(q[op]) then
12: Get ip of head element of q[op]
13: Send a grant for op to input port ip
14: Dequeue(q[op])
15: if IsEmpty(q[op]) then
16: qstatus[ip] ← 0
17: else
18: Enqueue(ip, q[op])
19: end if
20: end if
21: end loop

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 191

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

4.2. Complexity

In each time slot (a cell time), a fabric scheduler must
perform a matching and synchronously switch on and off
the crosspoints of the crossbar to send up to N packets
out. High line rates ever stringently require a scheduling
action to be prompt. Since SRA finds a maximum
matching in a single iteration, it is capable of fast sched-
uling actions. Its time complexity is only O(1) since all
the operations in the algorithm take constant time to fin-
ish. On the other hand, an iterative algorithm doing mul-
tiple iterations would be too slow to support high line
rates.

SRA needs fewer messages to operate than an iterative
matching algorithm. The number of exchanged messages
a port has to process is equal to the product of N and the
number of service levels. Consider the case of best-effort
service only. For each matching, an output arbiter sends
only one grant message, an input can send up to N status
messages out if the status of all N VOQs changes. Over
the entire fabric, there are at most N2 messages ex-
changed between the inputs and the outputs. Unlike SRA,
iSLIP needs N2 requests, N2 grant notifications, and N
accepts for each iteration. For iSLIP to converge, at least
logN iterations are needed. Thus iSLIP needs a total of
(2N2+N) logN messages. PIM and DSRR each need
about the same number of messages as iSLIP.

It may be more accurate to compare the information
bits exchanged than analyzing the amounts of messages
sent by SRA and iSLIP. For SRA, N grants will be sent
from output ports to input ports. Hence a total of N2+N
bits are exchanged. For iSLIP, only the information bits
from the input ports to the scheduler and back to the in-
put ports should be considered. That will be also N2+N
bits, the same as for the other iterative algorithms. Of
course SRA only does one iteration but the others need
logN iterations.

In matching over G', in a time slot, each input can be
mapped to multiple outputs, but each output is mapped to
one input or is not mapped when there is no traffic des-
tined to it. Since only the arbiters decide and send grants,
this matching can be regarded as output constrained (and
input unconstrained). Yet iterative matching over G in-
volves both input and output ports for actions of request,
accept, and grant, and is thus both input and output con-
strained.

5. Performance Analysis

We first show that SRA matches the maximum number
of inputs to the maximum number of outputs in each
time slot. We then show that SRA sustains 100%
throughput and that it is fair.

Theorem 5.1. SRA always finds the maximum match-
ing in G'.

Proof. Let k(t) be the number of nodes in V'2 of G'
with non-zero degree at time slot t, and M' be any
matching of G' at time slot t. By the definition of M', k(t)
≤ |M'|. SRA guarantees a matching M* such that its size
is exactly k(t).

Alternatively, because there are N independent (dis-
joint) subgraphs in G' each of which corresponds to and
matches a particular output port, SRA guarantees to find
a maximum matching in each time slot.

That an input port can send m (1 ≤ m ≤ N) cells and
the input ports altogether are allowed to send no more
than N cells in a time slot is called the free rule. There
exist analytical studies of throughput under the free rule
[22-25]. These studies assume that traffic arrival is i.i.d.
Bernoulli with uniformly distributed destinations and
found that throughput can be 100% if the load does not
exceed 1.0.

Since SRA is a free-rule scheduling policy, so in the-
ory it should sustain 100% throughput. In fact, we can
show that SRA does so irrespectively of the traffic arri-
val patterns.

Theorem 5.2. SRA sustains 100% throughput.
Proof. Each input port keeps up to N VOQs. Assume

that all the VOQs destined to the same output port j at
the input ports bid for transmission in a time slot t. Let γ
be the throughput of these VOQs. Note that γ is equal to
the overall throughput. Let Nj be the number of HOL
packets at all the VOQs destined to output j in t. The
total number of HOL packets blocked at the VOQs in t is

Nb=Nj−ε(Nj) (1)

where ε(Nj)=min(1,Nj). More specifically, function ε is
defined as

0. x 0,

1 x 1,
 (x) {






In each time slot SRA sends up to N cells out and
there can be up to N cells arriving. Thus E[ε(Nj)]=γ in
steady state. Taking expectation of (1) gives

γ =E[Nj]−E[Nb] (2)

Let M be the total number of unblocked VOQs in t. Then

M=N−Nb (3)

By flow conservation, we have

E[M]ρ=γ (4)

where ρ is the probability that one of the M unblocked
VOQs gets a new cell to arrive in t. Taking expectation
on both sides of (3) and using (4), we obtain

E[Nb]=N−γ/ρ (5)

Let N'j be the number of HOL packets with destination
j in time slot t + 1. Let Aj be the number of HOL packets

192 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

with destination j arrived at the M sending VOQs. We
have the following dynamic equation:

N'j=Nj−ε(Nj)+Aj (6)

Then we can obtain the following mean-value equa-
tion as in Appendix A of [22]:

.
])[1(2

)]1([
][][

j

jj
jj AE

AAE
AENE




 (7)

For large values of N, Aj can be approximated by a
Poisson distributed random variable. This step follows
the proof by Karol et al. in Appendix A of [26] which
shows that as N → ∞, the steady-state number of HOL
packets at the VOQs destined for an output in each time
slot becomes Poisson. We can obtain

E[Aj]=E[ε(Nj)]=γ (8)

E[Aj(Aj−1)]=γ2 (9)

Using (8) and (9) and substituting (5) and (7) into (2),
we obtain the throughput formula by setting ρ=1:

21 1N N     (10)

Equation (10) implies that when N→∞, throughput is 1.
Actually when N is finite, (10) still gives a very close
approximation to the optimum value. For instance, when
N = 32, γ = 0.992.

