
I. J. Communications, Network and System Sciences, 2008, 4, 285-385
Published Online November 2008 in SciRes (http://www.SciRP.org/journal/ijcns/).

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

 An Active Rule Approach for Network Intrusion Detection
with Enhanced C4.5 Algorithm

L Prema RAJESWARI, Kannan ARPUTHARAJ

College of Engineering, Guindy, Anna University, Chennai, India
E-mail: jlprema@cs.annauniv.edu, kannan@annauniv.edu

Received February 28, 2008; revised August 20, 2008; accepted August 29, 2008

Abstract

Intrusion detection systems provide additional defense capacity to a networked information system in
addition to the security measures provided by the firewalls. This paper proposes an active rule based
enhancement to the C4.5 algorithm for network intrusion detection in order to detect misuse behaviors of
internal attackers through effective classification and decision making in computer networks. This enhanced
C4.5 algorithm derives a set of classification rules from network audit data and then the generated rules are
used to detect network intrusions in a real-time environment. Unlike most existing decision trees based
approaches, the spawned rules generated and fired in this work are more effective because the information-
theoretic approach minimizes the expected number of tests needed to classify an object and guarantees that a
simple (but not necessarily the simplest) tree is found. The main advantage of this proposed algorithm is that
the generalization ability of enhanced C4.5 decision trees is better than that of C4.5 decision trees. We have
employed data from the third international knowledge discovery and data mining tools competition
(KDDcup’99) to train and test the feasibility of this proposed model. By applying the enhanced C4.5
algorithm an average detection rate of 93.28 percent and a false positive rate of 0.7 percent have respectively
been obtained in this work.

Keywords: Decision Tree, Intrusion Detection, KDD Cup Dataset, Enhanced C4.5

1. Introduction

To apply data mining techniques in intrusion detection,
first, the collected monitoring data needs to be
preprocessed and converted to the format suitable for
mining processing. Next, the reformatted data will be
used to develop a clustering or classification model. The
classification model can be rule-based, decision-tree
based, and association-rule based. Classification
approach can be useful for both misuse detection and
anomaly detection, but it is more commonly used for
misuse detection.

1.1. Intrusion Detection System

Intrusion Detection Systems (IDS) have been used to
monitor network traffic thereby detect if a system is
being targeted by a network attacks such as a DoS, Probe,

U2R and R2L. The two main intrusion detection
techniques are misuse detection and anomaly detection.
Misuse detection systems, for example, IDIOT [1] and
STAT [2], use patterns of well known attacks or weak
spots of the system to match and identify known
intrusions. For example, a signature rule for the
“guessing password attack” can be “there are more than
four failed login attempts within two minutes”.

The existing intrusion detection methods [3,4] like
misuse detection and anomaly detection are generally
incapable of adapting detection systems to the change of
circumstances resulting in high false positive rate. The
most popular ways to detect intrusions are by using audit
trail data generated by operating systems. An audit trail is
a record of activities on a system that are logged to file in
chronologically order. Manual inspection of these logs is
not feasible due to incredibly large sizes of audit data
generated. Therefore, data mining is used to automate the
wading through audit data [5].

