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Abstract

Security schemes of pairwise key establishment, which enable sensors to communicate with each other se-
curely, play a fundamental role in research on security issue in wireless sensor networks. A general frame-
work for key predistribution is presented, based on the idea of KDC (Key Distribution Center) and polyno-
mial pool schemes. By utilizing nice properties of H2 (Hierarchical Hypercube) model, a new security
mechanism for key predistribution based on such model is also proposed. Furthermore, the working per-
formance of tolerance resistance is seriously inspected in this paper. Theoretic analysis and experimental fig-
ures show that the algorithm addressed in this paper has better performance and provides higher possibilities

for sensor to establish pairwise key, compared with previous related works.
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1. Introduction

The security issue in wireless sensor networks has be-
come research focus because of their tremendous appli-
cation available in military as well as civilian areas.
However, constrained conditions existent in such net-
works, such as hardware resources and energy consump-
tion, have made security research more challenging
compared with that in traditional networks.

Current research focus on such security schemes as
authentication and key management issues, which are
essential to provide basic secure service on sensor com-
munications. Pairwise key establishment enables any two
sensors to communicate secretly with each other. How-
ever, due to the characteristics of sensor nodes, it is not
feasible to utilize traditional pairwise key establishment
schemes.

Eeschnaure et al. [1] presented a probablitic key pre-
distribution scheme for pairwise key establishment. This
scheme picks a random pool (set) of keys S out of the
total possible key space. For each node, m keys are ran-
domly selected from the key pool S and stored into the

Copyright © 2009 SciRes.

node’s memory so that any two sensors have a certain
probability of sharing at least one common key. Chan [2]
presented two key predistribution techniques: g-com-
posite key predistribution and random pairwise keys
scheme. The g-composite scheme extended the per-
formance provided by [1], which requires at least g pre-
distributed keys any two sensor should share. The ran-
dom scheme randomly pickes pair of sensors and assigns
each pair a unique random keys. Liu et al. [3] developed
the idea addressed in previous works and proposed a
general framework of polynomial pool-based key predis-
tribution. Based on such a framework, they presented
random subset assignment and hypercube-based assign-
ment for key predistribution.

However, it still requires further research on key pre-
distribution because of deficiencies existent in those pre-
vious works. Since sensor networks may have dramatic
varieties of network scale, the g-composite scheme
would fail to secure communications as a small number
of nodes are compromised. The random scheme may
requires each sensor to store a large number of keys,
which would be contradicted with hardware constraints
of sensor nodes. The random subset assignment would
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not ensure any two nodes to establish a key path if they
do not share a common key. Though the hypercube-
based assignment can make sure that there actually exist
a key path, however, the possibilities of direct pairwise
key establishment are not perfect, leading to large com-
munication overhead.

In order to improve possibilities of direct pairwise
key establishment, and depress communication overhead
on indirect key establishment, we propose a H2 (Hierar-
chical Hypercube) framework, combined with a new key
predistribution scheme. Moreover two new fault tolerance
model and corresponding indirect pairwise key establish-
ment schemes are also proposed, by applying nice proper-
ties on tolerance resistance H2 model has provided. The
schemes has better working performance on probabilities
of pairwise key establishment between any two sensors.

2. Preliminaries

2.1. Notations and Definitions

Definitionl(key predistribution): Cryptographic algo-
rithms are pre-loaded in sensors before node deployment
phase.

Definition2 (pairwise key): When any two nods share
a common key denoted as E, we call that the two nodes
share a pairwise key E.

Definition 3 (key path): Given two nodes A, and Ay,
which do not share a pairwise key, if there exists a path
in sequence described as A, A1, Ay, ...... , A, Acand any
two nodes A;, Aj (0<si<ck-1,1<cj=<ck) share at least one
pairwise key, we call that path as a key path.

Definition 4 (n-dimensional hypercube interconnec-
tion network): n-dimensional hypercube interconnection
network H, (abbreviation as n-cube) is a kind of network
topology that has the following characteristics: 1) It is
consisted with 2" nodes and n-2"* links; 2) Each node
can be coded with a different binary string with n bits
such as bib,...by; 3) For any pair of nodes, there is a link
between them if there is just one bit different between
their corresponding binary strings.

Figure 1 illustrates the topology of a 4-dimensional
hypercube interconnection network, which is consisted
with 2°=16 nodes and 4-2*'=32 links. And the nodes are
coded from 0000 to 1111.

2.2. Related Works [1-3]

2.2.1. Polynomial-based Key Predistribution
In the scheme of polynomial-based key predistribution,
the key setup server randomly generates a t-degree

t -
bivariate polynomial f(x,y)= > aijx'yJ over a
i,j=0
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Figure 1. A 4-dimensional hypercube interconnection net-
work.

finite field Fy, Notes that q is fairly large prime number
and for any variables x and y, f(x,y)= f(y,x) is always held.
Then the key server computes a share of f(x,y), denoted
as f(i,y) for each node, where i is assumed to be a unique
ID for any sensor node. Every node is pre-loaded with its
own share before node-deployment phase. Thus for any
two nodes i and j, node i can compute the common key
f(i,j) by evaluating f(i,y) at point j, and vice visa.

To predistribute pairwise key with such a scheme as
addressed above, node i's storage overhead includes two
parts: One is (t+1)log q storage space for storing a t-
degree polynomial f(i,y), the other is the storage space
for its own ID information. [4] shows that this scheme
has ability of t-collusion resistant. That is, if there exists
no more than t compromised nodes in the network, the
scheme can ensure the pairwise key is secure between
any two normal nodes.

2.2.2. Polynomial Pool-based Key Predistribution
Pairwise key establishment in this scheme is processed
in the following three phase: polynomial pool generation
and key predistribution, direct key establishment, and
path key establishment.

1) polynomial pool generation and key predistribution:
This phase is mainly concerned with t-degree bivariate
polynomial pool (F) generation over a finite field F,.
Then a subset F;e F is selected and the shares of all of
the polynomials in this subset are assigned to the node i.

2) direct key establishment: Assume that node i and j
wants to establish pairwise key, if they have a common
share on a same polynomial, they can establish pairwise
key by utilizing the polynomial-based scheme. This
phase is performed as follows: node i may broadcast an
encryption list, «, EKv(a), v=1,2,..., |Fil, where K, is

the share of the vth polynomial at point j. If node j can
decrypts any one of these correctly, that means there
exists a common share between the two nodes.

3) path key establishment: If there no pairwise key
existent between node i and j, it’s necessary to find a key
path defined in Definition3. Then the two nodes trans-
mits secret information for pairwise key generation on
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this path.