Theorem 5.3. SRA is fair.
Proof. We consider a loading scenario more general

than uniform i.i.d. Bernoulli. Assume that the loading
rate at each input is the same λ and is admissible. Admis-
sible traffic does not oversubscribe any input or output
port. Let λij be the loading rate of traffic going from input
i to output j. We have

λij=δλ

where δ is the fraction of λ for traffic going from input
port i to output port j. Let μij be the portion of the service
rate μ at output port j that serves the traffic of λij. Then

μij=δμ

By the admissible rule, the rate of traffic arriving at
port j from all the input ports combined does not exceed
μ. Also, the output arbiter works in a round-robin fashion
serving each input port that has a cell in turn in each time
slot. By Theorem 5.2, traffic of λij will receive its fair
share of service. Hence we have the above equation.
Also, in steady state, λ = μ. Thus we obtain

λij=μij

The above equation holds for any given time period.
In a time period of m time slots, an arbiter j ensures λijm
time slots granted to input port i, since each arbiter works
round-robin on the status FIFO queue and any back-
logged input port is re-enqueued after it has got a turn to
send. Therefore, SRA is able to allocate the available

service rate to all input-output pairs in proportion to their
offered loads in any given time period.

Note that SRA is fair per VOQ or fabric-wide. Subse-
quently, per-port fairness is also guaranteed.

6. Performance Evaluation

We simulated SRA against PIM, iSLIP, and DSRR in
various traffic conditions. Performance metrics are cell
delay and throughput vs. offered load. Offered load is the
number of cells per time slot per input. The results show
that SRA outperforms the other three and provides high
throughput and low delay.

6.1. Uniform Traffic

We first tested the performance of SRA when the in-
coming traffic is i.i.d. Bernoulli with destinations uni-
formly distributed. Since SRA works in one iteration, we
first ran PIM, iSLIP, and DSRR for only one iteration.
We then ran them for four iterations. In all these cases, N
is 16. That is, the switch size is 16 × 16. We used the
same traffic pattern for all four schemes.

Figure 2 shows cell delay vs. offered load. When the
load is 20% or less, all four schemes perform the same.
But when the load increases, their performances are
significantly different. When the load is less than 60%,
PIM, iSLIP, and DSRR show about the same perform-
ance, while SRA is 6 times faster than the other three.
When the load exceeds 60%, PIM becomes instable
and iSLIP performs much better than DSRR. At this
time, SRA outperforms the others by many times over.
Compared to PIM and DSRR, iSLIP works much better.
In terms of throughput, the situation is similar as
shown in Figure 3.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
el

l D
el

ay
 (

C
el

l T
im

es
)

Normalized Load (Cells/Slot)

PIM
iSLIP

DSRR
SRA

Figure 2. Cell delay under uniform traffic (one iteration).

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 193

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

In the case of four iterations, PIM, iSLIP, and DSRR
all perform better than with one iteration. But compared
to SRA, they are still off by a few times as shown in
Figure 4 and Figure 5. The differentiation becomes the
clearest when traffic load reaches 96% and higher. The
advantage of DSRR over iSLIP is now obvious. DSRR
approaches PIM very closely overall. Both PIM and
DSRR perform better than iSLIP. The delay values for
PIM, iSLIP, DSRR, and SRA at load 99.5% are 217, 451,
265, and 91 cell times respectively. SRA outperforms the
others by 3 to 5 times at all load values.

Although PIM works better than iSLIP, PIM has its
problems as discussed in [4]. That is why iSLIP has
been adopted in many commercial switches. First, ran-
domness is hard to implement at high speed since ran-

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

%
)

Normalized Load (Cells/Slot)

PIM
iSLIP

DSRR
SRA

Figure 3. Throughput under uniform traffic (one iteration).

 0

 100

 200

 300

 400

 500

 600

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

A
ve

ra
ge

 C
el

l D
el

ay
 (

C
el

l T
im

es
)

Normalized Load (Cells/Slot)

PIM
iSLIP

DSRR
SRA

Figure 4. Cell delay under uniform traffic (four iterations).

dom selection has to be made over a time-varying set of
elements. Second, PIM can be unfair especially when the
inputs are oversubscribed. Third, PIM converges only
after several iterations.

Work on PIM is recent as in 1999 when Nong et al.
proposed an analytical model and derived closed-form
solutions on throughput, mean cell delay, and cell loss
probability [27]. They found that the maximum through-
put of the switch exceeds 99% with just four iterations
under i.i.d. Bernoulli traffic with cell destinations uni-
formly distributed over all the output ports. Our simula-
tions show the same throughput performance for PIM.
Our simulations also show that on throughput DSRR is
about the same as PIM, but iSLIP is off rather markedly
at high load. SRA’s throughput is closest to 100% among
all four algorithms at all times.

6.2. Bursty Traffic

We modeled bursty traffic using interrupted Bernoulli
process (IBP). IBP is the discrete version of interrupted
Poisson process. IBP is similar to two-state Markov-
modulated Bernoulli process, exponential on/off process,
and Pareto on/off process. Switch size is again 16×16.

IBP has two states (on and off) and is characterized by
three parameters α, p, and q. In each time slot, if the cur-
rent state is on, the state remains on in the next time slot
with probability p; if the current state is off, the state
remains off in the next time slot with probability q. In the
on state, a cell arrives in a time slot with probability α.
The length of on state, X, and the length of off state, Y,
have geometric distributions:

P{X=x}=(1−p) p(x−1)

P{Y=y}=(1−q) q(y−1)

The mean arrival rate or offered load, ρ, is

2

)1(

qp

q







Average burst length is

1

1
][

p
XEb




In each burst period, arrived cells all go to the same
destination. Thus b measures how bursty the traffic is.
In our simulations, we set b=128 cells and α=1. When
α is set, p is set. To get various loads, we just vary the
value of q.

As shown in Figure 6, SRA is faster than the other
three over all loads. PIM, iSLIP, and DSRR were run for
four iterations. At load 95.92%, the delay values are
4453, 5357, 4597, and 2391 cell times for PIM, iSLIP,
DSRR, and SRA respectively. In all times, PIM, iSLIP,
and DSRR are very close to each other, and SRA works
2 to 3 times faster than them.

