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Abstract 
 
Intrusion detection systems provide additional defense capacity to a networked information system in 
addition to the security measures provided by the firewalls. This paper proposes an active rule based 
enhancement to the C4.5 algorithm for network intrusion detection in order to detect misuse behaviors of 
internal attackers through effective classification and decision making in computer networks. This enhanced 
C4.5 algorithm derives a set of classification rules from network audit data and then the generated rules are 
used to detect network intrusions in a real-time environment. Unlike most existing decision trees based 
approaches, the spawned rules generated and fired in this work are more effective because the information-
theoretic approach minimizes the expected number of tests needed to classify an object and guarantees that a 
simple (but not necessarily the simplest) tree is found. The main advantage of this proposed algorithm is that 
the generalization ability of enhanced C4.5 decision trees is better than that of C4.5 decision trees. We have 
employed data from the third international knowledge discovery and data mining tools competition 
(KDDcup’99) to train and test the feasibility of this proposed model. By applying the enhanced C4.5 
algorithm an average detection rate of 93.28 percent and a false positive rate of 0.7 percent have respectively 
been obtained in this work. 
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1.  Introduction 
 
To apply data mining techniques in intrusion detection, 
first, the collected monitoring data needs to be 
preprocessed and converted to the format suitable for 
mining processing. Next, the reformatted data will be 
used to develop a clustering or classification model. The 
classification model can be rule-based, decision-tree 
based, and association-rule based. Classification 
approach can be useful for both misuse detection and 
anomaly detection, but it is more commonly used for 
misuse detection. 
 
1.1.  Intrusion Detection System 
 
Intrusion Detection Systems (IDS) have been used to 
monitor network traffic thereby detect if a system is 
being targeted by a network attacks such as a DoS, Probe, 

U2R and R2L. The two main intrusion detection 
techniques are misuse detection and anomaly detection. 
Misuse detection systems, for example, IDIOT [1] and 
STAT [2], use patterns of well known attacks or weak 
spots of the system to match and identify known 
intrusions. For example, a signature rule for the 
“guessing password attack” can be “there are more than 
four failed login attempts within two minutes”.  

The existing intrusion detection methods [3,4] like 
misuse detection and anomaly detection are generally 
incapable of adapting detection systems to the change of 
circumstances resulting in high false positive rate. The 
most popular ways to detect intrusions are by using audit 
trail data generated by operating systems. An audit trail is 
a record of activities on a system that are logged to file in 
chronologically order. Manual inspection of these logs is 
not feasible due to incredibly large sizes of audit data 
generated. Therefore, data mining is used to automate the 
wading through audit data [5]. 



 AN ACTIVE RULE APPROACH FOR NETWORK INTRUSION DETECTION 315 
WITH ENHANCED C4.5 ALGORITHM 

 

Copyright © 2008 SciRes.                                                         I. J. Communications, Network and System Sciences, 2008, 4, 285-385 

1.2.  Classification System 
 
Classification is similar to clustering in that it also 
partitions customer records into distinct segments called 
classes. But unlike clustering, classification analysis 
requires that the end-user/analyst know ahead of time 
how classes are defined. It is necessary that each record 
in the dataset used to build the classifier already have a 
value for the attribute used to define classes. As each 
record has a value for the attribute used to define the 
classes, and because the end-user decides on the attribute 
to use, classification is much less exploratory than 
clustering. The objective of a classifier is not to explore 
the data to discover interesting segments, but to decide 
how new records should be classified. Classification is 
used to assign examples to pre-defined categories. 
Machine learning software performs this task by 
extracting or learning discrimination rules from examples 
of correctly classified data. Classification models can be 
built using a wide variety of algorithms. Classification 
categorizes the data records in a predetermined set of 
classes used as attribute to label each record; 
distinguishing elements belonging to the normal or 
abnormal class. This technique has been popular to detect 
individual attacks but has to be applied with 
complementary fine-tuning techniques to reduce its 
demonstrated high false positives rate. Classifications 
algorithms can be classified into three types [6] 
extensions to linear discrimination (e.g., multilayer 
perceptron, logistic discrimination), decision tree and 
rule-based methods (e.g., C4.5, AQ, CART), and density 
estimators (Naïve  ayes, k-nearest neighbor, LVQ). 