2.2.3. Random Subset Assignment and Hyper-
cube-Based Assignment

1) Random Subset Assignment: Different from polyno-

mial scheme, the main idea of this assignment is to pick

a random subset of polynomial pool, denoted as Fie F,

and assign the share of this subset to node i.

2) Hypercube-based Assignment: Based on the con-
cept of random subset, this assignment generates poly-
nomial pool by utilizing hypercube model, and assign
subsets to nodes according to node’s ID.

3. H2 (Hierarchical Hypercube) Model

Definition 5 (H2 diagram): Assume that there exist 2"
nodes, the construction algorithm of n-dimension H2(n)
is illustrated as follows:

1) Each 22 nodes are connected as a [n/2] di-
mensional hypercube, in which nodes are coded from
00...0-11...1, and such kind of node code is called In-
— ——

[n/2] [n/2]
ner-Hypercube-Node-Code. As a result, 221 gifferent
such kind of [n/2] dimensional hypercubes can be

formed, where H represents the upper integer opera-
tion,and | | means the lower integer operation.

2) The obtained 2™ different such kind of [n/2]

dimensional hypercubes are codes from 00..0-11...1,
[n/2] [n/2]
and such kind of node code is called Outer-Hyper-
cube-Node-Code. And then, the nodes in the 2"'?! dif-
ferent such kind of [n/2] dimensional hypercubes with

the same Inner-Hypercube-Node-Code are connected as
a [n/2| dimensional hypercube, so we can obtain

2721 different such kind of [n/2] dimensional hy-

percubes.

3) The graph constructed through the above two steps
is called a H2 graph. And it is obvious that each node in
the H2 graph is coded as (r,h), where r (00..0 <rss

[n/2]
11...1) is the node’s Inner-Hypercube-Node-Code, and h
[n/2]
(00..0 <h=<11..1) is the node’s Outer- Hypercube-
Tz Tzl
Node-Code.

Theorem 1: There exist 2" in H2(n) diagram.

Proof: The conclusion is naturally held as 2"=
Z(nlz] * Z(n/ﬂ .

Theorem 2: The diameter of H2 (n) is n.

Proof: As the diameter of [n/2] dimension hyper-
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cube is[n/2], and it is naturally held for the case of
[n/2] dimension hypercube. Thus the diameter of H2(n)
is ]_nlz-\ + ]_nlz-\ =n according to definition5.

Theorem 3: The distance of any two nodes A(ry,h;)
and B(rp,hy) in H2(n) is expressed as d (A,B)= dy(ry,
r,)+dn(hy, hy)+1 where d,, is Hamming distance.

Proof: Since the distance of any two nodes is the

Hamming distance of their corresponding codes, it is
held according to definition5.

4. Pairwise Key Establishment Scheme
Based on H2 Model

As addressed above, polynomial-based and polyno-
moial-based schemes have some limitations. In this sec-
tion we propose a new pairwise key establishment and
predistribution scheme based on H2 model. The new
algorithm is composed of three phases: polynomial pool
generation and key predistribution, direct key establish-
ment, and path key establishment.

4.1. Polynomial Pool Generation and Key Pre-
distribution

Assume that there are N nodes in a wireless sensor net-
work, where 2™'< N < 2". A n-dimension H2(n) is then
generated and we construct a polynomial pool with the
following method:

1) The key setup server randomly generates n*2"
bivariate t-degree polynomial pool over a finite fields
Fo .denoted as F={ f. . (y) fl . .
(Y 0 < i<ip<ii<ijpepn < L1 <0 < [ni2]
0< j<j,<..< jfn,zh <1,1<j<n/2]}

2) The 2™ bivariate polynomials, denoted as

{fij]’jz “““ s () 0< i< j, << iyypy <13, where

1<j<[n/2], are assigned to the jth dimension of the
(iv:i2:-1i[ns2)) th hypercube in H2(n).
3) The o"F polynomials,

as{ f' Y 0< i <ip <. Sijpa)a < 1} wherel

<Ayl iwzﬂ
<i<[n/2], are assigned to the ith dimension of the
(Jys Jgseees drasap  thhypercube in H2(n).

4) For any nodes ((iuiz:---aiLn/zj) (s Joeens j(n/ﬂ)) in

bivariate denoted

H2(n), the polynomial shares, denoted as

{ ! x.y), o Y-,
f <j2 """ j(n/ﬂ> f < Jl’ Js J(n/ﬂ>

fr ey U g xy)., f*

D R PR [P <l by lins2 > <lyly o2
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XY)eerr L2 (xy)}, are assigned and

<i1'|2"”'iLn/2J»1>
pre-loaded before deployment phase.
5) The server assigns a unique ID, denoted as

(Gusizeifnrz) o (is Joveens Jrse) o 1O €VETY node in se-
quence, where 0 < j<j,<..<j,, < 1 0 <

<0, i <1

4.2. Direct Key Establishment

If any two nodes A((iy,iz.--si[ns2)) + (Jys Jp0ees Jfas27) ) @0
B((i",i"20 11 "nr2)) » (j'l,j’z,...,j'(n,ﬂ))wanttoestablish

pairwise key, the node A can achieve the pairwise key
with B by processing the following procedures:
Node A first computes the Hamming distance between

B and itSElf, as dl:dh((ilviZ:-'-yi\_nIZJ)v (i,l,i’z,...,i’\_nlzJ)),
02=0h( (s darens Jrorz) » (il iy 3o ) IF d=1 o

d,=1, the node can establish the pairwise with the peer
according to the conclusion of the Theorem 4.
Theorem 4: For any two nodes A( (ig,izsijns2)) »

(jl! jzv--'l j(n/ﬂ) ) and B(
(3% 05 i) ) If the  Hamming distance
di(  Guizenifn)  + (i'2end’e2) )71, Or
An( (i Joeeer Jrorz) + (B0 07500 J 2 ) =1, then there
exists certainly pairwise key between A and B.

Proof: 1) dh((ilviZ!"'vi\_nlzj) v(ill’i’Z!"'!i’Ln/ZJ) )=1: As-
sume that i= i’ , where 1 <t< |n/2]-1. Since
in2) # iz = an/ZJ

<pipoijnro 2

(i'ls2) i[ns2))- So, There exists a
(i[n/2].i|ns2]) between A

(i’lli’Z""’i’Lﬂ/ZJ) ’

( iI_nIZJ y il\_n/2j )
= f\_an_J
<i'i'2yee0y i'Ln/2}1>

pairwise key !