194 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

Figure 7 shows how each performs in terms of
throughput. Again, SRA maintains the highest through-
put under all loads. Its throughput dips when load passes
90% but still less than the rest. Thus SRA is the most
stable at providing high throughput.

6.3. Effect of Switch Size

The performance of iSLIP degrades considerably as switch
size increases as shown in [4]. The switch slows down a
time when N doubles. We saw little slowdown with SRA
when switch size increases.

We ran a few simulations on an N × N switch with N
being 4, 8, 16, 32, and 64. Traffic is i.i.d. Bernoulli with
uniformly distributed destinations. As shown in Figure 8,
when N = 4, cell delay is the smallest. But when N takes
larger values, cell delay remains just about the same. That
implies that the SRA scheduling scheme provides the
same efficiency regardless of N. Thus SRA is scalable.

 98

 99

 100

 101

 102

 0.95 0.96 0.97 0.98 0.99 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

%
)

Normalized Load (Cells/Slot)

PIM
iSLIP

DSRR
SRA

Figure 5. Throughput under uniform traffic (four iterations).

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
el

l D
el

ay
 (

C
el

l T
im

es
)

Normalized Load (Cells/Slot)

PIM
iSLIP

DSRR
SRA

Figure 6. Cell delay under bursty traffic.

 97

 98

 99

 100

 101

 102

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

%
)

Normalized Load (Cells/Slot)

PIM
iSLIP

DSRR
SRA

Figure 7. Throughput under bursty traffic.

 0

 30

 60

 90

 120

 150

 180

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

A
ve

ra
ge

 C
el

l D
el

ay
 (

C
el

l T
im

es
)

Normalized Load (Cells/Slot)

N=4
N=8

N=16
N=32
N=64

Figure 8. SRA cell delay as a function of switch size (uni-
form traffic).

6.4. Input Blocking

Consider that the switching fabric used is a conventional
unbuffered N × N crossbar, as in our first hardware ar-
chitecture described in Section 7. SRA requires an input
port to be able to occasionally transmit multiple cells in a
time slot, each cell to a different output port. Assume
that an input port transmit k (1 ≤ k ≤ N) cells in a time
slot in such a situation. We call k cell multiplicity. Con-
tention of reading data at the same time from the same
input memory for multiple outputs is called input block-
ing. Our simulations show that the occurrence of input
blocking is very rare and indeed negligible.

The maximum input blocking delay occurs when N
reads have to be performed at one time. For a given input
traffic pattern, the probability of this occurrence is zero
under SRA. We did simulations for an N × N switch un-
der full load of uniform i.i.d. Bernoulli traffic and IBP

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 195

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

traffic when N is 16, 64, and 128. Table 1 shows the fre-
quency data we obtained. An input port can send zero,
one, or multiple cells in a time slot. When a send in-
volves multiple cells, multiple reads to the same input
memory, hence input blocking, occurs. Frequency of a
cell multiplicity is calculated by dividing the number of
sends of that particular cell multiplicity with the total
number of sends during the simulation duration.

The simulations indicate that k tends to be far smaller
than N. The chance for input blocking to happen at all is
also low. Specifically, the data in Table 1 show that for N
= 64 the occurrence of k > 2 is about 7% in the worst case.
That k > 5 virtually does not occur. The probability is 7.81
× 10−7 for k = 8 and 0 for k > 10. Most input ports send
only one cell or send none for a time slot. Some send two.
Thus input blocking is slight. Figure 9 shows graphically
the frequency of multiple reads when the load is full (1.0)
for uniform Bernoulli traffic. The above property of low k
holds true indifferently of N. Our simulations show that k
is nearly unchanged when N is 16, 64, and 128 under the
same uniform and bursty traffic conditions.

7. Switch Fabric Hardware

In this section, we discuss how to implement the SRA
algorithm in hardware. We propose two alternative ar-
chitectures that differ in the queuing structures and the
crossbars used. Both architectures use the same SRA
arbiters. The first architecture uses the same VOQs or-
ganization and the same crossbar as in a conventional

Table 1. Input blocking occurrence.

Frequency
N Sends

Bernoulli IBP

64

0
1
2
3
4
5
6
7
8
9

10–64

0.365469
0.371215
0.185188
0.060420
0.014478
0.002743
0.000426
0.000056
0.000003
0.000001
0.000000

0.371600
0.381245
0.180119
0.053726
0.011228
0.001824
0.000232
0.000023
0.000003
0.000000
0.000000

128

0
1
2
3
4
5
6
7
8
9

10–128

0.366870
0.369721
0.184585
0.060675
0.014747
0.002877
0.000454
0.000064
0.000007
0.000001
0.000000

0.373318
0.379410
0.180073
0.053620
0.011440
0.001870
0.000241
0.000025
0.000002
0.000000
0.000000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

F
re

qu
en

cy

Number of Sends per Port
Figure 9. Frequency of input blocking occurrences. N=64.
Full load of uniform Bernoulli traffic.

iterative switch fabric. The second uses a different queu-
ing structure and a crossbar that is designed specifically
for implementing the SRA algorithm. Compared to con-
ventional switch architectures that work for iterative
matching algorithms, the SRA architectures are simpler
and hence more effective in terms of area and power.

SRA has to perform certain operations due to input
blocking although their occurrence is rare. The distinc-
tive operations of SRA in each time slot are: 1) each in-
put must do k reads instead of a single read; 2) up to k
cells must be carried on a link to the crossbar; and 3) at
the crossbar these cells must be split onto separate inputs.
As we have discussed in Subsection 6.4, cell multiplicity
k incurred by SRA is low. Thus these peculiar operations
can be implemented in hardware with adequate simplic-
ity, as in our two architectures.

7.1. Queuing Structure and Crossbar

As we have mentioned already, the two architectures we
are proposing differ mainly in the queuing structure and
crossbar each uses. Here we discuss the two architectures
and how they are distinguished by their queuing structure
and crossbar. We call the two uses of queuing structure
and crossbar roughly as designs.

