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Abstract 
 
Security schemes of pairwise key establishment, which enable sensors to communicate with each other se-
curely, play a fundamental role in research on security issue in wireless sensor networks. A general frame-
work for key predistribution is presented, based on the idea of KDC (Key Distribution Center) and polyno-
mial pool schemes. By utilizing nice properties of H2 (Hierarchical Hypercube) model, a new security 
mechanism for key predistribution based on such model is also proposed. Furthermore, the working per-
formance of tolerance resistance is seriously inspected in this paper. Theoretic analysis and experimental fig-
ures show that the algorithm addressed in this paper has better performance and provides higher possibilities 
for sensor to establish pairwise key, compared with previous related works. 
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1.  Introduction 
 
The security issue in wireless sensor networks has be-
come research focus because of their tremendous appli-
cation available in military as well as civilian areas. 
However, constrained conditions existent in such net-
works, such as hardware resources and energy consump-
tion, have made security research more challenging 
compared with that in traditional networks. 

Current research focus on such security schemes as 
authentication and key management issues, which are 
essential to provide basic secure service on sensor com-
munications. Pairwise key establishment enables any two 
sensors to communicate secretly with each other. How-
ever, due to the characteristics of sensor nodes, it is not 
feasible to utilize traditional pairwise key establishment 
schemes. 

Eeschnaure et al. [1] presented a probablitic key pre-
distribution scheme for pairwise key establishment. This 
scheme picks a random pool (set) of keys S out of the 
total possible key space. For each node, m keys are ran-
domly selected from the key pool S and stored into the 

node’s memory so that any two sensors have a certain 
probability of sharing at least one common key. Chan [2] 
presented two key predistribution techniques: q-com-
posite key predistribution and random pairwise keys 
scheme. The q-composite scheme extended the per-
formance provided by [1], which requires at least q pre-
distributed keys any two sensor should share. The ran-
dom scheme randomly pickes pair of sensors and assigns 
each pair a unique random keys. Liu et al. [3] developed 
the idea addressed in previous works and proposed a 
general framework of polynomial pool-based key predis-
tribution. Based on such a framework, they presented 
random subset assignment and hypercube-based assign-
ment for key predistribution. 

However, it still requires further research on key pre-
distribution because of deficiencies existent in those pre-
vious works. Since sensor networks may have dramatic 
varieties of network scale, the q-composite scheme 
would fail to secure communications as a small number 
of nodes are compromised. The random scheme may 
requires each sensor to store a large number of keys, 
which would be contradicted with hardware constraints 
of sensor nodes. The random subset assignment would 
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not ensure any two nodes to establish a key path if they 
do not share a common key. Though the hypercube- 
based assignment can make sure that there actually exist 
a key path, however, the possibilities of direct pairwise 
key establishment are not perfect, leading to large com-
munication overhead. 

In order to improve possibilities of direct pairwise 
key establishment, and depress communication overhead 
on indirect key establishment, we propose a H2 (Hierar-
chical Hypercube) framework, combined with a new key 
predistribution scheme. Moreover two new fault tolerance 
model and corresponding indirect pairwise key establish-
ment schemes are also proposed, by applying nice proper-
ties on tolerance resistance H2 model has provided. The 
schemes has better working performance on probabilities 
of pairwise key establishment between any two sensors. 
 
2.  Preliminaries 
 
2.1.  Notations and Definitions 

 
Definition1(key predistribution): Cryptographic algo-
rithms are pre-loaded in sensors before node deployment 
phase. 

Definition2 (pairwise key): When any two nods share 
a common key denoted as E, we call that the two nodes 
share a pairwise key E. 

Definition 3 (key path): Given two nodes A0 and Ak, 
which do not share a pairwise key, if there exists a path 
in sequence described as A0, A1, A2,……, Ak-1, Ak and any 
two nodes Ai, Aj (0≤i≤k-1,1≤j≤k) share at least one 
pairwise key, we call that path as a key path. 

Definition 4 (n-dimensional hypercube interconnec-
tion network): n-dimensional hypercube interconnection 
network Hn (abbreviation as n-cube) is a kind of network 
topology that has the following characteristics: 1) It is 
consisted with 2n nodes and n·2n-1 links; 2) Each node 
can be coded with a different binary string with n bits 
such as b1b2…bn; 3) For any pair of nodes, there is a link 
between them if there is just one bit different between 
their corresponding binary strings. 

Figure 1 illustrates the topology of a 4-dimensional 
hypercube interconnection network, which is consisted 
with 24=16 nodes and 4·24-1=32 links. And the nodes are 
coded from 0000 to 1111. 
 
2.2.  Related Works [1-3] 
 
2.2.1.  Polynomial-based Key Predistribution 
In the scheme of polynomial-based key predistribution, 
the key setup server randomly generates a t-degree 

bivariate polynomial f(x,y)=  over a 
, 0

t ji ya xij
i j



 

Figure 1. A 4-dimensional hypercube interconnection net-
work. 
 
finite field Fq, Notes that q is fairly large prime number 
and for any variables x and y, f(x,y)= f(y,x) is always held. 
Then the key server computes a share of f(x,y), denoted 
as f(i,y) for each node, where i is assumed to be a unique 
ID for any sensor node. Every node is pre-loaded with its 
own share before node-deployment phase. Thus for any 
two nodes i and j, node i can compute the common key 
f(i,j) by evaluating f(i,y) at point j, and vice visa. 

To predistribute pairwise key with such a scheme as 
addressed above, node i's storage overhead includes two 
parts: One is (t+1)log q storage space for storing a t- 
degree polynomial f(i,y), the other is the storage space 
for its own ID information. [4] shows that this scheme 
has ability of t-collusion resistant. That is, if there exists 
no more than t compromised nodes in the network, the 
scheme can ensure the pairwise key is secure between 
any two normal nodes. 
 
2.2.2.  Polynomial Pool-based Key Predistribution 
Pairwise key establishment in this scheme is processed 
in the following three phase: polynomial pool generation 
and key predistribution, direct key establishment, and 
path key establishment. 

1) polynomial pool generation and key predistribution: 
This phase is mainly concerned with t-degree bivariate 
polynomial pool (F) generation over a finite field Fq. 
Then a subset FiF is selected and the shares of all of 
the polynomials in this subset are assigned to the node i. 

2) direct key establishment: Assume that node i and j 
wants to establish pairwise key, if they have a common 
share on a same polynomial, they can establish pairwise 
key by utilizing the polynomial-based scheme. This 
phase is performed as follows: node i may broadcast an 
encryption list,  , ( )

vKE  , v=1,2,…, |Fi|, where Kv is 

the share of the vth polynomial at point j. If node j can 
decrypts any one of these correctly, that means there 
exists a common share between the two nodes. 

3) path key establishment: If there no pairwise key 
existent between node i and j, it’s necessary to find a key 
path defined in Definition3. Then the two nodes trans-
mits secret information for pairwise key generation on 
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this path. 