Decision trees are among the well known machine 
learning techniques. A decision tree is composed of three 
basic elements: – A decision node is specifying a test 
attribute. – An edge or a branch corresponding to the one 
of the possible attribute values which means one of the 
test attribute outcomes. A leaf which is also named an 
answer node contains the class to which the object 
belongs. In decision trees, two major phases should be 
ensured: 1) Building the tree. 2) Classification. This 
process will be repeated until a leaf is encountered. The 
instance is then being classified in the same class as the 
one characterizing the reached leaf. Several algorithms 
have been developed in order to ensure the construction 
of decision trees and its use for the classification task. 
The ID3 and C4.5 algorithms developed by [6,7] are 
probably the most popular ones.  

This paper proposes an enhanced C4.5 algorithm 
towards developing a more-robust Intrusion Detection 
System through the use of data-mining techniques. 
Signature-based intrusion-detection systems are normally 
known as misuse-detection systems. Misuse-detection 
systems apply a rule-based approach that uses stored 

signatures of known intrusion instances to detect attacks. 
The attribute selection measure allowing to choose an 
attribute that generates partitions where objects are 
distributed less randomly. In other words, this measure 
should consider the ability of each attribute to determine 
training objects’ classes. The measure is the gain ratio of 
Quinlan, based on the Shannon entropy, where for an 
attribute Ak and a set of objects T. The information gain 
measure is used to select the test attribute at each node in 
the tree. Such a measure is referred to as an attribute 
selection measure or a measure of the goodness of split. 
The attribute with the highest information gain (or 
greatest entropy reduction) is chosen as the test attribute 
for the current node. This attribute minimizes the 
information needed to classify the samples in the 
resulting partitions. Such an information-theoretic 
approach minimizes the expected number of tests needed 
to classify an object and guarantees that a simple (but not 
necessarily the simplest) tree is found. 

These data mining techniques will dynamically model 
what a normal network should look like and reduce the 
false negative alarm rates in the process. We will use 
classification-tree techniques to accurately predict 
probable attack sessions.  

The subsequent sections are organized as follows. 
Section 2 presents a general survey in the field of misuse 
detection in network intrusion detection. Section 3 
describes the systems architecture of the new misuse 
intrusion detection and Enhanced C4.5 algorithm for 
generating active rules. Section 4 depicts the results and 
its possible implications. Section 5 gives the conclusions 
on this work and suggests some possible future works. 

 
2.  Literature Survey 
 
This section discusses the related works on IDS and 
classification for IDS and compares them with the 
proposed enhanced C4.5 algorithm. There are many 
works in the literature that deal with classification. 
[1,3,5,8]. Decision tree [9] is a widely used tool for 
classification in various domains that need to handle 
large data sets. One major advantage of the decision tree 
is its interpretability, i.e., the decision can be represented 
in terms of a rule set. Each leaf node of the tree 
represents a class and is interpreted by the path from the 
root node to the leaf node in terms of a rule such as: “If 
A1 and A2 and A3, then class C1,” where A1, A2, and 
A3 are the clauses involving the attributes and C1 is the 
class label. Thus, each class can be described by a set of 
rules. 

Xiang et al. [8] say that intrusion detection is the 
process of monitoring the events occurring in a computer 
system or network and analyzing them for signs of intrusions.  
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Figure 1. Misuse detection. 
 
For accurate intrusion detection, we must have reliable 
and complete data about the target system activities. 
Similarly, routers and firewalls provide event logs for 
network activity. These logs might contain simple 
information, such as network connection openings and 
closings, or a complete record of every packet that 
appeared on the wire [10]. 