<il‘i2""'iLn!2}1)
and B.
2) An( (s Jproes Broz) o (ilys Bgrees J ) )=10 Iitat-

ing the step 1), it is easy to prove that there exists a
pairwise key between A and B.

4.3. Indirect Key Establishment

If dh( (illiZI---’il_nIZJ) ) (illxilzy---xi,Ln/zj) )>1 and dj
(Cgs o i) + (i P iorz) ) >1 then node A

establish indirect pairwise key with B according to
Theorem 5. In order to make it clear, we will provide a
lemma before the illustration of Theorem 5.

Lemmal: For any two nodes A( (iysizs--iln2))
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(jlljz""!j[n/z"‘) ) and B( (i'lvi’ZV'wi’Ln/Zj) ’
(J'ss 20§72 ), @ssume that dy=k, then there exists a

k-distance path denoted as 1o(=A), li,....Ix1, Ik(=B),
where dy, (I;,1;)=1.

Proof: According to Theorem 3, d,, can be expressed
as
o iz lor2) » (012072 J40C (s o S
(j’ll j’zx'-'a j”’l‘l/ZW) ):k ASSUFne that dh( (il!iZl"'liLn/ZJ) )
(i’lli'21"'l i'Ln/ZJ) ):hy then dh( (jl! j2|'-'1 j"n/z—l) [l
(J'0§'33+ ITs27) )=k-h. According to definition5, node
C((ivsizreeipniz) » (3 1500 j’(n,ﬂ)) and A are located
ina [n/2] -dimensional hypercube H, and node C and
B are located in a [n/2]-dimensional hypercube H'.
According to the properties of hypercube [5,6], there
exist a path described as Io(=A), l4,..., Ih1, Ih(=C) in H,
where dn(l;, I;)=1. Similarly, another path with the same
property is existed in H', denoted as In(=A), lh+1, --., Ik,
|k(=B), where dj, (li,lj)zl.

Thus there exist a integrated path in H2 diagram from
node A to B, described as lo(=A), Iy,...,lk1, I«(=B) where
dh (li, |j):1.

Theorem 5: Assume that any two nodes can communicate
directly in a wireless sensor networks, and there is no compro-
mised node in the networks, then there exist a key path for any
node A( (iysizyifns2)) ,(jl,jz,...,j[n,ﬂ) ) and node B

((illyi’Za---:i’Lnlzj)! (j’l! jrz!---v j’[n/z‘\) )

Proof: According to Lemmal, there exist a path for
any two nodes where dp=k in H2 diagram. Thus the con-
clusion is held.

We propose the algorithm for indirect key establish-
ment as follows. Assume the two nodes A((iv, iz s i[n/2)) »

(j1lj2""vj|'n/z'\) ) and node B( (i’lvilzv---li,\_nlzj) )
(J' 3’20 I Twi2) ) Want to establish indirect pairwise

key in the network, we propose the algorithm for indirect
key establishment illustrated as follows.

Indirect_Key_Establishing_Algorithm(){

1) Node A computes a set L which records the dimen-
sions in which node A and B have different sub-indexes.
The set can be expressed as L={(dy,dy,...,dy),(91,92,-.-.0w) }
where d;< d,<...< dy, 01<02<...<Qy.

2) Node A maintains a path set P with initial vale of
P={A}.

3) Assume that U( (ug,uz s Ujni2)) s (U1 U250 UTns2]) )
=A; s=1.

4) Node A computes intermediate nodes expressed as
V=( (ul'uz""udgl'i’ds’ud;l'""u“"zj) , (u’l,u’z,...,u’[n/ﬂ)). And

P=P U {V}.
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5) Assume that U =V.

6) If s<k, then s=s+1, and repeats the step 4, other-
wise turns to step7).

7) Node A computes intermediate nodes V=

( (UL Uz e Upnr2)) a2l g j'g U g penUoe) ), and

let P=P U {V}.

8) Let U =V.

9) If s<w, then s=s+1, and repeats step7); otherwise
go on step10).

10) Let P=P U {B}.

}

According to Theorem 5, any node can compute a key
path to it destination when there is no compromised node
in the network. Once the path P is achieved, the two
nodes can exchange secret information to generate pair-
wise key between themselves.

For example, the node A((001), (0101)) and the node
B((100), (1100)) can establish pairwise key along the
following key path: A((001), (0101)) — ((101), (0101))
— ((200), (0101)) — ((100), (1101)) — B((100),
(1100y).

According to the algorithm described above, the fol-
lowing conclusion is naturally held.

Theorem 6: Assume that any two nodes can commu-
nicate with each other directly, and there is no compro-
mised node in a network. If the distance between the two
nodes is k, then there exists a key path with distance of k.
That is, the two nodes can establish pairwise key through
k-1 intermediate nodes.

4.4. Dynamic Key Path Establishment

The Indirect_Key Establishing_Algorithm() illustrated
in Subsection 4.3 can only deal with the situation that
there is no compromised node in the network. However,
in case of some existent compromised nodes, the algo-
rithm would fail to find fungible intermediate node to
help establish pairwise key.

We further analyze the example addressed in Subsection
4.3. When the node ((101),(0101)) is compromised, the
node A and B can utilize the following path to establish
pairwise key: A((001), (0101)) —» ((000),(0101)) —
((100), (0101)) > ((100), (1201)) > B((100), (1100)).

When the node ((100),(1101)) is compromised, the
two nodes can use the path: A((001), (0101)) — ((101),
(0101)) — ((100), (0101)) — ((100), (0100)) > B((100),
(1100y).

In case that the nodes ((101),(0101)),((100),(1101))
are compromised, there still exists a key path denoted as
A((001),(0101)) — ((000),(0101)) — ((100),(0101)) —
((2100),(0100)) — B((100),(1100)).

4.4.1. Relative Definitions of Local Weak Connectivity
Definition 6: The nodes A and B in a n-dimensional hy-
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percube H, are called neighbors, if that there exists only
one different bit in their binary strings.

Definition 7: The node A in an m-dimensional hyper-
cube/sub-hypercube H;, is m-disconnected, iif that all
links between A and every faultless node in Hy, are fault.
The node A in an m-dimensional hypercube/sub- hyper-
cube H,, is reachable, iif that A is faultless and not
m-disconnected.