7.1.1. Design I
This design uses the vintage queuing structure and
square crossbar that have been used for iterative match-
ing algorithms since certainly iSLIP [4]. But, of course,
it uses the much simpler SRA arbiters. This design can
overcome input blocking. The architecture is shown in
Figure 10.

With this design, input blocking may simply be solved
in this way: Whenever there is more than one cell to be

196 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

sent by an input port in a time slot, make that time slot a
little bit longer, enough for the multiple reads to com-
plete. In fact, this may be a very feasible solution.

This solution is to allow each input port to send all k
cells in a time slot. Thus, SRA inflicts no cell loss which
is expensive. This is workable since k is never more than
10, and to make k reads causes a negligible extra delay
than one read. It might be worth noting that the delay can
be negligible mainly owing to fast memories and the
high rate within the switch.

Input blocking would be a nonissue if the input port
memory is capable of concurrent read. Should the mem-
ory technology be unavailable, other means must exist to
mitigate the delay.

Memories supporting concurrent reads are being made.
The SigmaRAMTM memories of synchronous SRAMs
had been planned for quite some time that will be capa-
ble of fast, random, multiple reads [28]. Current speed of
existing SRAMs is as fast as 2 ns per operation with a
clock rate of 333 MHz and a 24 Gbps throughput. Op-
erations for mostly reads include access to look-up tables
and parameter memory (e.g., QoS parameters, conges-
tion avoidance profiles, min/max bandwidth limits). For
these operations the common I/O SigmaRAM products
provide very high bandwidth per pin and total memory
bandwidth. The faster the memory speed, the less the
impact of input blocking on fabric delay.

High-speed fabric rate diminishes the delay of input
blocking. Memory speed needed to support the high data
rate also abates the effect of input blocking. Operations
of multiple reads cause only negligible extra delay. For a

4321

Output Ports

Input Ports

2

1

3

4

Figure 10. A 4 × 4 switch fabric that uses a square crossbar
and contiguous memory for all VOQs at each input port.
There is one data link (horizontal line) from an input port
to the crossbar.

40-Gbps fabric, getting one 53-byte cell out of the input
memory would take about 11 μs. Simulations done on a
real 40-Gbps switch fabric show that extra input block-
ing delay is merely 0.1 to 0.2 μs [29]. The fabric has 128
ports and carries IMIX traffic. The delay is incurred by
doing up to 128 reads from the input memory at the same
time. That is about 1% of the delay to perform just one
read.

With SRA, speed gain appears to outweigh speed loss
due to possible input blocking. SRA gets N cells sent to
the outputs by simply letting the queue head element at
the output to send and sending one grant signal back to
the inputs. Using an iterative matching scheme, this
process would take many iterations of request, grant, and
accept with numerous signals sent. SRA removes this
complexity at the expense of a much smaller delay of
multiple reads. In view of this and the other aforemen-
tioned facts, input blocking in this context is a benign
tradeoff for simplicity and speed.

With a conventional crossbar, each input port needs
only one wire to connect to the crossbar by following the
shortest path. The crossbar, being self-routing, will route
the cells from different input ports to their destinations.
Using one wire is workable and the crossbar is necessary
because an input port can send at most one cell to one
arbitrary yet distinct output port. The cell on the con-
necting wire can be going to any of the N output ports.

With SRA, an input port can send multiple cells going
to different output ports in a time slot. The crossbar
needs to direct the multiple cells arriving to it so that the
cells go to separate inputs of the crossbar with correct
synchronization.

7.1.2. Design II
This new switch architecture (Figure 11) is different
from Design I. It uses separate memories for the VOQs
and also a special crossbar. It is so suited to combat input
blocking.

At an input port, traffic arrival is normalized to be one
cell per time slot. Each input line card has N separate
memories, one for each VOQ. An input line is connected
to a 1×N demultiplexer, which distributes incoming
packets (segmented to cells) to different VOQs. Since
each VOQ works over a separate memory, it needs a
separate transmitter. Multiple transmitters need to trans-
mit cells from corresponding VOQs simultaneously in a
time slot to tackle input blocking. Each input port needs
N transmitters.

In this architecture, an input port and hence VOQk,j,
where 1 ≤ k ≤ N, are connected to output Oj via an N × 1
multiplexer (MUX). The N × N crossbar consists of N
MUXs of size N × 1. As such, the architecture may be
better called a multiple-multiplexer (MMUX) switch.

As shown in Figure 11, this fabric has the following
feature: At any time, each output port j is connected to at

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 197

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

most one VOQ at input i (VOQi,j) and each input port can
have up to N VOQs connected to output ports. Note that
such a pattern is exactly a maximum matching of G'
found by SRA. Clearly, the MMUX crossbar has O(N2)
crosspoints, resulting in a complexity of O(N2), which is
the same as the complexity of a conventional N × N
crossbar.

Besides being suitable for SRA, this new fabric has
two additional advantages compared with conventional
crossbar. First, the MMUX crossbar has a reduced di-
ameter, which is the maximum number of crosspoints on
an input-output path. With N N × 1 MUXs, the diameter
of the crossbar, which depends on the diameter of an N × 1
MUX, is N, whereas the diameter of a conventional
crossbar is 2N. If each of the N N × 1 MUXs were im-
plemented as a (self-routable) binary tree, then the di-
ameter of this crossbar would be logN. Implementing a
crossbar by electrical switching elements, the reduced
diameter corresponds to smaller signal delay. If each
crossing point is implemented by an electro-optic
switching element, then the reduced diameter corre-
sponds to less crosstalk and power loss. In fact, crosstalk
virtually does not exist in optical implementation of the
MMUX crossbar because there do not exist two connec-
tion paths in the fabric sharing a crosspoint at any time
according to SRA.