2.2.3.  Random Subset Assignment and Hyper- 
cube-Based Assignment 

1) Random Subset Assignment: Different from polyno-
mial scheme, the main idea of this assignment is to pick 
a random subset of polynomial pool, denoted as FiF, 
and assign the share of this subset to node i. 

2) Hypercube-based Assignment: Based on the con-
cept of random subset, this assignment generates poly-
nomial pool by utilizing hypercube model, and assign 
subsets to nodes according to node’s ID. 
 
3.  H2 (Hierarchical Hypercube) Model 
 
Definition 5 (H2 diagram): Assume that there exist 2n 
nodes, the construction algorithm of n-dimension H2(n) 
is illustrated as follows: 

1) Each  nodes are connected as a  di-

mensional hypercube, in which nodes are coded from 
- , and such kind of node code is called In-

ner-Hypercube-Node-Code. As a result,  different 
such kind of  dimensional hypercubes can be 

formed, where  represents the upper integer opera-

tion, and  means the lower integer operation. 
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dimensional hypercubes are codes from -
/ 2
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n     

 2/

, 

and such kind of node code is called Outer-Hyper-

cube-Node-Code. And then, the nodes in the  dif-
ferent such kind of  dimensional hypercubes with 

the same Inner-Hypercube-Node-Code are connected as 
a  dimensional hypercube, so we can obtain 

 different such kind of  dimensional hy-

percubes. 

2 n

 2/n 






 2/n
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3) The graph constructed through the above two steps 
is called a H2 graph. And it is obvious that each node in 
the H2 graph is coded as (r,h), where r ( ≤r≤

) is the node’s Inner-Hypercube-Node-Code, and h 

( ≤h≤ ) is the node’s Outer- Hypercube- 

Node-Code. 
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Theorem 1: There exist 2n in H2(n) diagram. 
Proof: The conclusion is naturally held as 2n= 

* .  2/2 n  2/2 n

Theorem 2: The diameter of H2 (n) is n. 
Proof: As the diameter of  dimension hyper-

cube is

 2/n

 2/n , and it is naturally held for the case of 

 2/n  dimension hypercube. Thus the diameter of H2(n) 

is  2/n +  2/n =n according to definition5. 

Theorem 3: The distance of any two nodes A(r1,h1) 
and B(r2,h2) in H2(n) is expressed as d (A,B)= dh(r1, 
r2)+dh(h1, h2)+1 where dh is Hamming distance. 

Proof: Since the distance of any two nodes is the 
Hamming distance of their corresponding codes, it is 
held according to definition5. 
 
4.  Pairwise Key Establishment Scheme 

Based on H2 Model 
 
As addressed above, polynomial-based and polyno-
moial-based schemes have some limitations. In this sec-
tion we propose a new pairwise key establishment and 
predistribution scheme based on H2 model. The new 
algorithm is composed of three phases: polynomial pool 
generation and key predistribution, direct key establish-
ment, and path key establishment. 

 
4.1.  Polynomial Pool Generation and Key Pre-

distribution 
 

Assume that there are N nodes in a wireless sensor net-
work, where 2n-1< N  2n. A n-dimension H2(n) is then 
generated and we construct a polynomial pool with the 
following method: 

1) The key setup server randomly generates n*2n 
bivariate t-degree polynomial pool over a finite fields 

Fq ,denoted as F={
1 2 /2 1
, ,...,
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(x,y),…,  (x,y)}, are assigned and 

pre-loaded before deployment phase. 
 

 f
n

iii n

2/

,...,,
12/21
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 )2/n ,( 21 jj



5) The server assigns a unique ID, denoted as 
( , , to every node in se-

quence, where 0

,...,,( 21 iii  ),..., 2/j n

ii 21  i n 2/...   1, 0   
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4.2.  Direct Key Establishment 
 
If any two nodes A( , ) and 

B( , ) want to establish 

pairwise key, the node A can achieve the pairwise key 
with B by processing the following procedures: 

 ),..., 2/2 ii n

,...,, /2 jj n
 ),...,,( 2/21 jjj n

)2,( 21 ii 

Node A first computes the Hamming distance between 
B and itself, as d1=dh( ,  ),...,,( 2/21 iii n  ),...,,( 2/21 iii n

)2

), 

d2=dh( , ),..., 2/2 jj n,( 1j  /,...,,( 21 jjj n ). If d1=1 or 

d2=1, the node can establish the pairwise with the peer 
according to the conclusion of the Theorem 4. 

Theorem 4: For any two nodes A( , 

) and B(
 ),...,,( 2/21 iii n
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2) dh( , )(  ),...,,( 2/21 jjj n )=1: Imitat-

ing the step 1), it is easy to prove that there exists a 
pairwise key between A and B. 
 

4.3.  Indirect Key Establishment 
 
If dh( , ),...,, 2/21 ii n(i  ),...,,( 2/21 iii n

 ),..., 2/2 j n

)>1 and dh 

( , )2/j n ,( 1j,...,,( 21 jj j  ) >1 then node A 

establish indirect pairwise key with B according to 
Theorem 5. In order to make it clear, we will provide a 
lemma before the illustration of Theorem 5. 

Lemma1: For any two nodes A( , 

) and B(

 ),...,,( 2/21 iii n

 ),...,,( 2/21 jjj n  ),...,,( 2/21 iii n , 

 ),...,,( 2/21 jjj n  ), assume that dh=k, then there exists a 

k-distance path denoted as I0(=A), I1,…,Ik-1, Ik(=B), 
where dh (Ii,Ij)=1. 

Proof: According to Theorem 3, dh can be expressed 
as 
dh( , ),...,,( 2/21 iii n   ),...,,( 2/21 iii n )+dh( ,,...,,( 2/21 jjj n )

 ),...,,( 2/21 jjj n  )=k. Assume that dh( , ,...,,( 2/21 iii n )

 ),...,,( 2/21 iii n )=h, then dh( ,  ),...,,( 2/21 jjj n

 ),...,,( 2/21 jjj n  )=k-h. According to definition5, node 

C( ,  ),...,,( 2/21 iii n ,...,,( 2/21 jjj n ) ) and A are located 

in a / 2n    -dimensional hypercube H, and node C and 

B are located in a / 2n   -dimensional hypercube H  . 
According to the properties of hypercube [5,6], there 
exist a path described as I0(=A), I1,…, Ih-1, Ih(=C) in H, 
where dh(Ii, Ij)=1. Similarly, another path with the same 
property is existed in H  , denoted as Ih(=A), Ih+1, …, Ik-1, 
Ik(=B), where dh (Ii,Ij)=1. 

Thus there exist a integrated path in H2 diagram from 
node A to B, described as I0(=A), I1,…,Ik-1, Ik(=B) where 
dh (Ii, Ij)=1. 