Definition 8 (k-dimensional local-weak-connectivity):
A n-dimensional hypercube H, is k-dimensional lo-
cal-weak-connected, if all reachable nodes in each
k-dimensional sub-hypercube Hy (k=1) of H, forms a
connected graph, and the number of reachable nodes in
Hy is bigger than 2%,

Definition 9 (general local-weak-connectivity): An n-
dimensional hypercube H, is general local-weak- con-
nected, if there exists a h-dimensional sub-hypercube Hy,
(h=Xk), which is local-weak-connected and includes Hy,
as for each k-dimensional sub-hypercube Hy (k=1) of
Hn.

Figure 2 presents a 3-dimensional hypercube Hz with
two fault nodes and a 3-disconnected node. According to
the above two kinds of local-weak-connectivity concepts,
it is easy to prove that all reachable nodes in Hzis global
connected.

4.4.2. Global Connectivity of Local-Weak-Connected
Hypercube

An n-dimensional hypercube H, has 2" nodes, in which
each node can be represented by a binary string and has
n different links. So H, hasn 2" different links totally.

Definition 10: Any binary string b, b, ... by With
given length n-k corresponds a k-dimensional sub-hy-
percube H, with 2 nodes, and the nodes in H, can be
represented by such binary strings as b; by ... bp¢ *.-. %,
where * can be 0 or 1.

From the construction algorithm of Hy, it is easy to
know that all k-dimensional sub-hypercubes are isomor-

faultless nodes

fault nodes

Figure 2. A 3-dimensional hypercube H3 with fault nodes
and links. In which, the black dots represent fault nodes,
the white dots represent faultless nodes, the lines with to-
kens represent fault links, and the lines without tokens
represent faultless links.
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phic, and H, includes all of the k-dimensional
sub-hypercubes that is isomorphic with H. And it is easy
to prove that H, includes 2"*-1 k-dimensional sub-
hypercubes that is isomorphic with Hy and has no com-
mon nodes with H, also.

Lemma 2: All of the reachable nodes in any two
neighboring k-dimensional sub-hypercubes of the Local-
Weak-Connected n-dimensional Hypercube H, form a
connected graph.

Proof: Let that H and H’, are two neighboring
k-dimensional sub-hypercubes, according to definition
10, we can utilize binary strings by b, ... bpy *...* tO
represent the nodes in Hy, where * can be 0 or 1. Since
Hcand H', are neighboring, so there exists at least one
common node between Hy and H', = the nodes in
H'x can be represented as by ... by * bug -
boa ** ds F.*oand by .o big by b
bk **ds *..* € He = p; ... ba by b -
bok *-..* ds *...* € He» H'c . Considering that the
number of reachable nodes in H’ is bigger than
2! = there exists at least one node A in those

2% nodes represented by by ... b by bt oo Dok *-..
*d, *...* is reachable. Since Ae H,= Node A and all of
the reachable nodes inH, form a connected graph. And
in addition, since A€ H’, = Node A and all of the
reachable nodes in H’, form a connected graph also. So,
all of the reachable nodes in Hyand H', form a con-
nected graph.

Theorem 7: All of the reachable nodes in n-dimen-
sional Hypercube H,, which satisfies the conditions of
k-dimensional local-weak-connectivity, form a connected
graph.

Proof: From Theorem 2, it is easy to prove that the
conclusion stands.

From Theorem 7, we can obtain the following de-
duces easily.

Deduce 1: If n-dimensional Hypercube H, satisfies
the conditions of k-dimensional local-weak-connectivity,
then all of the reachable nodes in any h-dimensional
sub-hypercube Hy(h = k) form a connected graph.

Deduce 2: If n-dimensional Hypercube H, satisfies
the conditions of k-dimensional local-weak-connectivity,
then there exists at least a pair of connected reachable
nodes a; ... aj1 0 @ju1 .-+ @nk Xnka - Xn and
a---ajalaj - ank Xk - ¥, Detween any pair
of k-dimensional sub-hypercubes of g, ...a;,0 aj ...

*

Adn—k *...* a.nd a1 ...aj71 1aj+1 woe An—k *... .

Proof: From deduce 1, if n-dimensional Hypercube
H, satisfies the conditions of k-dimensional lo-
cal-weak-connectivity = All of the reachable nodes in

Copyright © 2009 SciRes.

any h-dimensional sub-hypercube Hy(h=k) form a con-
nected graph = All of the reachable nodes in any
(k+1)-dimensional sub-hypercube a; ... aj1 * aj .-

ank *...* form a connected graph. And since the num-

bers of unreachable nodes in k-dimensional
sub-hypercubes &, ... aj4 0 aju -.- anx *...* and

a---ajalaja-..ank *...* are less than a half of the

number of total nodes respectively. So, there exists
reachable node a; ... a;10aju - @nk Xnst -+ Ko N

ar - aj10aj. .- ank *...*, and there exists reachable
node a ... aj1 1 ajur -+ Ank Lok - Xn N
a - ajalaja-.-ang *...* certainly. And in addition,
those two nodes a; ...aj10aj1--- @nk Xnior --- £ and

- ajalaja-eeank X' ¥'n IS cCONNected.

Theorem 8: All of the reachable nodes in
n-dimensional Hypercube H,, which satisfies the condi-
tions of general local-weak-connectivity, form a con-
nected graph.

Proof: Since n-dimensional Hypercube H, is local-
weak-connected, and there exists no other sub-hyper-
cubes that include itself in H,. So, from definition 9, it is
easy to know that H, is n-dimensional local-weak-con-
nected. And in addition, from definition 8, we can know
that all of the reachable nodes in H, form a connected
graph.

Theorem 7 and Theorem 8 show that the hypercubes,
that satisfy the conditions of the proposed two kinds of
local-weak-connectivity, must be global connected.

4.4.3. K-Dimensional Local-Weak-Connectivity Based
Dynamic Key Path Establishment Algorithm

KLWC-based Dynamic_Key Path_Establishing_Algo-
rithm(){

Input: Sensor network H, with fault nodes and fault
links (The links, whose length are bigger than the trans-
mitting  radius). And two reachable  nodes

A( (iliiZi-'-iiLnIZJ) ' (jl' Jare j]—n/ﬂ) ) and

B((i%i%2ni'mz) » (3 J'grees 0s2)) i Ho
Output: A correct key path P from A to B in H,.
1) Compute and determine the node T=
(G202 (is Joveens Jra2) )10 Hipg)s
2) P=Dynamic_Key Path_Establishment_1 (A,T);
3) P=P U Dynamic_Key_Path_Establishment_2 (T,
B);
)4) If P is a correct key path from A to B, then exit,
otherwise turn to step 5);
5) Compute and determine the node T=((iy,iz ;s i[n/2)) »

(e 3y i) I Higro)
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6) P=Dynamic_Key Path_Establishment_2 (A,T);

7) P=P U Dynamic_Key Path_Establishment 1 (T,
B);
8) If P is a correct key path from A to B, then exit,
otherwise turn to step 9);

9) Report A, failure to establish a key path from A to
B.