Decision trees are special classifiers built from 
instances for which the classification is known, and they 
are used to classify new cases taken from the same 
application domain [11]. Each internal node of the tree is 
associated to an attribute describing a feature of the 
dataset (domain data), and each outgoing arc is labeled 
with a possible value (set of values) for that feature. Each 
leaf node is associated to the attribute we want to predict 
a value for (the classification attribute), and to a value for 
that attribute. As stated in [12], learning algorithms based 
on decision trees generally adopt the divide-and-conquer 
strategy, i.e. they build the decision tree by recursively 
dividing the data set of examples into subsets according 
to some splitting criterion (splitting test). The splitting 
criterion is very important in the process of building the 
tree, because it determines if we must attach a node or a 
leaf as next element in the tree. Some of the well known 
splitting techniques are information Gain and Information 
Gain Ratio [13], Gini Criterion and Twoing rule 
proposed in [14].  

Shavlik et al. [15] provide a framework for kdd cup 
1999 dataset. The KDD 99 intrusion detection datasets 
are based on the 1998 DARPA initiative, which provides 
designers of intrusion detection systems (IDS) with a 
benchmark on which to evaluate different methodologies. 
To do so, a simulation is made of a factitious military 
network consisting of three “target” machines running 
various operating systems and services. Additional three 
machines are then used to spoof different IP addresses to 
generate traffic. Finally, there is a sniffer that records all 
network traffic using the TCP dump format. The total 
simulated period is seven weeks. 

 
3.  System Architecture 

The main task of the intrusion detection system is to 
discover the intrusion from the network packet data or 
system audit data as shown in Figure 1. One of the major 
problems that the IDS might face is that the packet data 
or system audit data could be overwhelming. Some of the 
features of audit data may be redundant or contribute 
little to the detection process. The intrusions are 
simulated and the detection of the intrusions is done and 
proper alert message is displayed. 

In decision trees, two major phases should be ensured: 
1) Building the tree. Based on a given training set, a 

decision tree is built. It consists of selecting for each 
decision node the ‘appropriate’ test attribute and also 
to define the class labeling each leaf. 

2) Classification. In order to classify a new instance, we 
start by the root of the decision tree, then we test the 
attribute specified by this node. The result of this test 
allows moving down the tree branch relative to the 
attribute value of the given instance. This process will 
be repeated until a leaf is encountered. The instance is 
then being classified in the same class as the one 
characterizing the reached leaf. 
Several algorithms have been developed in order to 

ensure the construction of decision trees and its use for 
the classification task. Using enhanced C4.5 algorithm 
we have generated rules. Comparison is take place for the 
input data. If the pattern is found we can detect the data 
is an attack, otherwise the data is normal. 
 
4.  Mathematical Preliminary 
 
In this section, a brief introduction of the classification 
algorithms used in the i.e., the Enhanced C4.5 algorithm 
for building decision trees algorithm, will be given. 
 
4.1.  Enhanced C4.5 Algorithm 
 
In a number of applications like pattern recognition, we 
need to classify data items into discrete set of applicable 
categories. A classifier, which is a function (or model) 
that assigns a class label to each data item described by a 
set of attributes, is often needed in these classification tasks. 
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There are quite a few machine learning approaches for 
generating classification models, among which decision 
tree learning is a typical one. As an example, C4.5 in [6] 
builds a decision tree where each internal node denotes a 
test on an attribute, each branch represents an outcome of 
the test, and leaf nodes represent classes or class 
distributions. The top-most node in a tree is the root node. 
The tree is a model generated by the classification 
algorithm. In order to classify an unknown sample, the 
attribute values of the sample are tested against the 
decision tree. A path is traced from the root to a leaf node 
that holds the class prediction for that sample. The C4.5 
algorithm builds a decision tree, from the root node, by 
choosing one remaining attribute with the highest 
information gain as the test for the current node. In this 
paper, Enhanced C4.5, a later version of the C4.5 
algorithm, the gain ratio, expresses the proportion of 
useful information generated by split, i.e., that appears 
helpful for classification will be used to construct the 
decision trees. The specific algorithm is given below. 
The reader is referred to [7] for further details.  