 AN ACTIVE RULE APPROACH FOR NETWORK INTRUSION DETECTION 315
WITH ENHANCED C4.5 ALGORITHM

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

1.2. Classification System

Classification is similar to clustering in that it also
partitions customer records into distinct segments called
classes. But unlike clustering, classification analysis
requires that the end-user/analyst know ahead of time
how classes are defined. It is necessary that each record
in the dataset used to build the classifier already have a
value for the attribute used to define classes. As each
record has a value for the attribute used to define the
classes, and because the end-user decides on the attribute
to use, classification is much less exploratory than
clustering. The objective of a classifier is not to explore
the data to discover interesting segments, but to decide
how new records should be classified. Classification is
used to assign examples to pre-defined categories.
Machine learning software performs this task by
extracting or learning discrimination rules from examples
of correctly classified data. Classification models can be
built using a wide variety of algorithms. Classification
categorizes the data records in a predetermined set of
classes used as attribute to label each record;
distinguishing elements belonging to the normal or
abnormal class. This technique has been popular to detect
individual attacks but has to be applied with
complementary fine-tuning techniques to reduce its
demonstrated high false positives rate. Classifications
algorithms can be classified into three types [6]
extensions to linear discrimination (e.g., multilayer
perceptron, logistic discrimination), decision tree and
rule-based methods (e.g., C4.5, AQ, CART), and density
estimators (Naïve ayes, k-nearest neighbor, LVQ).

Decision trees are among the well known machine
learning techniques. A decision tree is composed of three
basic elements: – A decision node is specifying a test
attribute. – An edge or a branch corresponding to the one
of the possible attribute values which means one of the
test attribute outcomes. A leaf which is also named an
answer node contains the class to which the object
belongs. In decision trees, two major phases should be
ensured: 1) Building the tree. 2) Classification. This
process will be repeated until a leaf is encountered. The
instance is then being classified in the same class as the
one characterizing the reached leaf. Several algorithms
have been developed in order to ensure the construction
of decision trees and its use for the classification task.
The ID3 and C4.5 algorithms developed by [6,7] are
probably the most popular ones.

This paper proposes an enhanced C4.5 algorithm
towards developing a more-robust Intrusion Detection
System through the use of data-mining techniques.
Signature-based intrusion-detection systems are normally
known as misuse-detection systems. Misuse-detection
systems apply a rule-based approach that uses stored

signatures of known intrusion instances to detect attacks.
The attribute selection measure allowing to choose an
attribute that generates partitions where objects are
distributed less randomly. In other words, this measure
should consider the ability of each attribute to determine
training objects’ classes. The measure is the gain ratio of
Quinlan, based on the Shannon entropy, where for an
attribute Ak and a set of objects T. The information gain
measure is used to select the test attribute at each node in
the tree. Such a measure is referred to as an attribute
selection measure or a measure of the goodness of split.
The attribute with the highest information gain (or
greatest entropy reduction) is chosen as the test attribute
for the current node. This attribute minimizes the
information needed to classify the samples in the
resulting partitions. Such an information-theoretic
approach minimizes the expected number of tests needed
to classify an object and guarantees that a simple (but not
necessarily the simplest) tree is found.

These data mining techniques will dynamically model
what a normal network should look like and reduce the
false negative alarm rates in the process. We will use
classification-tree techniques to accurately predict
probable attack sessions.

The subsequent sections are organized as follows.
Section 2 presents a general survey in the field of misuse
detection in network intrusion detection. Section 3
describes the systems architecture of the new misuse
intrusion detection and Enhanced C4.5 algorithm for
generating active rules. Section 4 depicts the results and
its possible implications. Section 5 gives the conclusions
on this work and suggests some possible future works.

2. Literature Survey

This section discusses the related works on IDS and
classification for IDS and compares them with the
proposed enhanced C4.5 algorithm. There are many
works in the literature that deal with classification.
[1,3,5,8]. Decision tree [9] is a widely used tool for
classification in various domains that need to handle
large data sets. One major advantage of the decision tree
is its interpretability, i.e., the decision can be represented
in terms of a rule set. Each leaf node of the tree
represents a class and is interpreted by the path from the
root node to the leaf node in terms of a rule such as: “If
A1 and A2 and A3, then class C1,” where A1, A2, and
A3 are the clauses involving the attributes and C1 is the
class label. Thus, each class can be described by a set of
rules.

Xiang et al. [8] say that intrusion detection is the
process of monitoring the events occurring in a computer
system or network and analyzing them for signs of intrusions.

316 L. P. RAJESWARI ET AL.

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

Figure 1. Misuse detection.