The second advantage of this fabric is that it has a dis-
tributed control, as a result of the distributed feature of
SRA. In the fabric, cell scheduling and transmission for
each output port is totally independent of other output
ports. Thus, the fabric can be considered as N subsystems,
each consisting of all the VOQs designated to a particu-

4

4321

1

2

3

Output Ports

Input Ports

Figure 11. A 4 × 4 MMUX switch fabric in which each
VOQ can get a link to an output port. The links (horizontal
lines) are data lines.

lar output port and a MUX that connects these VOQs to
their corresponding output. Then, the problem of syn-
chronizing the entire fabric is reduced to synchronization
of independent subsystems. This feature is particularly
important when N is large.

The MMUX crossbar is different from the standard
square crossbar. In this crossbar, each input can send 1 or
more cells per time slot, and each output can receive
none or 1 cell per time slot. In a standard crossbar each
input/output can send/receive none or 1 cell per time slot.
The MMUX crossbar is more powerful than a standard
crossbar; it can do everything a conventional crossbar
can do, but the converse is not true.

The question is how to reduce the usage of transmit-
ters to make the hardware more scalable? As described in
Subsection 6.4, simulations indicate that cell multiplicity
k is low: an input port virtually never sends more than 5
cells in a time slot even for N=128, a reasonably large
switch size. To exploit this property, the following ap-
proach can be taken. The resulted structure can be re-
garded as a variant to Design II proper.

For each input, instead of using N transmitters, use k
transmitters. The total number of transmitters is now kN,
much smaller than N2. As before, each input has N single
port memory modules, one for each VOQ. But each input
needs an N × k switch and a k × N switch. The N × k
switch is used to select and connect any k VOQs to the
inputs of k transmitters. The k × N switch is used to con-
nect the outputs of k transmitters to k outputs corre-
sponding to the k selected VOQs.

The advantage of this approach is reduced number of
transmitters and no memory access speedup. The disad-
vantage is additional cost due to the N × k and k × N
switches. Total cost is 2kN2 = O(N2) crosspoints. But this
may be worthwhile considering how many transmitters
are saved.

7.2. Arbiter Structure and Layout

The hardware structure of an iterative matching scheme
as that shown in Figure 21 of [4] and Figure 1 of [30] has
two layers of arbiters: one consists of N grant arbiters
and the other N accept arbiters. The arbiters of both lay-
ers have to work together to coordinate and phase the
grant or accept actions. As such, all of the arbiters must
be placed together, constrained by a state memory and
update logic to receive requests from the VOQs next to
the input ports, and by a file of decision registers next to
the cross bar, thus forming a centralized unit. An arbiter
itself typically takes on a round-robin structure (made of
priority encoders) as in [4,31,32] or a tree or binary tree
structure as in [30,33]. All have a O(logN) gate delay and
consumes O(N) gates.

198 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

N

N

N

N

(4 x 4)
Crossbar

Arbiters
In

p
u

t
P

o
rt

s/
V

O
Q

s

Figure 12. SRA arbiter layout. The dashed arrows indicate
that data cells go from the input ports to the crossbar sepa-
rately.

SRA needs only one layer of N arbiters as shown in
Figure 12. The arbiters work in complete parallel, with-
out any coordination or centralized arbitrating hardware.
Thus they can be placed in a chip distributedly. More-
over, the arbiter itself implements only a FIFO queue and
the associated operations such as enque and deque. The
FIFO queue implies round-robin, whereas the discrete
arbiters embody overall scheduling. As pointed out in
Subsection 4.1, the size of the queue is N.

In Figure 12, the paths from input ports to the arbiters
are independent of the data traffic paths as shown in Fig-
ure 11. There is no communication between the arbiters
and the crossbar. Also, the layout applies to both cases
where one wire (as in a conventional iterative fabric) or 4
wires (as for the MMUX fabric shown in Figure 12) are
used to link an input port to the crossbar.

In hardware, a FIFO may consist of a set of read and
write pointers, storage, control logic, and read and write
lines. The read/write pointers are used to track the head

W
ri

te
 C

o
n

tr
o

l

Data In

Q
u

eu
e

S
ta

tu
s

F
la

g
s

E

E

E

E

D
em

u
lt

ip
le

xe
r

R
ead

 C
o

n
tro

l

M
u

ltip
lexer

Data Out

1

3

N

2

Figure 13. Hardware schematic of a FIFO device that can
be used as an SRA arbiter. The elements may actually re-
side in contiguous memory.

and tail of the queue for deque and enque operations and
generate queue status flags such as Empty and Full. Read
and write lines are used to read out and write in data. In
relation to the SRA algorithm, deque corresponds to
grant and enque to update of input state. Each will need
only one wire (data line) for proper connection to each
input port. Storage may be SRAM, flip-flops, and latches.
Control logic or FIFO controller contains read and write
clocks, enforces synchronization, and drives the read and
write pointers. A FIFO “node” needs to store only the
number of the input port which, for instance, can be 8
bits to support 64 ports. The complexity of the arbiter:
gate delay O(1) and number of gates O(N).

FIFO hardware implementations are numerous. Figure
13 shows a hardware schematic of a FIFO device that fits
the design features stated above. It is drawn in reference
to Figure 1 of [13]. Work [34] shows a FIFO design that
has more features than needed for an SRA arbiter, but is
a good source for device details. In Figure 13, the data
input port can be considered as consisting of the N wires
coming from the N input ports, and the data output port
N wires going to the input ports. The data input demulti-
plexer writes data into an element pointed to by the write
pointer, whereas a data output multiplexer can be con-
figured to read data from an element pointed to by the
read pointer. Each of the elements marked E1, · · ·, EN
needs to store logN bits. The elements can be in one con-
tiguous piece of memory. The blocks for read, write, and
queue status flags can be integrated into one controller.
The design in [34] shows how all N FIFOs (arbiters) can
be put in a single device that has nearly the same struc-
ture as what is shown in Figure 13.

In essence, the SRA arbiter is simpler. The arbiters
needed for SRA scheduling are disparate. They can be
placed in one chip with simple supporting components to
perform overall scheduling.