¥

Algorithm Dynamic_Key Path_Establishment_1(A,T):
1) Obtain the codes of nodes A and T:

A <« ( (i11i2 ----- iLnlzj) ) (jlvjzv---lj(n/z]) ), T <«

((i’l!i’Zleli’I_n/ZJ)! (jll j2|--'! j’—n/Z-‘) )1

/* From definition 10, we can suppose that the
k-dimensional sub-hypercube that includes T is

(0% - iz ¥ (s G o) )
2) Initialize Path P: P <A,
3) Initialize  temporary  binary
C=((car CarvorCurz) + iys Jpoer Jorz) ) €A
4) FOR(j=1; j< [n/2]; j++)}{
IFGi # i’ 4
(DAccording to lemma2 and deduce 1, a pair of con-
nected reachable nodes C and D can be found through

discovering in neighboring k-dimensional sub- hyper-
cubes:

C:( (CllCZ!"'Cj,l'Cj’Cj+1""’c\_n/2j) ) (jl’ jz""7 j[n/z]))'

string C:

D=( (iyl’ilz'"'i'jffi’j’Xi+1""’XLn/zJ) s J e jfn/ﬂ) ),
where ¢ =it (te [1,]]);
@)Join the path from ( (ii,....'

ol il j+1""'|Ln/2J) !

(Js Ja e Jrare) ) tO node D into P;
(BC<«D;
}
}

[* After the above steps, a correct key path from node
A((ixsi2s-ri[nr2) » (Jis 3000 Jraj27) ) o the reachable node
(i % - Vvzbe 2 rzicn -+ Zz) 1 U Javeess o) )
will be constructed. */

5) Join the path from node (( i'i'zi'\n2)«
X' \wzsn - X2k (s J20ee Jrgp7) ) to node Toin the
k-dimensional sub-hypercube (( iy i"2 --- iln2fx ™),
(i, J20 Jas2) ) into P. And then exit. So, a correct key
path from node A to node T is discovered.

Algorithm Dynamic_Key Path_Establishment_2(T, B):
1) Obtain the codes of nodes B and T: T

<~ ( (illii’z’---’i’\_nlzj) ' (jlvjz llll j]’n/2'|) ); B

Copyright © 2009 SciRes.

<—((i’lyi'z,---yi'Ln/ZJ)-(j,lvj,z ----- j"—n/ﬂ));

[* From definition 10, we can suppose that the
k-dimensional sub-hypercube that includes B s
((i'lli,zv-"i,l_n/zj) l( j'l j’z j'[n/z]fk *--'*))'*/

2) Initialize Path P: P« T;

3) Initialize  temporary  binary
C=((i"i2rini2) s (Cr Caveeni i) ) € T

4) FOR(I=1; 1< [n/2]; 1+4){

IF(h = 11

@ According to lemma2 and deduce 1, a pair of con-
nected reachable nodes C and D can be found through

discovering in neighboring k-dimensional sub-hyper-
cubes:

C=((i"yi'20rinr2) » (CI!CZ""C|,1!C|’C|+1""!C"n/ﬂ) )i
D:( (illiiIZ!'-'!i,Ln/ZJ) 1 (j’],’j’z""j’lil' j'I,XHl,m’X[n/z") )!

string C:

where ¢;=j'; (t €[1,1]).
@ Join the path from ( (i'i'20eniez)
G0 DR LA Y S ) ) to node D into P;
® C<«D;
}
[* After the above steps, a correct key path from node
TC Gl i inr2) (s doreees j(n,ﬂ) ) to the reachable

node ( (i',i2oniln2) » (7 %
Z’[mz}m ;g'wﬂ)) will be constructed. */

j,[n/ﬂ—k

5) Join the path from node ( (i'i%.ifn2)) +
(i iy j’]'nlz-\—k Z’(n/ﬂ_m Z'[n/z1)) to node B in the
k-dimensional ~ sub-hypercube  ( (i',i'25inr2)
(3" 7'+ JTa2 ™)) into P. And then exit. So, a correct

key path from node T to node B is discovered.

From the above description, we can know that the
time complexity of algorithm Dynamic_Key Path_ Es-
tablishment_1 is

o((n/2]+k)2") + 0(2") = O(n2*") , and the time
complexity of algorithm Dynamic_Key Path_Establish-
ment_2 is O (([(n/2]-k)29+0 (=0 (n2*Y, so
the total time complexity of the k-Dimensional Local-
Weak-Connectivity based Dynamic Key Path Establish-
ment Algorithm is O (n2“) .

Considering the percentage of the fault nodes in sen-
sor networks, when applying the k-Dimensional Lo-
cal-Weak-Connectivity based Dynamic Key Path Estab-
lishment Algorithm actually, we can set k=1,2,3. Then
the total time complexity of the k-Dimensional Lo-
cal-Weak-Connectivity based Dynamic Key Path Estab-
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lishment Algorithm willbe O (n) only. Figure 3 illus-
trates the relationship of dimension n and the scale of the
sensor networks.

4.4.4. General Local-Weak-Connectivity Based Dynamic
Key Path Establishment Algorithm

GLW(C-based Dynamic_Key Path Establishing_Algorithm(){
Input: Sensor network H, with fault nodes and fault

links (The links, whose length are bigger than the trans-

mitting  radius). And two reachable nodes

A( (illiZ!ﬂ'!iLn/ZJ) 1 (jl' jZ ----- j(n/ﬂ)) and B( (i'lii’Z ,,,,, i'LanJ),
(jll’ j,z """ j,[nlz'\)) in Hy.

Output: A correct key path P from A to B in H,.
1) Compute and determine the node T=((i"1,i"2,-in/2)) »

(jl’ jzv"" j]’nlz‘\)) in H [n2] ;

2)P=Dynamic_Key Path_Establishment_3(A, T);

3)P=P U Dynamic_Key Path Establishment_4(T,
B);
4)If P is a correct key path from A to B, then exit,
otherwise turn to step 5);

5)Compute and determine the node
T=( (il!iZI---’i\_nIZJ) ) (j,l' j,z ----- j(’—n/ﬂ)) in H [n2) ;

6)P=Dynamic_Key Path_Establishment_4(A, T);

7)P=P U Dynamic_Key Path Establishment 3(T,
B);
8)If P is a correct key path from A to B, then exit,
otherwise turn to step 9);

9)Report A, failure to establish a key path from A to
B.