For accurate intrusion detection, we must have reliable
and complete data about the target system activities.
Similarly, routers and firewalls provide event logs for
network activity. These logs might contain simple
information, such as network connection openings and
closings, or a complete record of every packet that
appeared on the wire [10].

Decision trees are special classifiers built from
instances for which the classification is known, and they
are used to classify new cases taken from the same
application domain [11]. Each internal node of the tree is
associated to an attribute describing a feature of the
dataset (domain data), and each outgoing arc is labeled
with a possible value (set of values) for that feature. Each
leaf node is associated to the attribute we want to predict
a value for (the classification attribute), and to a value for
that attribute. As stated in [12], learning algorithms based
on decision trees generally adopt the divide-and-conquer
strategy, i.e. they build the decision tree by recursively
dividing the data set of examples into subsets according
to some splitting criterion (splitting test). The splitting
criterion is very important in the process of building the
tree, because it determines if we must attach a node or a
leaf as next element in the tree. Some of the well known
splitting techniques are information Gain and Information
Gain Ratio [13], Gini Criterion and Twoing rule
proposed in [14].

Shavlik et al. [15] provide a framework for kdd cup
1999 dataset. The KDD 99 intrusion detection datasets
are based on the 1998 DARPA initiative, which provides
designers of intrusion detection systems (IDS) with a
benchmark on which to evaluate different methodologies.
To do so, a simulation is made of a factitious military
network consisting of three “target” machines running
various operating systems and services. Additional three
machines are then used to spoof different IP addresses to
generate traffic. Finally, there is a sniffer that records all
network traffic using the TCP dump format. The total
simulated period is seven weeks.

3. System Architecture

The main task of the intrusion detection system is to
discover the intrusion from the network packet data or
system audit data as shown in Figure 1. One of the major
problems that the IDS might face is that the packet data
or system audit data could be overwhelming. Some of the
features of audit data may be redundant or contribute
little to the detection process. The intrusions are
simulated and the detection of the intrusions is done and
proper alert message is displayed.

In decision trees, two major phases should be ensured:
1) Building the tree. Based on a given training set, a

decision tree is built. It consists of selecting for each
decision node the ‘appropriate’ test attribute and also
to define the class labeling each leaf.

2) Classification. In order to classify a new instance, we
start by the root of the decision tree, then we test the
attribute specified by this node. The result of this test
allows moving down the tree branch relative to the
attribute value of the given instance. This process will
be repeated until a leaf is encountered. The instance is
then being classified in the same class as the one
characterizing the reached leaf.
Several algorithms have been developed in order to

ensure the construction of decision trees and its use for
the classification task. Using enhanced C4.5 algorithm
we have generated rules. Comparison is take place for the
input data. If the pattern is found we can detect the data
is an attack, otherwise the data is normal.

4. Mathematical Preliminary

In this section, a brief introduction of the classification
algorithms used in the i.e., the Enhanced C4.5 algorithm
for building decision trees algorithm, will be given.

4.1. Enhanced C4.5 Algorithm

In a number of applications like pattern recognition, we
need to classify data items into discrete set of applicable
categories. A classifier, which is a function (or model)
that assigns a class label to each data item described by a
set of attributes, is often needed in these classification tasks.

 AN ACTIVE RULE APPROACH FOR NETWORK INTRUSION DETECTION 317
WITH ENHANCED C4.5 ALGORITHM

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

There are quite a few machine learning approaches for
generating classification models, among which decision
tree learning is a typical one. As an example, C4.5 in [6]
builds a decision tree where each internal node denotes a
test on an attribute, each branch represents an outcome of
the test, and leaf nodes represent classes or class
distributions. The top-most node in a tree is the root node.
The tree is a model generated by the classification
algorithm. In order to classify an unknown sample, the
attribute values of the sample are tested against the
decision tree. A path is traced from the root to a leaf node
that holds the class prediction for that sample. The C4.5
algorithm builds a decision tree, from the root node, by
choosing one remaining attribute with the highest
information gain as the test for the current node. In this
paper, Enhanced C4.5, a later version of the C4.5
algorithm, the gain ratio, expresses the proportion of
useful information generated by split, i.e., that appears
helpful for classification will be used to construct the
decision trees. The specific algorithm is given below.
The reader is referred to [7] for further details.