Algorithm: Generate a decision tree from the given 
training data. 

Input: Training samples, represented by discrete/ 
continuous attributes; the set of candidate attributes, 
attribute-list. 

Output: A decision tree 
Method: 

1) Create a node N; 
2) If samples are all of the same class, C, then 
3) Return N as a leaf node labeled with the class C; 
4) If attribute-list is empty then 
5) Return N as a leaf node labeled with the most 

common class in samples; (majority voting) 
6) Select test-attribute, the attribute among attribute-list 

with the highest information gain ratio; 
7) Label node N with test-attribute; 
8) For each known value ai of test-attribute 
9) Grow a branch from node N for the condition test-

attribute = ai; 
10) Let si be the set of samples in samples for which test-

attribute = ai; 
11) If si is empty then 
12) Attach a leaf labeled with the most common class in 

samples; 
13) Else attach the node returned by Generate_decision_tree 
(si, attribute-list). 

 

Attribute Selection: 
The information gain measure used in step (6) of 

above Enhanced C4.5 algorithm is used to select the test 
attribute at each node in the tree. Such a measure is 
referred to as an attribute selection measure or a measure 
of the goodness of split. The attribute with the highest 
information gain (or greatest entropy reduction) is chosen 
as the test attribute for the current node. This attribute 
minimizes the information needed to classify the samples 

in the resulting partitions. Such an information-theoretic 
approach minimizes the expected number of tests needed 
to classify an object and guarantees that a simple (but not 
necessarily the simplest) tree is found. 

 

Existing Algorithm: Information Gain: 
Let S be a set of training set samples with their 

corresponding labels. Suppose there are m classes and the 
training set contains si samples of class I and s is the total 
number of samples in the training set. Expected 
information needed to classify a given sample is 
calculated by:   

 

( ) ( ) ( )1 2 2
1

, ,..., log
m

m i i
i

I S S S S S S S
=

=∑                   (1) 

 

A feature F with values {f1, f2, …, fv} can divide the 
training set into v subsets {S1,S2,…, Sv} where Sj is the 
subset which has the value fj for feature F [Zhi-xin, 2005]. 
Furthermore let Sj contain Sij samples of class i. Entropy 
of the feature F is 
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Information gain for F can be calculated as: 
 

( ) ( ) ( )1 2, ,..., mGain F I S S S E F= −                         (3) 
 

In this experiment, information gain is calculated for 
class labels by employing a binary discrimination for 
each class. That is, for each class, a dataset instance is 
considered in-class, if it has the same label; out-class, if it 
has a different label. Consequently as opposed to 
calculating one information gain as a general measure on 
the relevance of the feature for all classes, we calculate 
an information gain for each class. Thus, this signifies 
how well the feature can discriminate the given class (i.e. 
normal or an attack type) from other classes. 
 
4.2.  Proposed Enhancement: Gain Ratio 

Criterion 
 
The notion of information gain introduced earlier tends to 
favor attributes that have a large number of values. For 
example, if we have an attribute D that has a distinct 
value for each record, then Info(D,T) is 0, thus Gain(D,T) 
is maximal. To compensate for this, it was suggested in 
[6] to use the following ratio instead of gain. 