}

Algorithm Dynamic_Key Path_Establishment_3(A, T):
1)Obtain the codes of nodes A and T:

A (uizenimz) 0 (g dorees j]—n/ﬂ) ),
T<—((i’1!i’21"'lirtn/2J)v(jlljzl"" j]’n/z") )1

/* From definition 10, we can suppose that the
k-dimensional sub-hypercube that includes T is
((i’1 i,Z i’LnIZJ-k *-"*)v (jl! jzv"'l j[n/z"‘) )*/

2)Initialize Path P: P < A,

3)Initialize temporary binary string C:
C=((C1rC2rrer Cln/2 ) + s oo i) ) €A

4FOR(j=1;j<n; j++){

IFGij # i') X

FOR(k=1; k< n-j; k++){

IF(According to Theorem 8, a pair of connected

reachable nodes C and D can be found through discov-
ering in neighboring k-dimensional sub-hypercubes:

C:((CmCZv---CHer'Cj+1 """ CLnlzj) ’(jl’ j2"“' j|—n/2—|) ),

Copyright © 2009 SciRes.

D:( (irlni’zl--'i'j,lli,j’Xj+1 ..... XLnIZJ) ’ (jl! jg:---r j"njz]) )v
where ¢ct=it (te [1,j]);

(DJoin the path from
((i'lni’z""i,j—l’ii’ij+ ""'iLn/zJ) (s e an/ﬂ) ) to node

((i'lfi'z,---i'j—l’i,j Xy X\_n/ZJ) (o Jgoees j[n/ﬂ) ) into P;
@c <—((i'lni'zv“i,jfl'i'j’XJ+1""'XLn/2J)'

(s Joveens Jrara) )i
(3Break;
}

}

IF(k >n-j){

WHILE(k<n){

IF(In the k-dimensional hypercube
((C1'CZ'---CW2H*---*) v dgrees j[n,ﬂ)), there exists no

faultless key path from node C to node T) k++;

3
3
IF( k > n) exit. Then H|p/2]| is not general lo-

cal-weak-connected, and we cannot find a correct key
path from node Ato T.

ELSE Join the path from C to T in the k-dimensional
hypercube ((Cl’cz""CLn/zJ_k*"'*) N j(n,ﬂ)) into
P;

}

5) Exit. And a correct key path from A to T is discov-
ered.

Algorithm Dynamic_Key Path_Establishment_4(T, B):
1) Obtain the codes of nodes T and B: T

«— ( (i,l!i'zv--vi'\_nlzj) ) (jl'jz ----- j(n/ﬂ) ) and B

<~ ( (i,l! i’Z!"'i i’\_nIZJ) ' (j'l! j’z!"'v j,[n/z") )1

/* From definition 10, we can suppose that the
k-dimensional sub-hypercube that includes B is
((i’ll 172100 ian/Zj) l( j'1 j’z j'[n/z]_k *'--*))-*/

2) Initialize Path P: P« T;

3) Initialize  temporary  binary
C=((i",i"2nii2)) s (e CovemnCrniz]) ) < T

4) FOR(I=1; 1< n; 1++){

IFCh = W' H

FOR(k=1; k< n-j; k++){

IF(According to Theorem 8, a pair of connected
reachable nodes C and D can be found through discov-
ering in neighboring k-dimensional sub-hypercubes:

C:( (i,l!i'Z!"'ii’\_nIZJ) ’ (Cl!CZ!"'Cj_vaj’Cj+1""’C"n/2") )!

string C:
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D:((i’]_:i’Zv"'li'\_nIZJ)!
(j'1’j’21"' j,|71’ j,|’X|+1""'X"n,2"))’
where ¢;=i"t (te[Ljl);
@Join the path from ( (i",i'.nrilna)) + (§'y J'50eee

j’|,1’ jl’ jl+17.", j(n/2"|) ) to node ( (i,lvi'27"-xi’tn/2j) ’
(j/l‘ j/z"" j'|_1’ j,| ! X|+1""’X[n/21)) into P
@C <~ ((i,]_) i,2)"'| VI\n/ZJ) ’

HJ HJ H 1/ ;
(J 1’ ] 21 J’|,1' J I’X|+1’m’ X’—HIZ]) ),
(®Break;
}

}

IF(k >n-j){

WHILE(k<n){

IF(In the k-dimensional hypercube
((i'lvi'z’---’i'LnIZJ)v(CbCz’---C(n/ZLk*---*))’ there exists no

faultless key path from node C to node B) k++;

}
IF(k > n) exit. Then HW] is not general lo-

cal-weak-connected, and we cannot find a correct key
path from node T to B.
ELSE Join the path from C to B in the k-dimensional hy-

percube ((i's,i2:++1'[n2)) » (C1s C2vee- Gy 014 ) ) INEO P,

}

}
5) Exit. And a correct key path from T to B is discovered.

From the above description, we can know that the
time complexity of algorithm Dynamic_Key Path_ Es-

tablishment_ 3 is O (n/22kmn) + O (2kmn) =

O ([n/2 |2kmin) , where Kk pmin is the smallest integer that
satisfies the condition of  k-dimensional lo-
cal-weak-connectivity.  And the time complexity of
algorithm  Dynamic_Key_Path_Establishment_4  is
O (n/2]2Knmin) +O (2Kmin) = O (n/2]2Kmin), so the
total time complexity of the general Local-Weak- Con-
nectivity based Dynamic Key Path Establishment Algo-
rittmis O (/2 [2Kmin) .

Considering the percentage of the fault nodes in sen-
sor networks, when applying the general Local- Weak-
Connectivity based Dynamic Key Path Establishment
Algorithm actually, we can set k=1,2,3. Then the total
time complexity of the General Local-Weak- Connec-
tivity based Dynamic Key Path Establishment Algorithm
will be O(n) only.

5. Analysis

Copyright © 2009 SciRes.

5.1. Feasibilities of the Algorithm

Theorem 9: In our algorithm, the possibility of direct key
establishment for any two nodes can be expressed as
Pra ~ (2"%+ 2" )/(N-1).