Algorithm: Generate a decision tree from the given
training data.

Input: Training samples, represented by discrete/
continuous attributes; the set of candidate attributes,
attribute-list.

Output: A decision tree
Method:

1) Create a node N;
2) If samples are all of the same class, C, then
3) Return N as a leaf node labeled with the class C;
4) If attribute-list is empty then
5) Return N as a leaf node labeled with the most

common class in samples; (majority voting)
6) Select test-attribute, the attribute among attribute-list

with the highest information gain ratio;
7) Label node N with test-attribute;
8) For each known value ai of test-attribute
9) Grow a branch from node N for the condition test-

attribute = ai;
10) Let si be the set of samples in samples for which test-

attribute = ai;
11) If si is empty then
12) Attach a leaf labeled with the most common class in

samples;
13) Else attach the node returned by Generate_decision_tree
(si, attribute-list).

Attribute Selection:
The information gain measure used in step (6) of

above Enhanced C4.5 algorithm is used to select the test
attribute at each node in the tree. Such a measure is
referred to as an attribute selection measure or a measure
of the goodness of split. The attribute with the highest
information gain (or greatest entropy reduction) is chosen
as the test attribute for the current node. This attribute
minimizes the information needed to classify the samples

in the resulting partitions. Such an information-theoretic
approach minimizes the expected number of tests needed
to classify an object and guarantees that a simple (but not
necessarily the simplest) tree is found.

Existing Algorithm: Information Gain:
Let S be a set of training set samples with their

corresponding labels. Suppose there are m classes and the
training set contains si samples of class I and s is the total
number of samples in the training set. Expected
information needed to classify a given sample is
calculated by:

() () ()1 2 2
1

, ,..., log
m

m i i
i

I S S S S S S S
=

=∑ (1)

A feature F with values {f1, f2, …, fv} can divide the
training set into v subsets {S1,S2,…, Sv} where Sj is the
subset which has the value fj for feature F [Zhi-xin, 2005].
Furthermore let Sj contain Sij samples of class i. Entropy
of the feature F is

() () ()1 1
1

... ...
V

j mj j mj
j

E F S S S X I S S
=

= + +∑ (2)

Information gain for F can be calculated as:

() () ()1 2, ,..., mGain F I S S S E F= − (3)

In this experiment, information gain is calculated for
class labels by employing a binary discrimination for
each class. That is, for each class, a dataset instance is
considered in-class, if it has the same label; out-class, if it
has a different label. Consequently as opposed to
calculating one information gain as a general measure on
the relevance of the feature for all classes, we calculate
an information gain for each class. Thus, this signifies
how well the feature can discriminate the given class (i.e.
normal or an attack type) from other classes.

4.2. Proposed Enhancement: Gain Ratio

Criterion

The notion of information gain introduced earlier tends to
favor attributes that have a large number of values. For
example, if we have an attribute D that has a distinct
value for each record, then Info(D,T) is 0, thus Gain(D,T)
is maximal. To compensate for this, it was suggested in
[6] to use the following ratio instead of gain.

Split info is the information due to the split of T on the
basis of the value of the categorical attribute D, which is
defined by

() 2
1

log
n

i i

i

T T
SplitInfo X x

T T=

 
= −   

 
∑ (4)

And the gain ratio is then calculated by

() ()
()
,

,
,

Gain D T
GainRatio D T

SplitInfo D T
= (5)

318 L. P. RAJESWARI ET AL.

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

The gain ratio, expresses the proportion of useful
information generated by split, i.e., that appears helpful
for classification. If the split is near trivial, split
information will be small and this ratio will be unstable.
To avoid this, the gain ratio criterion selects a test to
maximize the ratio above, subject to the constraint that
the information gain must be large, at least as great as the
average gain over all tests examined.