Theorem 5: Assume that any two nodes can communicate 
directly in a wireless sensor networks, and there is no compro-
mised node in the networks, then there exist a key path for any 
node A( , ) and node B 

(

 )2/n,...,,( 21 ii

 ),...,,( 2/21 iii n

i  )2/n,...,,( 21 jjj

 ,  ),..., 2/2 j n,( 1 jj  ). 

Proof: According to Lemma1, there exist a path for 
any two nodes where dh=k in H2 diagram. Thus the con-
clusion is held. 

We propose the algorithm for indirect key establish-
ment as follows. Assume the two nodes A( , 

) and node B(
,...,,( /21 iii n

 ),...,,( 2/21 iii n

)2

 ),...,,( 2/21 jjj n  , 

,...,,( 2/21 jjj n ) ) want to establish indirect pairwise 

key in the network, we propose the algorithm for indirect 
key establishment illustrated as follows. 

Indirect_Key_Establishing_Algorithm(){ 
1) Node A computes a set L which records the dimen-

sions in which node A and B have different sub-indexes. 
The set can be expressed as L={(d1,d2,…,dk),(g1,g2,…,gw)} 
where d < d <…< dk, g <g <…<gw. 1 2 1 2

2) Node A maintains a path set P with initial vale of 
P={A}. 

3) Assume that U( , )  ),...,,( 2/21 uuu n  ,...,,( 2/21 uuu n )

=A; s=1. 
4) Node A computes intermediate nodes expressed as 

V=( 1 2( , ,... ,u u u i /21 1
, ,..., )

s s s
nudu    d d , ). And 

P=P {V}. 

 ),...,, 2/2 uu n( 1u


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inition 10: Any binary string …  with 
gi ensional s

n algorithm of Hk, it is easy to 
kn

Figure 2. A 3-dimensional hypercube H3 with fault nodes 

5) Assume that U =V. 
6) If s<k, then s=s+1, and repeats the step 4, other-

wise turns to step7). 
7) Node A computes intermediate nodes V= 

( , ), and 

let P=P {V}. 

 ),...,,( 2/21 uuu n 1 2 /21 1
( , ,... , , ,..., )

s ss

nu u ug ggju u       

8) Let U =V. 
9) If s<w, then s=s+1, and repeats step7); otherwise 

go on step10). 
10) Let P=P {B}. 
} 
According to Theorem 5, any node can compute a key 

path to it destination when there is no compromised node 
in the network. Once the path P is achieved, the two 
nodes can exchange secret information to generate pair-
wise key between themselves. 

For example, the node A((001), (0101)) and the node 
B((100), (1100)) can establish pairwise key along the 
following key path: A((001), (0101)) ((101), (0101)) 

((100), (0101)) ((100), (1101))  B((100), 
(1100)). 


  

According to the algorithm described above, the fol-
lowing conclusion is naturally held. 

Theorem 6: Assume that any two nodes can commu-
nicate with each other directly, and there is no compro-
mised node in a network. If the distance between the two 
nodes is k, then there exists a key path with distance of k. 
That is, the two nodes can establish pairwise key through 
k-1 intermediate nodes. 
 
4.4.  Dynamic Key Path Establishment 
 
The Indirect_Key_Establishing_Algorithm() illustrated 
in Subsection 4.3 can only deal with the situation that 
there is no compromised node in the network. However, 
in case of some existent compromised nodes, the algo-
rithm would fail to find fungible intermediate node to 
help establish pairwise key. 

We further analyze the example addressed in Subsection 
4.3. When the node ((101),(0101)) is compromised, the 
node A and B can utilize the following path to establish 
pairwise key: A((001), (0101))  ((000),(0101))  
((100), (0101))  ((100), (1101))  B((100), (1100)). 

 


When the node ((100),(1101)) is compromised, the 
two nodes can use the path: A((001), (0101)) ((101), 
(0101)) ((100), (0101)) ((100), (0100))  B((100), 
(1100)). 


 

In case that the nodes ((101),(0101)),((100),(1101)) 
are compromised, there still exists a key path denoted as 
A((001),(0101)) ((000),(0101)) ((100),(0101))  
((100),(0100)) B((100),(1100)). 

  

4.4.1.  Relative Definitions of Local Weak Connectivity 
Definition 6: The nodes A and B in a n-dimensional hy-

percube Hn are called neighbors, if that there exists only 
one different bit in their binary strings. 

Definition 7: The node A in an m-dimensional hyper-
cube/sub-hypercube Hm is m-disconnected, iif that all 
links between A and every faultless node in Hm are fault. 
The node A in an m-dimensional hypercube/sub- hyper-
cube Hm is reachable, iif that A is faultless and not 
m-disconnected. 

Definition 8 (k-dimensional local-weak-connectivity): 
A n-dimensional hypercube Hn is k-dimensional lo-
cal-weak-connected, if all reachable nodes in each 
k-dimensional sub-hypercube Hk (k 1) of Hn forms a 
connected graph, and the number of reachable nodes in 
Hk  is bigger than . 



2 1k

Definition 9 (general local-weak-connectivity): An n- 
dimensional hypercube Hn is general local-weak- con-
nected, if there exists a h-dimensional sub-hypercube Hh 

(h k), which is local-weak-connected and includes Hk, 
as for each k-dimensional sub-hypercube Hk (k 1) of 
Hn. 

Figure 2 presents a 3-dimensional hypercube H3 with 
two fault nodes and a 3-disconnected node. According to 
the above two kinds of local-weak-connectivity concepts, 
it is easy to prove that all reachable nodes in H3 is global 
connected. 
 
4.4.2.  Global Connectivity of Local-Weak-Connected 

Hypercube 
An n-dimensional hypercube Hn has  nodes, in which 
each node can be represented by a binary string and has 
n different links. So Hn has n 2n fferent links totally. 

Def

2n

di1  
 b1 b2 b kn

uven length n-k corresponds a k-dim b-hy-
percube Hk with 2k  nodes, and the nodes in Hk can be 
represented by suc binary strings as b1 b2 … b kn *…*, 
where * can be 0 or 1. 

From the constructio

h 

ow that all k-dimensional sub-hypercubes are isomor- 
 
 
 
 
 
 
 
 
 

 

fault nodes

faultless nodes

and links. In which, the black dots represent fault nodes, 
the white dots represent faultless nodes, the lines with to-
kens represent fault links, and the lines without tokens 
represent faultless links. 
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es all of the k-dimensional 

 reachable nodes in any two 
ne

Hk and  are two neighboring 
k-d

phic, and Hn includ
sub-hypercubes that is isomorphic with Hk. And it is easy 
to prove that Hn includes 2 kn -1 k-dimensional sub- 
hypercubes that is isomorphic with Hk and has no com-
mon nodes with Hk also. 

Lemma 2: All of the
ighboring k-dimensional sub-hypercubes of the Local- 

Weak-Connected n-dimensional Hypercube Hn form a 
connected graph. 