Proof: As the algorithm has assigned any node, de-
noted as ( (izsizseinsz)) » (jl,jz,...,j(n,ﬂ) ), shares of

polynomials expressed as Fp = {f1 (uy),

<j21---1j"n/2W>
i [n/2] .
£ W U Gy U
N i J’—"/Zf ’ <Jply J("/ﬂ,f J( 2]

f (), f° (i2Y), s

Gy pra <ipig-ilnrop
(i[n/2) )} It's clear that there are 2"+ 2! nodes

which can establish direct pairwise key with the node A.
Thus Py~ (2"+2™1)/(N-1) as the network scale is
within the area 2"'< N < 2",

Suppose that a sensor network has N=10000 sensor
nodes, then n=14. The possibility of direct key establish
is about Py, ~2.56% according to the conclusion drawn
by Theorem 6. However, the possibility decreases to
Pr ~0.14% if the algorithm addressed in [3] is used.

Theroem10: Assume that the possibility of direct key
establishment in H2-based scheme is defined as Py,
while the possibility in hypercube is denoted as Py, then

Proof: Suppose the number of a network is within the

[n/2]

<lelzlns2 0™

as addressed in

area of 2"< N <2" and Py~ Nn

[3]. Thus lim P. ﬂjm@ =0.

H2 >

5.2. Overhead Analysis

Node’s Storage Overhead

1) Any node is required to store t-degree bivariate poly-
nomials whose number is n over the finite fields g, which
occupies n(t+1)log q bits.

2) In order to keep the security of the Keys, for any
bivariate polynomial f(x,y), node A is required to store
the ID information of the compromised nodes that can
establish direct key with A by using f(x,y). Since the de-
gree of f(x,y) is t, then f(x,y) will be divulged when there
are more than t nodes are compromised. So, for any
bivariate polynomial f(x,y), node A needs only to store
the ID information of n compromised nodes that can
establish direct key with A by using f(x,y). In addition,
since the node’s ID is a vector of n bits, and from Theo-
rem 4, we can know that node A needs only to store one
bit for each compromised node to determine the whole
ID information of the compromised node. So, the total
storage cost is nt bits.
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3) Also the node’s own ID information occupies about
n bits storage space, as it is expressed as
(Givrizsemritnz)) » s Gprees Jorz) )

All of the storage overhead address above sum up to
n(t+1)log g+nt+n= n(t+1)log 2q bits.

Theorem 11: The H2-based and the hypercube-based
schemes have the same storage overhead.

Proof: According to the analysis on storage overhead
addressed in Subsection 5.4 in [3], the result is certainly
held.

Communication Overhead
In a sensor network, sending a unicast message between

two arbitrary nodes may involve the overhead of estab-
lishing a route. In case of no compromised node existent
in the network, any one node can communicate with the
others directly. Assume that the overhead for a hop is
defined as 1, then for two arbitrary nodes whose Ham-
ming distance is L, the minimum communication over-
head is L. We further inspect average communication
overhead on H2-based path key establishment.

Suppose there are two nodes A( (ig,izsijns2))

(jl‘ jz""‘ j!—n/ﬂ)) and B((i'l‘i'z’""i'\_n/ZJ)’ (j'l’ jlzr"" j'[n/ﬂ))
In the formal part of node’s code, the probability of
ie=i'e, e€{l,..., [n/2]} is 1/2; Similarly, the prob-

ability of je= j’e, e€{l,..., [n/2]}isalso 1/2 in the

latter code part. Thus the probability for the two nodes to
have i different sub-index in the formal part is expressed

as P[i different sub-indexs in former part]=
L{ZJM . In the latter part, we also have:

o i n/2]-in

P[j different sub-indexs in later part]= _1 __ (n/2)!

o i n2]- )

Thus the average communication overhead can be
summarized as:

n/2
L= LZj(i —1) x PJ[i different sub - indexs in former part]
i=1
[n/2]
+ Z(j —1) x P [jdifferent sub - indexs in former part] .

j=1

Theroem12: The average communication overhead in
the H2-based scheme is less than that in the hyper-
cube-based scheme.

Proof: According to the analysis on communication
overhead addressed in Subsection 5.4 in [3], the result is
certainly held.

Figure 5 shows that the comparison on communica-
tion overhead between the H2-based scheme and the
hypercube-based scheme.
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5.3. Security Analysis

Here we put focus on two types of attacks against
H2-based scheme: 1) An adversary may compromise
pairwise key between any two nodes or prevent them to
establish a pairwise key. 2) The adversary may focus its
power to attack against the whole network, for purpose
of lowering the probability of pairwise key establishment,
or in creasing communication cost.

5.3.1. Attacks against Pairwise Key between Two Nodes
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60000
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20000
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Sensor Network
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Figure 3. The relationship of dimension n and the scale of
the sensor networks.
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Figure 4. The comparison of probability to establish direct
key between H2-based and Hypercube-based algorithms.
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Figure 5. The comparison on average communication over-
head between the H2-based and the Hypercube-based
schemes.
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1) Suppose an adversary launches an attack against two
particular nodes, in order to filch their pairwise key. In
case that those two nodes are not compromised:

@ If the node u and v can establish direct pairwise
key, the only means to compromise the key is to resolve
the polynomial f(x,y), which is shared by the two nodes.
As the degree of this polynomial is adversary t, the ad-
versary is required to compromise at least t+1 compro-
mised nodes with the same share of f(x,y).

@ If the node u and v need to establish indirect pair-
wise key, the adversary is required to compromise an
intermediate node, or filch the common share of the
bivariate polynomial f(x,y) between the two nodes.
However, even if the adversary succeeds to achieve the
pairwirse key, the nodes u and v can also select alterna-
tives to re-establish key path.

2) Suppose the adversary launch attacks to prevent
pairwise key establishment against two particular nodes,
denoted as u and v, which are assumed are not compro-
mised. Then the adversary is required to compromise n
bivariate polynomials of the node u or v. Notes that to
those polynomials are t-degree, which means that if
such attacks succeeded, at least n(t+1) nodes should have
been compromised.

As addressed above and analysis presented in Subsec-
tion 5.5.1 in [3], if an adversary launches attacks against
nodes, the security of the H2-based scheme if equivalent
with that of the hypercube-based scheme. That is, we
have the following theorem.

Theorem 13: The security of the H2-based scheme if
equivalent with that of the hypercube-based scheme.

5.3.2. Attacks against the Whole Network

Suppose that an adversary has known the distribution
state of polynomials for each node, he would launch at-
tacks against the whole network systematically by com-
promising polynomials one by one. Assume that the ad-
versary has compromised | bivariate polynomials, which

means that at most 122! nodes have been pre-loaded
one of those compromised polynomials. However, the

rest of the regular nodes, denoted as N-12I""21 do not
contain compromised polynomial shares. That means

N-12/"21 nodes can still work properly. Notice that
those regular nodes should avoid to use compromised
shares to establish pairwise key.