5. Implementation and Results

Since information gain is calculated for discrete features,
continuous features should be discretized. To this end,
continuous features are partitioned into equalized
partitions by utilizing equal frequency intervals [16]. In
equal frequency interval method, the feature space is
partitioned into arbitrary number of partitions where each
partition contains the same number of data points. That is
to say, the range of each partition is adjusted to contain N
dataset instances. If a value occurs more than N times in
a feature space, it is assigned a partition of its own. In
“10% KDD” dataset, certain classes such as denial of
service attacks and normal connections occur in the
magnitude of hundreds of thousands whereas other
classes such as R2L and U2R attacks occur in the
magnitude of tens or hundreds. Therefore, to provide
sufficient resolution for the minor classes N is set to 10,
(i.e. maximum 50,000 partitions).

Enhanced C4.5 Rules
Enhanced C4.5rules read the decision tree produced

by Enhanced C4.5 and generates a set of production rules
from each and from all trees together. Single Enhanced
C4.5 acquires pruned decision tree with 117 nodes on
train data. Total classification error rate is 47%. However,
we found that Enhanced C4.5 has high classification
capability for buffer_overflow and guess_passwd. Follow-
ing results is a part of Enhanced C4.5 rules for
buffer_overflow and guess_passwd on given 29313
training patterns.

Detecting Misuse Data
The anomaly data is detected using the rules generated.

The rules are given as SQL queries and then the test data
is given as input. The data are separated and stored in the
different database either as normal or anomaly data. By

Table 1. Rules for training data.

Rule No Conditions Actions

Rule 1

num_failed_logins > 0
dst_host_same_srv_rate > 0

class
guess_passwd

Rule 2

hot > 2
root_shell > 0

class
buffer_overflow

Rule 3

src_bytes <= 70
dst_bytes > 5006
dst_host_same_src_port_rate
> 0

class
buffer_overflow

this classification we can detect the misuse data in the
testing dataset.

Different databases are created for different data. The
network accepts the normal packets. The abnormal data
are then detected and then deleted. As the anomaly data
is detected in the network an alert message is given to the
user of the system or administrator.

RESULTS

Tree Generation with Training Data
Enhanced C4.5 summarizes its results in a table of the

following form:

Evaluation on training data (4000 items):
Before Pruning After Pruning
---------------- ----------------------
Size Errors Size Errors Estimate
1085 496(12.4%) 873 5 46(13.7%) (26.9%)

Evaluation on test data (4000 items):
Before Pruning After Pruning
---------------- ---------------------
Size Errors Size Errors Estimate
1085 1232(30.8%) 873 1206(30.1%) (26.9%)

Decision Tree Generation:
Subtree [S1]
diff_srv_rate <= 0.9 : portsweep < 5.0/2.3 >
diff_srv_rate > 0.9 : macspoofing < 7.0/1.3 >

Subtree [S2]
dst_host_same_src_port_rate<=0.75:others

<103.0/5.0>
dst_host_same_src_port_rate>0.75: land < 4.0/2.2 >

Subtree [S3]
dst_host_src_rerror_rate<=0.5:macspoofing

<14.0/1.3>
dst_host_src_rerror_rate>0.5:portsweep <4.0/1.2 >

Subtree [S4]
dst_host_src_diff_host_rate<=0.25:macspoofing

<8.0/1.3 >
dst_host_src_diff_host_rate>0.25: others <4.0/1.2 >

Evaluation on training data (105131 items):
Before Pruning After Pruning
---------------- ----------------------
Size Errors Size Errors Estimate
955 74 (0.1%) 446 109(0.1%) (0.2%)

The above rule depicts the decision tree generation.
Most of this should be self-explanatory. The “Size”
column gives the number of nodes in the decision tree.
The “Errors” column gives the number (and percentage)
of examples that are misclassified. The “Estimate”
column gives the predicted error rate for new examples
(this is the so-called “pessimistic” estimate, and it is
computed internally by the tree algorithm). In this case,
we see that the unpruned decision tree had 1,085 nodes