Proof: Let that H k
es, a

k

imensional sub-hypercub ccording to definition 
10, we can utilize binary strings b1 b2 … b kn *…* to 
represent the nodes in Hk, where * ca 1. Since 
Hk and H k  are neighboring, so there exists at least one 
common de between Hk and H k   the nodes in 

H k  can be represented as bt 1 * bt 1 … 
*…* d s *…* and b1 … bt … 
*…* …*  Hk.  1 … … 

*…* d *  H

n be 0

…



b

 or 

bt

1 bt

 no

d

s

b1

b kn

b kn

b kn

1 bt 1

bt 1s *

*…
b t

Hk  . Considering that the 
num

2 1k

* d s

ber of reacha  n n H k  is bigger than 

2 1k   there exists at least on ode A in those 

s represented by b1 … bt 1 bt bt 1 … b kn *… 
*…* is reachable. Since 

 

de

ble odes i

A

e n

no
H A and all of 

th eachable nodes in H k  form a c ected graph. And 
in addition, since A k   Node A and all of the 
reachable nodes in H connected graph also. So, 
all of the reachable nodes in Hk and H k  form a con-
nected graph. 

Theorem 7:

n
onn

Node 
e r

H
formk   a 

 All of the reachable nodes in n-dimen-
sio

f: From Theorem 2, it is easy to prove that the 
co

n obtain the following de-
du

 If n-dimensional Hypercube Hn satisfies 
the

i atisfies 
the

P  deduce if ensional Hypercube 
Hn

-h

nal Hypercube Hn, which satisfies the conditions of 
k-dimensional local-weak-connectivity, form a connected 
graph. 

Proo
nclusion stands. 
From Theorem 7, we ca
ces easily. 
Deduce 1:
 conditions of k-dimensional local-weak-connectivity, 

then all of the reachable nodes in any h-dimensional 
sub-hypercube Hh(h k) form a connected graph. 

Deduce 2: If n-d mensional Hypercube Hn s
 conditions of k-dimensional local-weak-connectivity, 

then there exists at least a pair of connected reachable 
nodes a1 … a 1j 0 a 1j … a kn  1kn …  n  and 

a1 … a a j n  een a  pair 

k-d s l su es a1 … a 1j 0 a 1j … 

a kn *…* and a1 … a 1j 1 a 1j … an …*

roof: From 1, n-dim

1j 1

men
1 … a

na
k  n

-hyperc
1k

u

… n
b of 

 betw

k * . 

ny

of i io b

 satisfies the conditions of k-dimensional lo-
cal-weak-connectivity All of the reachable nodes in 

any h-dimensional sub ypercube Hh(h k) form a con-
nected graph   All of the reachabl nodes in any 
(k+1)-dimensional sub-hypercube a1 … a 1j * a 1j … 

a kn *…* form a connected graph. A d s th m-
 of unreachable nodes in k-dimensional 

sub-hypercubes a1 … a 1j 0 a 1j … a kn *…* and 

a1 … a 1j 1 a 1j … k *… re than a alf of the 

be f t al es respectively. So, there exists 
reachable node a1 … a 1j 0 a 1j … a kn  1kn …  n  in 

a1 … a 1j 0 a 1j … k *…*, a  th ble 

… a 1j a 1j … a kn    1kn … 

e 

n

e ex

ince 

 h

ists reac

e nu

ha

bers

num

node 

a

t

a

n

no

n

1

* a les

d

s 

er

r o

a1

o d

n

n  in 

a1 … a j kn n addition, 

se two nodes a a 1j 0 a 1j … a kn  1kn …  n  and 

a1 … a 1j 1 a 1j … k

a 1j 1 1 … a

a

*…* certainly. And i

tho 1

n

…

  1kn

of 

ensional

orem 8

cal-W

c_Ke

rk Hn 

,...,2j

…

 s

e

y_

w

n ted

Th 8: the eachable nodes

 is 

perc

 that

ak-Connectiv

 )2

con

ub

 the

_Estab

ult no

nec

e Hn

 hy

ity Ba

lishing

des

. 

 

 is local-

ercubes

sed 

_Alg

d fa

eorem

  

-b

S

, 2i

 

 7

K-Dimensio

ased

ens

,..., i

Al

d

The

na

(

l

im

nam

two

j

 

l Lo

i

1

 r

 Hy

how

Path

ith fa

/j n

in 

 

, 

o- 

ult 

n-d

we

tha

4.4.

 
LWC

lin

1i

imensional Hypercube Hn, which satisfies the condi-
tions of general local-weak-connectivity, form a con-
nected graph. 

Proof: Since n-

 and 

 Dy

or ne

 )2/n , 

ak-connected, and there exists no other sub-hyper-
cubes that include itself in Hn. So, from definition 9, it is 
easy to know that Hn is n-dimensional local-weak-con- 
nected. And in addition, from definition 8, we can know 
that all of the reachable nodes in Hn form a connected 
graph. 

Theorem p

 an

t satisfy the conditions of the proposed two kinds of 
local-weak-connectivity, must be global connected. 

 
3.

Dynamic Key Path Establishment Algorithm 

K
rithm(){ 

Input: 
ks (The links, whose length are bigger than the trans-

mitting radius). And two reachable nodes 
A(  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ) and 

B( ( ,  ) in 

e

A to 

T=( (

Hn. 

nt_1

B, t

, 21 ii

Out  to B in Hput: 

P=

 If P

A c

Dynam

 is a

orr

 co

ect key

K

rrect

 path 

Path

 key pat

ine 

P

_Es

 from

t

h fr

the node 

 A

ablishm

om 

n. 
 T

A,T); 

hen exit, 

 ,..., 2/i n

1) Compute and determine the node = 

T, 

( (

2) 

B);
)

oth

( j

 ),...,, 2/21 iii n ,  ),...,,( 2/21 jjj n ) in  2/nH ; 

ic_  (ey_
3) P=P Dynamic_Key_Path_Establishment_2 (
 
4
erwise turn to step 5); 
5) Compute and determ ) , 

 ),...,, 2/21 jj n ) in  2/nH ; 
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6) P=Dynamic_Key_Path stablishment_2 (A,T); 
T, 

B)
s a

Al hm Dynamic_Key_Path_Establishment_1(A,T): 
: 

_E
7) P=P   Dynamic_Key_Path_Establishment_1 (

; 
8) If P i  correct key path from A to B, then exit, 

otherwise turn to step 9); 
9) Report A, failure to establish a key path from A to 

B. 
} 
 

ritgo
1) Obtain the codes of nodes A and T

A  (  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ), T   

( ,..( ,. )., 2/i n , ,( 21 jj, 21 ii   ).., 2/j n ); 

/* From definition 10, we can suppose that the 
k-d

2) I lize P A; 
po  binary string C: 