Clearly, the number of nodes influenced by adversar-
ies in the H2-based scheme is more than that in the hy-
percube-based scheme. However, on the condition that
the adversary fails to compromise all of the polynomials,
the effected nodes can select other regular nodes to es-
tablish pairwise key with others.

In addition, it has proved that the probability of direct
key establishment in the H2-based scheme is much
higher than that in the hypercube-based scheme. Thus in
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the process of direct key establishment among non-
compromised nodes, the degree of the influence cause by
adversaries on the H2-based scheme is less than that on
the hypercube-based scheme. That means the the
H2-based scheme has ability to secure communications
among nodes effectively in sensor networks.

5.3.3. Security Performance

Based on the nice properties of fault tolerance in
H2-baed scheme, a source node can re-establish pairwise
key with the destination by selecting alternative key
path.

As addressed in Subsection 4.1, the polynomial pool
has n*2" bivariate t-degree polynomials, that is, |F|=n*2";
As every node contains n different polynomial shares,
given a particular share of a bivariate polynomial f, the
probability for each node to contain such a share is n/|F|.
Assume that the number of nodes in a network is 2"*<N
< 2", and the number of supposed compromised node is
N, the probability for those compromised nodes to

contain i shares of fis

pi=_N.

i N -
n n,-
puy ~(— 1_7
Wy e
As the adversary needs to compromise at least t+1
nodes to filch f, the probability of being compromised

for fis P=1- ZI: P,

According to Theorem 6, the compromised probabil-
ity of direct key establishment for any two non-compro-
mised nodes is expressed as Pjin= P, X Pyp, in case that a
particular polynomial f is compromised.

Figure 6 shows the fraction of compromised direct
keys between non-comrpomised nodes as a function of
the number of compromised keys for H2 and hyper-
cube-based schemes where N=30000 and t=2.

Figure 6 shows that based on the assumption of same
network scale and the proportion of compromised nodes,
H2-based scheme provides higher probability than hy-
percube-based scheme for direct key establishment be-
tween any two non-compromised nodes. H2-based
scheme would not fail to establish direct key until the
proportion increases to 40%, while for Hypercube-based
scheme, accepted proportion is about 30%.

We further inspect the probability of compromised in-
direct key. As addressed in Theorem 6, the probability of
direct key establishment for any two nodes is Py,

~ ("4 "1y N-1), the probability of indirect key

establishment can be expressed as 1-Py Thus the prob-
ability of compromised indirect key is estimated as (1-Py,)

[1-(1-%)X(1-Pc)2]-

Figure 7 shows that the probability of compromised
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indirect key between any two non-compromised nodes is
a function of the fraction of compromised nodes where
N=30000 and t =2.

Figure 7 shows that based on the same conditions of
network scale and fraction of compromised nodes,
H2-based scheme has better performance than hyper-
cube-based scheme on indirect key establishment. The
figure also shows that H2-based scheme would not fail to
establish indirect key until the fraction of compromised
nodes rises up to 60%. However, the fraction is only
about 40% for Hypercube-based scheme.

Here we consider overall security performance of the
two schemes. We define the probability of compromised
pairwise key ( direct or indirect key) is

Prey=Ph2 X Pc+(1-Pup)[1-(1- % )% (1~ Pc)2 I

Figure 8 shows that the probability of compromised
pairwise key is a function of the fraction of compromised
nodes where N=30000 and t=2 for the two schemes.

From Figure 8, we can know that the probability of
the pairwise key between any two non-compromised
nodes when the H2-based scheme is applied, is lower
than that when the Hypercube-based scheme is applied,
supposing that the scale and percentage of compromised
nodes of the sensor networks are the same.

So, from the above description, it is obvious that the
security performance of the H2-based scheme is better
than that of Hypercube-based scheme.

5.4. The Probability of Pairwise Key
Re-estab-lishment

A source node has to re-establish key path to the des-
tination once some intermediate nodes have been
compromised. According to the previous presented two
kinds of dynamic key path establishing algorithms, it is
easy to know that the algorithms can find a new alter-
native key path certainly, when k =1,2 or 3, as long as
the distribution of the compromised nodes in the whole
sensor network satisfy the conditions of 1,2 or 3- di-
mensional local-weak-connectivity. Next, lets analyze
the probability of pairwise key re- establishment when
the distrivution of the compromised node do not satisfy
the conditions of 1,2 and 3-dimensional local- weak-
connectivities.

According to the pairwise key establishment sch-
eme addressed above, each node in a network is able
to communicate 2% +2/"21 nodes to establish di-
rect pairwise key. Assume that the fraction of com-
promised nodes is p, then the number of non-com-
promised nodes among 22 4+221 s (1-p)*
( 27214 2I"21y " on the condition that a key path is

Copyright © 2009 SciRes.

available among those non-compromised nodes, it’s
certainly possible for a source node and the destina-
tion to establish indirect pairwise key. So, when the
distrivution of the compromised node do not satisfy
the conditions of 1,2 and 3-dimensional local-weak-
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Figure 6. The relation between the fraction of compro-
mised direct keys and the number of compromised
nodes in H2- based scheme and Hypercube-based
scheme.
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Figure 7. The comparison on the fraction of compro-
mised indirect keys-number of compromised nodes rela-
tion between the H2-based scheme and the Hyper-
cube-based scheme.
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Figure 8. The comparison on the fraction of compro-
mised keys- number of compromised nodes relation be-
tween the H2-based scheme and the Hypercube-based
scheme.
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Figure 9. The relation between the probability of re-
established keys and the number of compromised nodes
in the H2-based and Hypercube-based schemes.

connectivities, the probability of pairwise key re-es-
tablishment can be estimated as:

Pr=1- [1_ (1_ p) 2(1_ P c) 2]

Assume that N=30000 and t=2, Figure 9 shows that
the probability of pairwise key re-establishment is a
function of number of compromised nodes in H2 and
hypercube-based schemes. It also shows that the prob-
ability of pairwise key re-establishment in H2 scheme
is higher than that in hypercube-based scheme for any
two non-compromised nodes.

o p)"(ZL"/ZJ+2["’ﬂ)

6. Conclusions

An H2-based key predistribution scheme is proposed.
Compared with polynomial pool-based scheme, it can
improve working performance on probability of direct
key establishment without additional storage requirement.

Copyright © 2009 SciRes.

Moreover, experimental figures show that our algorithm
has lower communication cost and more secure than
previous related works.
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