 AN ACTIVE RULE APPROACH FOR NETWORK INTRUSION DETECTION 319
WITH ENHANCED C4.5 ALGORITHM

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

and made 496 errors on the training data and 1,232 errors
(or 30.8%) on the test data. Pruning made the tree
significantly smaller (only 873 nodes) and, while it hurt
performance on the training data, it slightly improved
performance on the test data. The pessimistic estimate
(26.9%) was actually a bit optimistic, but not too far off
the mark (30.1%). You should use the error rate on the
test data to plot your learning curves.

Enhanced C4.5 also prints out a confusion matrix that
has one row and column for every class. The number
shown in row i, column j is the number of examples that
we classified into class i but whose true class was j. The
perfect confusion matrix has entries along the diagonal only.

Generation of Rules from Tree
After Enhanced C4.5 has been run, then convert the

decision tree into a set of rules. To execute the program,
use the following command line:

C4.5rules -f stem -u >> stem.log
Enhanced C4.5rules will read the stem.names,

stem.data and stem.unpruned files and append its output
to the file stem.log. It will evaluate its rules on the
examples in stem.test. This program can be quite slow.

This rules act as a platform for misuse detection.
These rules are saved in a separate document and then
they are used as SQL query. Enhanced C4.5 ules displays
all of the rules and then summarizes the rule performance
in the following manner

Read 105131 cases (41 attributes)
Processing tree 0
Final rules from tree 0:

Table 2. Rules for testing data.

Rule No Conditions Actions

Rule 10

srv_count <= 1
same_srv_rate <= 0.26
diff_srv_rate > 0.9
dst_host_srv_count < = 31

class macspoofing [99.9%]

Rule 6

srv_bytes > 0
dst_bytes <= 1
count > 9
srv_count < = 1

class macspoofing [99.5%]

Rule 32 service = eco_i
src_bytes <= 26

class macspoofing [99.5%]

Rule 8

protocol_type = udp
service = other
src_bytes <= 17
srv_count <= 1

class macspoofing [99.2%]

Rule 16

Service = other
src_bytes <= 26
srv_count <= 1
dst_host_same_src_port_rate >0.08

class macspoofing [99.2%]

The columns in the confusion matrix given below

have the following meaning.
� “Rule”: The number of the rule. There is one row for

each rule.
� “Size”: The number of tests in the rule.
� “Wrong”: The number of times the rule made an error

(also expressed as a percentage).
� “Advantage”: A heuristic quantity used by the rule to

select and prune rules.
� The class given in the conclusion part of the rule.
� “Error”: The estimated error rate for this rule.

The classified results, the false positive and detect rate
was obtained in confusion matrix shown in the following

Table 3.
Default class: smurf
Evaluation on training data <105131 items>:
Tested 105131, errors 18343 (17.4%)
In Table 3 we see that the rules achieved an error rate

17.4% on the test data. The rules are grouped according
to their output classes. Furthermore, the classes are
ordered. The rules are applied in th order given. If none
of the rules applies to an example, then the example is
assigned to the “default” class. The top left entry in the
confusion matrix shows that 6038 of the actual “normal”
test examples were predicted to be normal by this entry.
The last column indicates that in total 99.6% of the actual

320 L. P. RAJESWARI ET AL.

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

Table 3. Confusion matrix obtained by C4.5.

Table 4. Performance comparison of C4.5 vs enhanced C4.5.