C=

 FOR(j=1;  j++){ 

 

ccordin  lemma2 and deduce 1, a pair of con-
ne

), 

D=(

wh

② e p  f

③C D; 

After the above steps, a correct key path from node 
A

 from node ((

imensional sub-hypercube that includes T is 
(( i1 i2 …  i kn 2/ *…*),  ),...,,( 2/21 jjj n ).*/ 

nitia ath P: P
3) Initialize tem rary
(  ),...,,( 2/21 ccc n ,  ),...,,( 2/21 jjj n )A; 

4) nj 2/ ; 

IF( i j  i j ){

①A g to
cted reachable nodes C and D can be found through 

discovering in neighboring k-dimensional sub- hyper-
cubes: 

C=(
 

),...,,,,...,( 1 2/121 ccc ccc jj nj 
,  ),...,,( 2/21 jjj n

1 2 11 /2
, ,...,( , ,... , )j jj n

xi i i xi    
   ,

ct = i t  (t  [1, j]); 
 ),...,,( 2/21 jjj n ), 

ere 

Join th ath rom 1 2( , ,...i i i   ( 11 /2
, ,...,, )j jj n

ii i    
, 

 node D into P;  ),...,, 2/2 jj n ) to     ( 1j


} 
} 

/* 
(

1 i2 …  i n 2/

ll be c structe

 ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ) to the reachable node 

(( i k  2/n ),  ),...,,( 2/21 jjj n ) 

wi on

5) Join the path

    12/ kn … 

d. */ 

1 2 /2... n ki i i       

node T in the

So, a correct

/ 2 1n k   
 …   2/n ),  ),...,,( 2/21 jjj n ) to  

-h i2 …  i kn 2/ **), 

 ),...,,( 2/21 jjj n ) into P. And then  key 

to node T is discovered. 

Algorithm Dynamic_Key_Path_Establishm


k-dimensional

path from 

 sub

de A 

ypercube (( i1
exit. 

no

ent_2(T, B): 
1) Obtain the codes of nodes B and T: T 

 (  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ); B 

 (  ),...,,( 2/2 iii n1  ,  )..,,( 2/21 jjj n,. ); 

ppose that the /* su From definition 10, we can 
k-dimensional sub-hypercube that includes B is 
(  ),...,,( 2/21 iii n ,( j1 j2 …  j kn 2/ *…*)).*/ 

2) Initialize Path P: PT; 
porary binary string C: 3) Initialize tem

C=(  ),...,,( 2/21 iii n ,  ),...,,( 2/21 ccc n ) T; 

4) FOR(l=1; l  2/ ; l++){ n

IF( jl  jl ){ 

① ingAccord  to 

 2/21 iii n

,...,,( /21 iii n

lemma2 and dedu

,,,...,(
121 c ll

 2 , 1 2 1
( , ,...

l
j j j



ce 1, a pair of con-
nected reachable nodes C and D can be found through 
discovering in neighboring k-dimensional sub-hyper-
cubes: 

C=( ),...,,( , ccc cc ); 
 

),...,
1 2/l n

D=( ) )
1 /2

, ,...,,
ll n

xj x    
   ), 

where ct = j t  (t  [1, . 

p om (

l])

② n he ath frJoi t  ),...,,( 2/21 iii n , 

1 2 11 /2
, ,...,, ,... , )

l ll n
jj jj 

( j j
  

   ) to node D into P; 

③ CD; 

ter the above

,..,( 21 iii 

} 
} 
/* Af  steps, a correct 

 )2/n , ( j

key path from node 
T(  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ) to the reachable 

node ( ., 1 j2 …  j kn 2/  

    12/ kn …   2/n ))

 Joi the p

 will be tructed. */  cons

n ath from node ( ,( 1 ii5)

( j
 ),..., 2/2 i n , 

1 j2 …  j kn 2/     12/ kn …   2/n )) to e 

k-dim ub  ),...,,( 2/21 iii n , 

( j

 node B in th

ensional sub-hyperc e (

1 j2 …  j kn 2/ **)) into P. And th t 

ke h fr e T to node B is discovered. 
From the above description, we can know

tim

en

( )k2 = 1( )k-n2

 Dy mic_Ke

lexity of the k-Dim

ercentag  of the f

 exit. So, a correc

y

com

sor

 pat om nod

)
k

+

plexity of algorithm

e comp

 p

 that the 

, and the time 

e complexity of algorithm Dynamic_Key_Path_ Es-
tablishment_1 is 

(( / 2 )n -k 2   
na _Path_Establish- 

ment_2 is   ））（

y

（

ault nodes in sen-

2k-2/ kn + ）（2k = ）（ 2 1-kn , so 

the total tim en cal- 
Weak-Connectivity based Dynamic Key Path Establish-
ment Algorithm is ）（ 2kn . 

Considering the e

sional Lo

 networks, when applying the k-Dimensional Lo-
cal-Weak-Connectivity based Dynamic Key Path Estab-
lishment Algorithm actually, we can set k=1,2,3. Then 
the total time complexity of the k-Dimensional Lo-
cal-Weak-Connectivity based Dynamic Key Path Estab-
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cal-Weak-Connectivity Based Dynamic 
Key Path Establishment Algorithm 

GLWC Algorithm(){ 
Input: Sensor network H  with fault nodes and fault 

s-
mi

lishment Algorithm will be ）（n  only. Figure 3 illus-
trates the relationship of dimension n and the scale of the 
sensor networks. 
 
4.4.4.  General Lo

 
-based Dynamic_Key_Path_Establishing_

n

links (The links, whose length are bigger than the tran
tting radius). And two reachable nodes 

A(  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ) and B(  ),...,,( 2/21 iii n , 

),...,,( jjj  ) in H

ect key p
d determine 

 2/21 n n. 

Output: A corr ath P from A to B in H . 
1) Compute an the node T=(

n

 ),...,,( 2/21 iii n , 

 ),...,, 2/21 jj n ) in 
/2nH   

; 

ic_Ke th_Es
Dyn

( j

2)P=Dynam y_Pa tablishment_3(A, T); 
3)P=P amic_Key_Path_Establishment_4(T, 

B)
s a c

rwise turn to step 5); 


; 
4)If P i orrect key path from A to B, then exit, 

othe
5)Compute and determine the node 

T=( ),...,,( iii , ,( jj 2/21 n  2/21 n ),..., j ) in 

)P=P Dynamic_Key_Path ablish T, 
B)

s a c
rwise turn to step 9); 

Al hm Dynamic_Key_Path_Establishment_3(A, T): 
)Obtain the codes of nodes A and T: 

 

/* From definition 10, we can pose that the 
dim nsional sub-h percube that includes T is 

((

3)In lize rary binary string C: 
C=

FOR(j=1; n; j++){ 
){ 

= ; 
ccordin heorem 8, a pair of connected 

rea s n be found through discov-
eri

/2nH   

6)P=Dynamic_Key_Path_Establishment_4(A, T); 
7 _Est ment_3(

; 