Split info is the information due to the split of T on the 
basis of the value of the categorical attribute D, which is 
defined by 

 

( ) 2
1

log
n

i i

i

T T
SplitInfo X x

T T=

 
= −   
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And the gain ratio is then calculated by 
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,
,

Gain D T
GainRatio D T

SplitInfo D T
=                        (5) 



318                                                                       L. P. RAJESWARI  ET  AL.                                                                                      
 

Copyright © 2008 SciRes.                                                         I. J. Communications, Network and System Sciences, 2008, 4, 285-385 

The gain ratio, expresses the proportion of useful 
information generated by split, i.e., that appears helpful 
for classification. If the split is near trivial, split 
information will be small and this ratio will be unstable. 
To avoid this, the gain ratio criterion selects a test to 
maximize the ratio above, subject to the constraint that 
the information gain must be large, at least as great as the 
average gain over all tests examined. 
 
5.  Implementation and Results 
 
Since information gain is calculated for discrete features, 
continuous features should be discretized. To this end, 
continuous features are partitioned into equalized 
partitions by utilizing equal frequency intervals [16]. In 
equal frequency interval method, the feature space is 
partitioned into arbitrary number of partitions where each 
partition contains the same number of data points. That is 
to say, the range of each partition is adjusted to contain N 
dataset instances. If a value occurs more than N times in 
a feature space, it is assigned a partition of its own. In 
“10% KDD” dataset, certain classes such as denial of 
service attacks and normal connections occur in the 
magnitude of hundreds of thousands whereas other 
classes such as R2L and U2R attacks occur in the 
magnitude of tens or hundreds. Therefore, to provide 
sufficient resolution for the minor classes N is set to 10, 
(i.e. maximum 50,000 partitions). 

 

Enhanced C4.5 Rules 
Enhanced C4.5rules read the decision tree produced 

by Enhanced C4.5 and generates a set of production rules 
from each and from all trees together. Single Enhanced 
C4.5 acquires pruned decision tree with 117 nodes on 
train data. Total classification error rate is 47%. However, 
we found that Enhanced C4.5 has high classification 
capability for buffer_overflow and guess_passwd. Follow- 
ing results is a part of Enhanced C4.5 rules for 
buffer_overflow and guess_passwd on given 29313 
training patterns. 

 

Detecting Misuse Data 
The anomaly data is detected using the rules generated. 

The rules are given as SQL queries and then the test data 
is given as input. The data are separated and stored in the 
different database either as normal or anomaly data. By 
 

Table 1. Rules for training data. 
 

Rule No Conditions Actions 
 
Rule 1 

num_failed_logins > 0 
dst_host_same_srv_rate > 0 

class 
guess_passwd 

 
Rule 2 

hot > 2 
root_shell > 0 

class 
buffer_overflow 

 
Rule 3 

src_bytes <= 70 
dst_bytes > 5006 
dst_host_same_src_port_rate 
> 0 

class 
buffer_overflow 

this classification we can detect the misuse data in the 
testing dataset. 

Different databases are created for different data. The 
network accepts the normal packets. The abnormal data 
are then detected and then deleted. As the anomaly data 
is detected in the network an alert message is given to the 
user of the system or administrator. 

 

RESULTS 
 

Tree Generation with Training Data 
Enhanced C4.5 summarizes its results in a table of the 

following form:  
 
Evaluation on training data (4000 items): 
Before Pruning                    After Pruning 
----------------                     ---------------------- 
Size      Errors            Size       Errors              Estimate 
1085   496(12.4%)      873      5 46(13.7%)      (26.9%) 
 

Evaluation on test data (4000 items): 
Before Pruning                  After Pruning 
----------------                   --------------------- 
Size      Errors             Size       Errors             Estimate 
1085   1232(30.8%)    873     1206(30.1%)       (26.9%) 
 

Decision Tree Generation: 
Subtree  [S1] 
diff_srv_rate  <= 0.9  :  portsweep  < 5.0/2.3 > 
diff_srv_rate   >  0.9  :  macspoofing  < 7.0/1.3 > 
 