 C4.5 Algorithm Enhanced C4.5 Algorithm

Class Detection Rate False Positive False Negative Detection Rate False Positive False Negative
Normal 0.9603 0.0397 - 0.9826 0.0174 -
DoS 0.906 - 0.094 0.9455 - 0.0545
Probe 0.84 - 0.16 0.8801 - 0.1199
U2R 0.8366 - 0.1634 0.8830 - 0.117
R2L 0.5376 - 0.4624 0.5580 - 0.442

normal examples were recognized correctly. The bottom
row shows that 89.3% of test examples said to be normal
were indeed normal in reality. From the last column, we
can obtain the average detect rate of 84.9%, the false
positive rate is 15.1%.

Classifying and Detecting Anomalies
Misuse detection is done through applying rules to the

test data. Test data is collected from the DARPA. The
test data is stored in the database. The rules are applied
as SQL query to the database. This classifies data under
different attack categories as follows:

1) DOS (Denial of Service)
2) Probe
3) U2R (User to Root)
4) R2L (Root to Local)
The C4.5 algorithm builds a decision tree, from the

root node, by choosing one remaining attribute with the
highest information gain as the test for the current node.
In this paper, Enhanced C4.5, by choosing one remaining
attribute with the highest information gain ratio as the test
for current node is considered a later version of the C4.5
algorithm, will be used to construct the decision trees for
classification. From the table 5.4 it is clear that Enhanced
C4.5 outperforms the classical C4.5 algorithm. R2L
attack was a bit challenging to Enhanced C4.5 but even
in that case, it has reported a subtle improvement over its
counter part.

Split info is the information due to the split of T on the
basis of the value of the categorical attribute D, which is
defined by

() 2
1

log
n

i i

i

T T
SplitInfo X x

T T=

 
= −   

 
∑ (4)

And the gain ratio is then calculated by

() ()
()
,

,
,

Gain D T
GainRatio D T

SplitInfo D T
= (5)

In Enhanced C4.5 the gain ratio, expresses the

proportion of useful information generated by split, i.e.,
that appears helpful for classification. If the split is near-
trivial, split information will be small and this ratio will
be unstable. To avoid this, the gain ratio criterion selects
a test to maximize the ratio above, subject to the
constraint that the information gain must be large, at least
as great as the average gain over all tests examined.

It has been observed that the class distribution in
training data will affect classifier learning significantly
since the decision trees are built with the statistical
information of the samples, and naturally occurring class
distribution may not be the best in terms of classification
performance. Thus, not all the connection records from
original training set were used. Some heuristics have
been employed in selecting the training set. Basically, all
the samples will be used if the number of samples is
relatively small, and only a small subset will be randomly
selected from the original training data if the size of the
training data is huge.

Predicted

Actual

smurf

Ipsweep

nmap

neptune

portal

land

teard

%
correct

smurf 72535 1 99.6
ipsweep 2 99.1
nmap 375 737 2 3 97.4
neptune 504 2 2922 93.2
portal 598 91 376 3 89.4
land 47 9 242 2 0
teard 9
% correct 83.3 93.2 99.2 94.6 94.2 84.3 0 0

 AN ACTIVE RULE APPROACH FOR NETWORK INTRUSION DETECTION 321
WITH ENHANCED C4.5 ALGORITHM

Copyright © 2008 SciRes. I. J. Communications, Network and System Sciences, 2008, 4, 285-385

6. Conclusions and Future Enhancement

In this paper, a novel architecture for NIDS has been
proposed which uses an Enhanced C4.5 algorithm for
intrusion detection in the system. The NIDS monitors
network packets and connection status from the network
layer to the application layer of the TCP/IP protocol
stack. The NIDS detects anomaly behaviors through state
transition and classification that has been carried out
using Bayes-like decision. The major advantage of this
architecture is that it creates profile using enhanced C4.5
algorithm and utilizes the original C4.5 algorithm to
implement behavior classification. The system has been
tested with a set of attacks using KDD-99 data set. The
test show that this NIDS detects low-level network
attacks effectively with low false positive rate, and it has
a good performance in detection of unknown attacks,
especially for PROBE, DOS and U2R attacks.