; 
8)If P i orrect key path from A to B, then exit, 

othe
9)Report A, failure to establish a key path from A to 

B. 
} 
 

gorit
1

A  ( ),...,,( 2/21 iii n , ),...,,( jjj ),   2/21 n

T ,...,, 2i , ,...,,( jjj ); 

sup
k- e y

( ( 1i  )2/i n 21  )2/n

i1 i2 …  i kn 2/ *…*),  ),...,,( 2/21 jjj n ).*/ 

2)Initialize Path P: P A; 
itia tempo

( ),...,,( ccc , , jj 2/21 n  ),...,( 2/21 j n ) A; 

4)
IF(


j

i j  i j

(k 1 k -j; k++){ 


FOR  n
IF(A g to T
chable node C and D ca
ng in neighboring k-dimensional sub-hypercubes:  
C=(

 
),...,,,,...,( 1 2/121 ccc ccc jj nj 
,

 ),...,,( 2/21 jjj n
), 

D=(
 

),...,,,,...,( 1 2/121 xii xii jj nj   ,  ),...,,( 2/21 jjj n ), 

where ct = i t  (t  [1,j]); 

①Jo

(


,...,,,,( 1 2/21 iii ii j nj 

in the path from 


),...

1 i j ,

(
 

),( 1 2/121 xii x jj nj 

 ),...,,( 2/21 jjj n ) to node  

,...,,,..., ii  ,  ),...,,( 2/21 jjj n ) into P; 

②C  (
 

),...,,,,...,( 1 2/121 xii xii jj nj   , 

 /2 n

③Break; 

),...,,( 21 jjj ); 

} 

 
LE(

} 
IF(k >n-j){
WHI k n){ 

imensional hypercube  
), there exists no 

fau ) k++; 
} 

neral lo-

cal-weak-connected, and we cannot find a correct key 
a

P; 

} 
 xit. And a correct key path from A to T is discov-

ered. 

Obtain the codes of nodes T and B: T 

IF(In the k-d
( *)(

2
,

 
...*,...,

/21 c kncc   ),...,,( 2/21 jjj n

ltless key path from node C to node T

} 
IF( k > n) exit. Then  H n 2/  is not ge 

p th from node A to T. 
ELSE Join the path from C to T in the k-dimensional 

hypercube (
 

...*)*,...,( 21 ccc , ),...,,( jjj ) into 
2/ kn   2/21 n

} 

5) E

 
Algorithm Dynamic_Key_Path_Establishment_4(T, B): 

1) 
 (  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ) and B 

 (  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ); 

10 se that the 
-hy in

/* From definition , we can suppo
k-dimensional sub percube that cludes B is 
( (i  ),...,, 2/21 ii n ,( j1 j2 …  j kn 2/ *…*)).*/ 

2) Initialize Path P: PT; 
e por3) Initializ tem ary binary string C: 

C= ; (  ),...,,( 2/21 iii n , ..,,( 1 cc  ),. 2/2c n )  T

4) FOR(l=1; l n; l++){ 
IF( jl  jl ){ 

FOR(k=1; k n-j; k++){ 
IF(A ing ccord to Theorem 8, a pair of connected 

rea s n be found through discov-
eri

chable node C and D ca
ng in neighboring k-dimensional sub-hypercubes: 

C=(  ),...,,( 2/21 iii n ,
 

),...,,,,...,( 1 2/121 ccc ccc jj nj 
), 
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e  ( 1,j]); 

① Join the path from (

D=(  ),...,,( 2/21 iii n ,

 
),...,(

1 2/1 xj l n
 ),,,,...,

12j xj
ll
 j

wher [

 2/n
ct = i t t

),...,,( 21 iii  , 1 2( , ,...j j   

 ),..., 2/i n11 / 2  
, ,. jj j ) to node..,, )

l ll n
j 
   ( ,( 21 ii 

) ) into P; 

, 

 
,...,,,,...

2/
x

n


); 

,(
1121 jj xjj lll 



②C 

} 
} 

 
W ( n){ 

In the k-dimensional hypercube 
, there exists no 

fau

} 
neral lo-

cal-weak-connected, and we cannot find a correct key 
pa

 to B in

. And a correct key path from T to B is d  
From the above description, we can know that the 

tim complexity of algorithm Dynamic_Key_Path_ Es-

tab

vity based Dy mic Key Path Establishment 
Al

asib f the Algorithm 
 

ur algorithm, the possibility of direct key 
xpressed as 

 (  ),...,,( 2/21 iii n , 

 
),...,,,,...,(

1 2/121 xjj xjj ll nl 


③Break; 

IF(k >n-j){
HILE k

IF(
( ( 2/i  )21 ii n , c,...,,   

...*)*,...,(
2/21 c knc 

)

ltless key path from node C to node B) k++; 
} 

IF(k > n) exit. Then 
 H n 2/

 is not ge

th from node T to B. 
ELSE Join the path from C  the k-dimensional hy-

percube (  ),...,,( 2/21 iii n ,
 

...*)*,...,(
2/21 c kncc 

) into P; 

} 
} 
5) Exit iscovered.

e 

lishment_3 is ）（ k2/n + ）（ k = 2 min 2 min  

  ）（ 2kn/2 min , where kmin is the smallest integer that 

satisfies the con o-
.  e complexity of 

namic_K ath_Establishment_4 is 

  ）（ 2kn/2 min + ）（2kmin =   ）（ 2kn/2 min , so the 

total time complexity of the general Local-Weak- Con-
nectivity based Dynamic Key Path Establishment Algo-

rithm is   ）（ 2n/2 min . 

Considering the percentage of the fault nodes in sen-
sor networks, when applying the general Local- Weak- 
Connecti na

dition 
And the tim
ey_P

of k-dimensional l
cal-weak-connectivity
algorithm Dy

k

gorithm actually, we can set k=1,2,3. Then the total 
time complexity of the General Local-Weak- Connec-
tivity based Dynamic Key Path Establishment Algorithm 
will be ( )n  only. 

 
5.  Analysis 

5.1.  Fe ilities o

Theorem 9: In o
establishment for any two nodes can be e
PH2 ( /2 /2

2 2
n n       )/(N-1). 