7.3. Scalability

In Subsection 4.2, we showed that SRA can support high
line rate and uses less auxiliary messages to make arbi-
tration decisions. These properties plus the ones below
indicate that SRA is more scalable than conventional
iterative fabrics.

First, the SRA scheduler can expand to handle very
large N without adversely affecting speed. This is dem-
onstrated by our simulations as shown in Subsection 6.3.
In contrast, an iterative algorithm degrades considerably
in speed when N increases. The degradation is caused by
the very arbitration logic of the algorithm more than by
its iterations.

Second, SRA does not need constant feedback from
the outputs about their readiness. CIOQ switches need
this feedback for the outputs to make granting decisions.
Therefore, the SRA scheduler need not be in a central

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 199

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

location. The output arbiters can be placed near the input
ports such that the input status updates can be done more
easily. These output arbiters can be spatially distributed
and execute in parallel (Figure 1(a)).

Third, SRA can more rigorously ensure scalability.
Between SRA and a conventional iterative fabric, given
the same circuit complexity, SRA has increased scalabil-
ity, as we elaborate below.

Let Ts be the time of one round (iteration) of arbitra-
tion. An iterative algorithm takes TslogN time for one
time slot, while SRA takes Ts time for one time slot.
Consider that a time slot takes time Tc. In order for an
iterative algorithm to work, it must meet the following
condition:

Ts logN ≤ Tc. (11)

Since Tc is constant, when N is large, (11) cannot be sat-
isfied. At high line rates, Ts must decrease, (11) becomes
harder to satisfy. But SRA needs only to satisfy Ts ≤ Tc.

SRA completes an arbitration in a single round, so the
time required for scheduling for one time slot is reduced
significantly. Thus, SRA is more scalable in the sense of
satisfying stringent real-time requirement.

In particular, the SRA arbiter circuit is less complex
than the other components in the two SRA fabrics. The
fabrics are thus scalable by the criterion of Li, Yang, and
Zheng that the arbitration circuit should not be more
complex than the interconnect [35].

Many scheduling algorithms we referenced in Section 2
require complex hardware if they are implementable at
all. Li et al. [35] proposed to measure the complexity of
a scheduling algorithm in an IQ switch by its structural
complexity in hardware against that of the interconnect.
They showed that a scheduler not more complex than
any nonblocking interconnect can perform as well as
non-scalable schedulers. Structural complexity is meas-
ured by the number of links (wires) used in the hardware
in terms of switch size N.

7.4. Speedup and Egress Memory

SRA requires little speedup if any at all. Ideally, a cell
gets out at an output each cell time of the line rate. There
are no holdups anywhere in the fabric. The operation that
takes the most time is sending the grants to the inputs
and for the inputs to pass out the cells. It takes constant
time for an output to dequeue the head element in the
FIFO queue.

Factoring in input blocking, the speedup of this archi-
tecture S < 1 + 10−6 ⇒ S = 1. Thus it is fair to say that
this architecture operates in line rate and needs no
speedup. Note that this speedup is lower than the best and
commonly believed speedup value of 2 for IQ switching.

In contrast, PIM, iSLIP, and DSRR complete a match-
ing in logN iterations. This needs complex hardware to
sustain small speedup. SRA completes a matching in one

iteration with much fewer messages. The hardware is
less complex yet to support no speedup.

SRA makes the fabric to be strictly scheduled. The
scheduled fabric is a pull-type one as opposed to a push-
type one. In this fabric, cells at the inputs wait to be ex-
plicitly summoned by the outputs into the fabric. No
backpressure from the outputs is needed. Complete states
of the VOQs at each input are made available to the out-
put arbiters. Therefore, egress memory is not needed by
arbitration in an SRA fabric. SRA is a one-hop schedul-
ing scheme. As line rates increase, egress memory adds
significant cost and latency in the system’s datapath.
Egress memory could be removed when fabric and traf-
fic scheduling is all done at the input ports.

The following is particular of the MMUX architecture.
As shown in Subsection 7.1, this architecture has sepa-
rate memories and transmitters at the input ports. There
is no conflict in sending cells from VOQs to output ports.
In other words, at input line rate, a cell can be read and
sent out of its VOQ without speedup. Thus no memory
access speedup and no transmission speedup are required.
However, there is an added hardware cost of N2 trans-
mitters for Design II proper and of kN transmitters and
O(N2) switch crosspoints for the variant of Design II.

7.5. Compared to the Knockout Switch

As we have alluded to in Section 1, OQ scheduling re-
quires N writes (plus N reads if the output ports are under
one shared-memory) in one time slot. SRA transforms
the N writes of OQ into N reads. A read operation is
much easier to perform and needs minimal hardware
support. Thus, SRA reduces the complexity while ap-
proaching OQ in speed. Note that actual OQ switches do
exist despite the multiple-writes problem.

The Knockout Switch [36] is an example OQ switch
which combats the multiple-writes problem by using
concentration circuit. The multiple-writes problem here
is seemingly similar to input blocking. In fact, the fre-
quencies of cell contention accrued by traffic flow in the
Knockout and SRA switches are strikingly close. Coin-
cidentally, this helps validate the correctness of our algo-
rithm and simulations. Below we discuss the design of
the Knockout and compare its performance to SRA’s.

The Knockout uses an N × L concentrator at each out-
put port. The concentrator connects N input ports and fan
them in to L outlets at the output port such that in a time
slot at most L cells can be admitted although there can be
N cells arriving each from one input port. The possible
remaining N − L cells are dropped, causing a loss prob-
ability. The purpose of selecting only L cells in each time
slot is to reduce the number of output FIFO buffers and
the control circuit complexity. However, the output port
has to be able to do L writes to buffer the L cells since
only one cell can exit the output port in a time slot. It has

200 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

been shown that a cell loss probability of only 10−6 is
achieved with L as small as 8, regardless of switch load
and size [36].