In the future work, number of inside attacks can be
simulated and the attack can be detected. More attention
shall be paid for U2R and R2L attacks. The detection of
U2R and R2L attack is more difficult because of their
close resemblance with the normal connections. More
accurate detection methods can be used for U2R and R2L
attacks. In the future work the anomaly is going to be
detected by the clustering technique.

7. References

[1] S. Kumar and E. H. Spafford, 1995, “A software

architecture to support misuse intrusion detection,” in
Proceedings of the 18th National Conference on
Information Security, pp.194–204, April 2001.

[2] K. Ilgun, R. A. Kemmerer, and P. A. Porras, 1995, “State
transition analysis: A rule-based intrusion detection
approach,” IEEE Transaction on Software Engineering
Vol. 28, No. 2, pp. 181–199, March 2005.

[3] C. T. Lu, A. P. Boedihardjo, and P. Manalwar,
“Exploiting efficient data mining techniques to enhance
intrusion detection systems,” IEEE International
Conference, Blacksburg, USA, pp. 512–517, April 2005.

[4] J. Zhang and M. Zulkernine, “A hybrid network intrusion
detection technique using random forests,” Proceedings
of the First International Conference on Availability,
Reliability and Security, Vienna, University of
Technology, Austria, pp. 121–132, April 2006.

[5] J. F. Tian, Y. Fu, Y. Xu, and J. L. Wang, “Intrusion
detection combining multiple decision trees by fuzzy
logic,” Proceedings of the Sixth International IEEE
Conference on Parallel and Distributed Computing,
Applications and Technologies, Dalian, China, pp. 256–
258, May 2005.

[6] R. J. Henery, “Classification,” Machine Learning Neural
and Statistical Classification, 1994.

[7] J. R. Quinlan, “C4.5: Programs for machine learning,”
Morgan Kaufmann, San Mateo, California, 1993.

[8] C. Xiang and S. M. Lim, “Design of multiple-level hybrid
classifier for intrusion detection system,” in IEEE
Transaction on System, Man, Cybernetics, Part A,
Cybernetics, Vol. 2, No. 28, Mystic, CT, pp. 117–122,
May 2005.

[9] P. Kabiri and A. A. Ghorbani, “Research on intrusion
detection and response: A survey,” International Journal
of Network Security, Vol. 1, No. 2, pp. 84–102, February
2005.

[10] J. Shavlik and M. Shavlik, “Selection, combination, and
evaluation of effective software sensors for detecting
abnormal computer usage,” Proceedings of the First
International Conference on Network security, Seattle,
Washington, USA, pp. 56–67, May 2003.

[11] J. R. Quinlan, “Decision trees as probabilistic classifiers,”
in Proceedings of the Fourth International Workshop on
Machine Learning, Morgan Kaufmann, pp. 31–37, June
1987.

[12] W. Lee, S. Stolfo, and K. Mok, “A data mining
framework for building intrusion detection models,” in
Proceedings of IEEE Symposium on Security and Privacy,
Oakland, CA, USA, pp. 120–132,1 June 1999.

[13] S. Sarasamma, Q. Zhu, and J. Huff, “Hierarchical
Kohonen net for anomaly detection in network security,”
IEEE Transactions on System, Man, Cybernetics, Part B,
Cybernetics, Vol. 35, No. 2, pp. 302–312, April 2005.

[14] L. Breiman, “Pasting small votes for classification in
large databases and on-line,” Machine Learning, Vol. 36,
No. 1–2, pp. 85–103, 1999.

[15] J. W. Shavlik, S. Calcari, T. Eliassi-Rad, and J. Solock,
“An instructable, adaptive interface for discovering and
monitoring information on the World-Wide Web,”
Intelligent User Interfaces, pp. 157–160, 1999.

[16] Z. X. Yu, J. R. Chen, and T. Q. Zhu, “A novel adaptive
intrusion detection system based on data mining,” in
Proceedings of the Fourth International Conference on
Machine learning and Cybernetics, Guangzhou, pp.
2390–2395, June 2005.