Proof: As the algorithm has assigned any node, de-
noted as (  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ), shares of 

poly om essed asn ials expr  FA = {
 

f jj n,..., 2/2  (j1,y),

 
f jjj

n

2

,...,,
2/31


 

f
n

 j n 2/ ,y)}   

{ f
1

(i1,y), f
2

1

(i2,y
n /2

 

 clear that t /2   no  

wh ablish direct pai se key wi  
Thus 

1

 

jjj
n

2/

,...,,
12/21




(

 i n
,...,

2/


),…, f

here are    

rwi th

 


(j2,y),…, 

 2
 ii ,

3


)}. It’s

est

ii n
,...,

/2


(  i n 2/ ,y

ich can 
PH2

 12




des

 A.

 n

iii

2/

,...,,
1



/2

2 2
n n

 the node

 ( /2

2 2
n/2n      

within the area 2n-1< N 

  )/(N-1) as the network scale is

 2n. 
Suppose that a sensor network has N=10000 sensor 

nodes, then n=14. The possibility of direct key establish 
is about PH2 2.56% a cording to the conclusion drawn 
by Theorem 6. owev r, th

c
H e e possibility decreases to 

PH 0.14% if the algorithm addressed in [3] is used. 
Theroem10: Assume that the possibility of direct key 

establishment in H2-based scheme is defined as PH2, 
while the possibility in hypercube is denoted as PH, then 
PH >P . 2> H

Proof: Suppose the number of a network is within the 

area of 2n-1< N  2n, and PH
1N

n
 as addressed in 

[3]. Thus 
2

lim H

n H

P
P

=
/2 /2lim

2 2
n n

n

n
      

 
=0. 

 
5.2.  Ove An
 

rhead alysis 

ode’s Storage Overhead 
tore t-degree bivariate poly-

he finite fields q, which 

 

N
1) Any node is required to s
nomials whose number is n over t
occupies n(t+1)log q bits. 

2) In order to keep the security of the Keys, for any
bivariate polynomial f(x,y), node A is required to store 
the ID information of the compromised nodes that can 
establish direct key with A by using f(x,y). Since the de-
gree of f(x,y) is t, then f(x,y) will be divulged when there 
are more than t nodes are compromised. So, for any 
bivariate polynomial f(x,y), node A needs only to store 
the ID information of n compromised nodes that can 
establish direct key with A by using f(x,y). In addition, 
since the node’s ID is a vector of n bits, and from Theo-
rem 4, we can know that node A needs only to store one 
bit for each compromised node to determine the whole 
ID information of the compromised node. So, the total 
storage cost is nt bits. 
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hemes have t e same storage head. 

e result is certainly 
he

 a route. In case of no compromised node existent 

3) Also the node’s own ID information occupies about 
n bits storage space, as it is expressed as 
(  ),...,,( 2/21 iii n ,  ),...,,( 2/21 jjj n ). 

All of the storage overhead address above sum up to 
n(t+1)log q+nt+n= n(t+1)log 2q bits. 

Theorem 11: The H2-based and the hypercube-based 
sc h over

Proof: According to the analysis on storage overhead 
addressed in Subsection 5.4 in [3], th

ld. 

Communication Overhead 
In a sensor network, sending a unicast message between 
two arbitrary nodes may involve the overhead of estab-
lishing
in the network, any one node can communicate with the 
others directly. Assume that the overhead for a hop is 
defined as 1, then for two arbitrary nodes whose Ham-
ming distance is L, the minimum communication over-
head is L. We further inspect average communication 
overhead on H2-based path key establishment. 

Suppose there are two nodes A(  ),...,,( 2/21 iii n , 

 ),...,,( 2/21 jjj n
) and B(  ),...,,( 2/21 iii n , 

 ),...,,( 2/21 jjj n ) 

In the formal part of node’s code, the probability o
larly, the prob

s also 1/2 in th

f

e

 
ie

ability of j
e
=

ha  i dif re
dif

= i e , e{1,…, / 2n   } is 1/2; Simi -

j
e
 , e  i  

latter code part. Thus the probability for the two nodes to 
ve fe nt sub- in the formal part is expressed 

as P[i fer b-index  former part]= 

{1,…, / 2n   }

ndex 
u s in

i
ent s

/2

( / !1

!( / 2 )!2
n

n

i n i  

  
  

. In the latter part, we also have: 

P[j ifferent sub-indexs in later part]= 

2 )

d
/2

( / 2 )!1

!( / 2 )!2
n

n

j n j  

  
  

. 

rage communication overhead cThus the ave an be 

L=

the H2-based scheme is less than that in the hyper-
be-based scheme. 

 Analysis 
 

 adversary may compromise 
two nodes or prevent them to 
) The adversary may focus its 

summarized as: 

 2/n

]partformer in  indexs-subdifferent  i[)1(  Pi

]partformer in  indexs-subdifferent  j[)1( . 

oem12: The average communication overhead in 

1i

+
 2/

 
n

Pj
1j

Ther

cu
Proof: According to the analysis on communication 

overhead addressed in Subsection 5.4 in [3], the result is 
certainly held. 

Figure 5 shows that the comparison on communica-
tion overhead between the H2-based scheme and the 
hypercube-based scheme. 

5.3.  Security

Here we put focus on two types of attacks against 
H2-based scheme: 1) An
pairwise key between any 
stablish a pairwise key. 2e

power to attack against the whole network, for purpose 
of lowering the probability of pairwise key establishment, 
or in creasing communication cost. 
 
5.3.1.  Attacks against Pairwise Key between Two Nodes 
 

 
Figure 3. The relationship of dimension n and the scale of 
the sensor networks. 

 
Figure 4. The comparison of probability to establish direct 
key between H2-based and Hypercube-based algorithms. 

 
Figure 5. The comparison on average communication over-
head between the H2-based and the Hypercube-based 
schemes. 
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1) Suppose an adversary launches an attack against two 
particular nodes, in order to filch their pairwise key. In 
case that those two nodes are not compromised: 

① If the node u and v can establish direct pairwise 
key, the only means to compromise the key is to resolve 
the polynomial f(x,y), which is shared by the two nodes. 
As the degree of this polynomial is adversary t, the ad-
versary is required to compromise at least t+1 compro-
mised nodes with the same share of f(x,y). 

② If the node u and v need to establish indirect pair-
wise key, the adversary is required to compromise a

prevent 
pa

 
s should have 

be

of the H2-based scheme if 
eq

ised l bivariate polynomials, which 

me

sed 
ares to establish pairwise key. 

y adversar-

prove

 amo

n 
intermediate node, or filch the common share of the 
bivariate polynomial f(x,y) between the two nodes. 
However, even if the adversary succeeds to achieve the 
pairwirse key, the nodes u and v can also select alterna-
tives to re-establish key path. 

2) Suppose the adversary launch attacks to 
irwise key establishment against two particular nodes, 

denoted as u and v, which are assumed are not compro-
mised. Then the adversary is required to compromise n 
bivariate polynomials of the node u or v. Notes that to 
those polynomials are t-degree, which means that if 
such attacks succeeded, at least n(t+1) node

en compromised. 
As addressed above and analysis presented in Subsec-

tion 5.5.1 in [3], if an adversary launches attacks against 
nodes, the security of the H2-based scheme if equivalent 
with that of the hypercube-based scheme. That is, we 
have the following theorem. 

Theorem 13: The security 
uivalent with that of the hypercube-based scheme. 