In comparison to the Knockout, under SRA, an input
port only needs to do k reads in a time slot. Moreover,
our simulations indicate that the probability for k=8 is
7.81×10−7 and the probability for k > 10 is zero, regard-
less of switch load and N. In the mean time, SRA and the
scheduling scheme used by the Knockout both have con-
stant time complexity. Therefore, SRA has several ad-
vantages over the Knockout.

Finally, it is worth concisely noting the two differ-
ences between the Knockout and SRA. A fundamental
difference is that the Knockout is an OQ switch and SRA
is for IQ switches. Secondly, unlike the Knockout, an
SRA fabric does not contain concentration circuits and
does no concentration because in any given time slot,
only one of the N input ports connected to an output port
will have a cell going through.

8. Conclusions

This paper proposes a new scheduling scheme which
finds a maximum matching of a modified I/O mapping
graph in a single iteration and shows that the proposed
scheme achieves 100% throughput and has much lower
delay than the conventional iterative scheduling schemes.
Implementation issues are discussed and two new switch
fabrics are presented.

The major innovation of the SRA algorithm is that it
considers the matching in G'. Hence, the switch archi-
tectures for SRA are different from that for the iterative
algorithms which consider the matching in G. Both ar-
chitectures hinge on the simple SRA arbiter. The SRA
arbiter is much simpler than the arbiter used for iterative
schemes. Each SRA architecture uses a set of SRA arbi-
ters that operate in parallel with no interaction. It differs
from a general IQ switch architecture which typically has
the complex scheduler located in a centralized unit. The
SRA switch fabrics are therefore simpler in hardware
than an iterative fabric.

Other aspects that are new of the SRA architectures
include:
·Removal of egress memory for arbitration.
·Use of the free rule in arbiting: an input port can send

k cells at a time. Analysis and simulations all show
that this makes SRA to find a maximum matching in
a time slot without iteration.

·No backpressure usage. Iterative schemes use grant
and accept functions to exert backpressure.

·Speedup for SRA S ≪ 2 cumulatively (virtually S = 1).
This is easily calculated as we have shown in Sub-
section 7.4. This is a significant improvement over
iterative schemes all of which require a speedup S ≥ 2,

although the MMUX option has an added cost of
transmitters.

·Hardware implementations are analyzed to be doable,
simple, and efficient.

A switch implementing SRA can be regarded as an IQ
switch because traffic is queued at the input ports and no
egress memory is needed for arbitration. If buffering for
packet reassembly is done at the output port, then egress
memory for that is needed and the architecture would be
better called a CIOQ switch. However, if the MMUX
architecture is used, the switch would be better called a
“MMUX-based IQ switch” to distinguish it from the
common IQ switch that typically uses an iterative sched-
uler. We alluded to this in Subsection 7.1.2.

The benefits of using SRA include high throughput
and low delay. Note that cell delays incurred by the it-
erative PIM, iSLIP, and DSRR in simulations would be
much higher if the time spent on iterating the algorithms
were taken into account. In addition, SRA is scalable and
reduces the complexity of switching.

We hope SRA could serve as a design reference for IQ
(or CIOQ) switches. Whether SRA can be useful to IQ
switches with buffered crossbars, the other promising al-
ternative to designing IQ switches, is yet to be investigated.
Also, the SRA fabrics are best-effort architectures. Quality
of service and multicast support merits further study.

9. Acknowledgements

This work is supported in part by NSF CCR-0309461,
NSF IIS-0513669, HK CERG 526007 (HK PolyU B-
Q06B), NSFC 60728206, and NSF 0714057.

The code used for the simulations is based on the code
authored by Prof. Ken Christensen of the University of
South Florida. PIM and iSLIP results obtained with the
initial code were validated against results shown in [37].

10. References

[1] N. McKeown, V. Anantharam, and J. Walrand, “Achiev-

ing 100% throughput in an input-queued switch,” in Pro-
ceedings of IEEE INFOCOM’96, pp. 296–302, March
1996.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J.
Walrand, “Achieving 100% throughput in an in-
put-queued switch,” IEEE Transactions on Communica-
tions, Vol. 47, No. 8, pp. 1260–1267, August 1999.

[3] A. Mekkittikul and N. McKeown, “A practical schedul-
ing algorithm to achieve 100% throughput in input-
queued switches,” in Proceedings of IEEE INFOCOM’98,
pp. 792–799, March 1998.

[4] N. McKeown, “The iSLIP scheduling algorithm for in-
put-queued switches,” IEEE/ACM Transactions on Net-
working, Vol. 7, No. 2, pp. 188–201, April 1999.

FAST AND NONITERATIVE SCHEDULING IN INPUT-QUEUED SWITCHES 201

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

[5] N. McKeown, J. Walrand, and P. Varaiya, “Scheduling
cells in an input-queued switch,” IEE Electronics Letters,
Vol. 29, No. 25, pp. 2174–2175, December 1993.

[6] R. O. LaMaire and D. N. Serpanos, “Two-dimensional
round-robin schedulers for packet switches with multiple
input queues,” IEEE/ACM Transactions on Networking,
Vol. 2, No. 5, pp. 471– 482, October 1994.

[7] A. Hung, G. Kesidis, and N. McKeown, “ATM input-
buffered switches with the guaranteed-rate property,” in
Proceedings of IEEE ISCC’98, pp. 331–335, June 1998.

[8] M. Yang and S. Q. Zheng, “An efficient scheduling algo-
rithm for CIOQ switches with space-division multiplex-
ing expansion,” in Proceedings of IEEE INFOCOM 2003,
pp. 1643–1650, March 2003.

[9] H. J. Chao and J.-S. Park, “Centralized contention resolu-
tion schemes for a large-capacity optical ATM switch,” in
Proceedings of IEEE ATM Workshop’98, pp. 11–16,
May 1998.

[10] J. Chao, “Saturn: A terabit packet switch using dual
round-robin,” IEEE Communications Magazine, Vol. 38,
No. 12, pp. 78–84, December 2000.