 
5.3.2.  Attacks against the Whole Network 
Suppose that an adversary has known the distribution 
state of polynomials for each node, he would launch at-
tacks against the whole network systematically by com-
promising polynomials one by one. Assume that the ad-
versary has comprom

ans that at most  2/2 nl  nodes have been pre-loaded 
one of those compromised polynomials. However, the 

rest of the regular nodes, denoted as N-  2/2 nl  do not 
contain compromised polynomial shares. That means 

N-  2/2 nl  nodes can still work properly. Notice that 
those regular nodes should avoid to use compromi
sh

Clearly, the number of nodes influenced b
ies in the H2-based scheme is more than that in the hy-
percube-based scheme. However, on the condition that 
the adversary fails to compromise all of the polynomials, 
the effected nodes can select other regular nodes to es-
tablish pairwise key with others. 

In addition, it has d that the probability of direct 
key establishment in the H2-based scheme is much 
higher than that in the hypercube-based scheme. Thus in 

the process of direct key establishment ng non- 
compromised nodes, the degree of the influence cause by 
adversaries on the H2-based scheme is less than that on 
the hypercube-based scheme. That means the the 
H2-based scheme has ability to secure communications 
among nodes effectively in sensor networks. 
 
5.3.3.  Security Performance 
Based on the nice properties of fault tolerance in 
H2-baed scheme, a source node can re-establish pairwise 
key with the destination by selecting alternative key 
path. 

As addressed in Subsection 4.1, the polynomial pool 
has n*2n bivariate t-degree polynomials, that is, |F|=n*2n; 
As every node contains n different polynomial shares, 
given a particular share of a bivariate polynomial f, the 
probability for each node to contain such a share is n/|F|. 
Assume that the number of nodes in a network is 2n-1<N 
 2n, and the number of supposed compromised node is 
Nc , the probability for those compromised nodes to 

ontain i shares of f is c

Pi= !

( )! !
( ) (1 )
| | | |

c

c

c
i iN

i i

nN n
N



to filch f, the probability of being compromised 

F F
  

As the adversary needs to compromise at least t+1 
nodes 

for f is Pc=1-
0

t

i
i

P

 . 

According to Theorem 6, the compromised probabil-
ity of direct key establishment for any two non-compro-
mised nodes is expressed as Plink= PcPH2, in case that a 
particular polynomial f is compromised. 

Figure 6 shows the fraction of compromised direct 
 between non-comrpomised nodes as a function of 

the number of comprom
keys

ised keys for H2 and hyper-
cube-based schemes where N=30000 and t=2. 

Figure 6 sh that based on the assum tion of same 
network scale and the proportion of compromised nodes, 
H2

 no il to establish direct key until the 
prop

d
d

ows p

-based scheme provides higher probability than hy-
percube-based scheme for direct key establishment be-
tween any two non-compromised nodes. H2-based 
scheme would t fa

ortion increases to 40%, while for Hypercube-based 
scheme, accepted proportion is about 30%. 

We further inspect the probability of compromised in-
irect key. As addressed in Theorem 6, the probability of 
irect key establishment for any two nodes is PH2 

 (
/2 /2

2 2
n n       )/(N-1), the probability of indirect key 

stablishment can be expressed as 1-PH. Thus the prob-
bility of compromised indirect key is estimated

e
a

[1

 as (1-P ) H2

-(1-
N
Nc ) (1-Pc)

2]. 

Figure 7 shows that the probability of compromised 
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conditions of 
n

figure also show

ere overall security performance of the 
two schemes. We define the probability of compromised 
pa

indirect key between any two non-compromised nodes is 
a function of the fraction of compromised nodes where 
N=30000 and t =2. 

Figure 7 shows that based on the same 
etwork scale and fraction of compromised nodes, 

H2-based scheme has better performance than hyper-
cube-based scheme on indirect key establishment. The 

s that H2-based scheme would not fail to 
establish indirect key until the fraction of compromised 
nodes rises up to 60%. However, the fraction is only 
about 40% for Hypercube-based scheme. 

H we consider 

irwise key ( direct or indirect key) is 

Pkey=PH2Pc+(1-PH2)[1-(1-
N
N

f compromised 

scheme is better 
than t at of Hypercube e

 
5.4. The Probability of Pairwise Key  

des-

 in the whole 
se

ablishment when 
 not satisfy 

 
conn

 

 

 

heme. 

een the H2-based scheme and the Hyper-
cube-based scheme. 

 of compromised nodes relation be-

c ) )1( 2
Pc ]. 

Figure 8 shows that the probability of compromised 
pairwise key is a function of the fraction of compromised 
nodes where N=30000 and t=2 for the two schemes. 

From Figure 8, we can know that the probability of 
the pairwise key between any two non-compromised 
nodes when the H2-based scheme is applied, is lower 
than that when the Hypercube-based scheme is applied, 
supposing that the scale and percentage o
nodes of the sensor networks are the same. 

So, from the above description, it is obvious that the 
security performance of the H2-based 

h -based schem . 

Re-estab-lishment 
 

A source node has to re-establish key path to the 
tination once some intermediate nodes have been 
compromised. According to the previous presented two 
kinds of dynamic key path establishing algorithms, it is 
easy to know that the algorithms can find a new alter-
native key path certainly, when k =1,2 or 3, as long as 
the distribution of the compromised nodes

nsor network satisfy the conditions of 1,2 or 3- di-
mensional local-weak-connectivity. Next, lets analyze 
the probability of pairwise key re- est
the i d strivution of the compromised node do
the conditions of 1,2 and 3-dimensional local- weak-

ectivities. 
According to the pairwise key establishment sch-

eme addressed above, each node in a network is able 
to communicate    2/2/ 22 nn   nodes to establish di-
rect pairwise key. Assume that the fraction of com-
promised nodes is p, then the number of non-com- 
promised nodes  among    2/2/ 22 nn   i s  (1-p )* 
(    2/2/ 22 nn  ). On the condition that a key path is 

available among those non-compromised nodes, it’s 
certainly possible for a source node and the destina-
tion to establish indirect pairwise key. So, when the 
distrivution of the compromised node do not satisfy 
the conditions of 1,2 and 3-dimensional local-weak- 

 
 
 

 
 

 

 
 

 
Figure 6. The relation between the fraction of compro-
mised direct keys and the number of compromised 
nodes in H2- based scheme and Hypercube-based 
sc

 

 

 

 

 

 
Figure 7. The comparison on the fraction of compro-
mised indirect keys-number of compromised nodes rela-
tion betw

 

 

 
 
 

 

 

 

 

 
 
 
 
Figure 8. The comparison on the fraction of compro-

eys- numbermised k
tw

H2-based Scheme 

Hypercube-based 
Scheme 

H2-based Scheme 

Hypercu
Scheme 

be-based 

H2-based Scheme 

Hypercube-based 
Scheme 
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