[11] Y. Li, S. Panwar, and H. J. Chao, “On the performance of
a dual round-robin switch,” in Proceedings of IEEE IN-
FOCOM 2001, pp. 1688–1697, April 2001.

[12] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service
guarantees for input-buffered crossbar switches: A capac-
ity decomposition approach by Birkhoff and von Neu-
mann,” in Proceedings of IEEE/IFIP IWQoS’99, pp.
79–86, May 1999.

[13] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “Birk-
hoff-von Neumann input buffered crossbar switches,” in
Proceedings of IEEE INFOCOM 2000, pp. 1614–1623,
March 2000.

[14] C. -S. Chang, D. -S. Lee, and C. -L. Yu, “Generalization
of the Pollaczek-Khinchin formula for throughput analy-
sis of input-buffered switches,” in Proceedings of IEEE
INFOCOM 2005, Vol. 2, pp. 960–970, March 2005.

[15] J. G. Dai and B. Prabhakar, “The throughput of data
switches with and without speedup,” in Proceedings of
IEEE INFOCOM 2000, pp. 556–564, March 2000.

[16] A. Gourgy and T. H. Szymanski, “Tracking the behavior
of an ideal output queued switch using an input queued
switch with unity speedup,” in Proceedings of IEEE
HPSR 2004, pp. 61–66, April 2004.

[17] S. Mneimneh, “Matching from the first iteration: An it-
erative switching algorithm for an input queued switch,”
IEEE/ACM Transactions on Networking, Vol. 16, No. 1,
pp. 206–217, February 2008.

[18] R. Panigrahy, A. Prakash, A. Nemat, and A. Aziz,
“Weighted random matching: A simple scheduling algo-
rithm for achieving 100% throughput,” in Proceedings of
IEEE HPSR 2004, pp. 111–115, April 2004.

[19] V. Tabatabaee and L. Tassiulas, “Max-min fair self-ran-
domized scheduler for input-buffered switches,” in Pro-
ceedings of IEEE HPSR 2004, pp. 299–303, April 2004.

[20] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P.
Thacker, “High-speed switch scheduling for local-area
networks,” ACM Transactions on Computer Systems,
Vol. 11, No. 4, pp. 319–352, November 1993.

[21] Y. Jiang and M. Hamdi, “A fully desynchronized round-
robin matching scheduler for a VOQ packet switch archi-
tecture,” in Proceedings of IEEE HPSR 2001, pp. 407–
411, May 2001.

[22] H. Kim and K. Kim, “Performance analysis of the multiple
input-queued packet switch with the restricted rule,” IEEE/
ACM Transactions on Networking, Vol. 11, No. 3, pp.
478–487, June 2003.

[23] H. Kim, C. Oh, Y. Lee, and K. Kim, “Throughput analy-
sis of the bifurcated input-queued ATM switch,” IEICE
Transactions on Communications, E82-B(5), pp. 768–772,
May 1999.

[24] C. Kolias and L. Kleinrock, “Throughput analysis of
multiple input-queueing in ATM switches,” in Proceed-
ings of the International IFIP-IEEE Conference on
Broadband Communications, pp. 382–393, April 1996.

[25] K. L. Yeung and S. Hai, “Throughput analysis for input-
buffered ATM switches with multiple FIFO queues per
input port,” IEE Electronics Letters, Vol. 33, No. 19, pp.
1604–1606, September 1997.

[26] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input
versus output queueing on a space-division packet
switch,” IEEE Transactions on Communications, COM-
35(12), pp. 1347–1356, December 1987.

[27] G. Nong, J. K. Muppala, and M. Hamdi, “Analysis of
nonblocking ATM switches with multiple input queues,”
IEEE/ACM Transactions on Networking, Vol. 7, No. 1,
pp. 60–74, February 1999.

[28] SigmaRAM Consortium, SigmaRAMTM targets high
speed networking applications, White paper, 2008.
http://www.sigmaram.com/white paper.htm.

[29] G. Bracha, “Removing egress memory from switching
architectures,” CommsDesign.com, February 2003.

[30] S. Q. Zheng, M. Yang, J. Blanton, P. Golla, and D. Ver-
chere, “A simple and fast parallel round-robin arbiter for
high-speed switch control and scheduling,” in Proceedings
of the 45th IEEE Midwest Symposium on Circuits and Sys-
tems (MWSCAS-2002), Vol. 2, pp. 671–674, August 2002.

[31] P. Gupta and N. McKeown, “Designing and implement-
ing a fast crossbar scheduler,” IEEE Micro, Vol. 19, No.
1, pp. 20–28, January/February 1999.

[32] Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for
VLSI communication switches,” IEEE Micro, Vol. 4, No.
1, pp. 13–27, January 1993.

[33] H. J. Chao, C. H. Lam, and X. Guo, “A fast arbitration
scheme for terabit packet switches,” in IEEE GLOBE-
COM ’99, Vol. 2, pp. 1236–1243, Rio de Janeiro, Brazil,
December 1999.

[34] C. A. Karnstedt, B. L. Chin, P. Shamarao, and M. Mon-
tana, “Integrated circuit FIFO memory devices that are
divisible into independent FIFO queues, and systems and

202 K. F. CHEN ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

methods for controlling same,” U.S. Patent 6,907,479,
June 2005.

[35] C. Li, S. Q. Zheng, and M. Yang, “Scalable schedulers
for high-performance switches,” in Proceedings of IEEE
HPSR 2004, pp. 198–202, April 2004.

[36] Y.-S. Yeh, M. G. Hluchyj, and A. S. Acampora, “The
knockout switch: A simple, modular architecture for

high-performance packet switching,” IEEE Journal on
Selected Areas in Communications, Vol. 5, No. 8, pp.
1274–1283, October 1987.

[37] N. McKeown and T. E. Anderson, “A quantitative com-
parison of iterative scheduling algorithms for input-
queued switches,” Computer Networks and ISDN Sys-
tems, Vol. 30, No. 4, pp. 2309–2326, December 1998.