Subtree  [S2] 
dst_host_same_src_port_rate<=0.75:others 

<103.0/5.0> 
dst_host_same_src_port_rate>0.75:  land < 4.0/2.2 > 
 
Subtree  [S3] 
dst_host_src_rerror_rate<=0.5:macspoofing 

<14.0/1.3> 
dst_host_src_rerror_rate>0.5:portsweep <4.0/1.2 > 
 
Subtree  [S4] 
dst_host_src_diff_host_rate<=0.25:macspoofing 

<8.0/1.3 > 
dst_host_src_diff_host_rate>0.25:  others <4.0/1.2 > 
 
Evaluation on training data (105131 items): 
Before Pruning                    After Pruning 
----------------                     ---------------------- 
Size       Errors        Size         Errors        Estimate 
955     74 (0.1%)      446       109(0.1%)      (0.2%)    
 

The above rule depicts the decision tree generation. 
Most of this should be self-explanatory. The “Size” 
column gives the number of nodes in the decision tree. 
The “Errors” column gives the number (and percentage) 
of examples that are misclassified. The “Estimate” 
column gives the predicted error rate for new examples 
(this is the so-called “pessimistic” estimate, and it is 
computed internally by the tree algorithm). In this case, 
we see that the unpruned decision tree had 1,085 nodes 
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and made 496 errors on the training data and 1,232 errors 
(or 30.8%) on the test data. Pruning made the tree 
significantly smaller (only 873 nodes) and, while it hurt 
performance on the training data, it slightly improved 
performance on the test data. The pessimistic estimate 
(26.9%) was actually a bit optimistic, but not too far off 
the mark (30.1%). You should use the error rate on the 
test data to plot your learning curves. 

Enhanced C4.5 also prints out a confusion matrix that 
has one row and column for every class. The number 
shown in row i, column j is the number of examples that 
we classified into class i but whose true class was j. The 
perfect confusion matrix has entries along the diagonal only. 

 

Generation of Rules from Tree 
After Enhanced C4.5 has been run, then convert the 

decision tree into a set of rules. To execute the program, 
use the following command line:  

C4.5rules -f stem -u >> stem.log 
Enhanced C4.5rules will read the stem.names, 

stem.data and stem.unpruned files and append its output 
to the file stem.log. It will evaluate its rules on the 
examples in stem.test. This program can be quite slow.  

This rules act as a platform for misuse detection. 
These rules are saved in a separate document and then 
they are used as SQL query. Enhanced C4.5 ules displays 
all of the rules and then summarizes the rule performance 
in the following manner 

 

Read 105131 cases (41 attributes)  
Processing tree 0 
Final rules from tree 0: 

 
Table 2. Rules for testing data. 

 

Rule No Conditions Actions 

 
Rule 10 

srv_count <= 1 
same_srv_rate <= 0.26 
diff_srv_rate > 0.9 
dst_host_srv_count < = 31 

class macspoofing [99.9%] 

 
Rule 6 

srv_bytes  > 0 
dst_bytes <= 1 
count > 9 
srv_count < = 1 

class macspoofing [99.5%] 

Rule 32 service =  eco_i 
src_bytes <= 26 

class macspoofing [99.5%] 

 
Rule 8 

protocol_type = udp 
service = other 
src_bytes <=  17 
srv_count  <= 1 

class macspoofing [99.2%] 

 
Rule 16 

Service = other 
src_bytes <= 26 
srv_count  <= 1 
dst_host_same_src_port_rate >0.08 

class macspoofing [99.2%] 

 
The columns in the confusion matrix given below 

have the following meaning.  
� “Rule”: The number of the rule. There is one row for 

each rule.  
� “Size”: The number of tests in the rule.  
� “Wrong”: The number of times the rule made an error 

(also expressed as a percentage).  
� “Advantage”: A heuristic quantity used by the rule to 

select and prune rules.  
� The class given in the conclusion part of the rule.  
� “Error”: The estimated error rate for this rule. 

The classified results, the false positive and detect rate 
was obtained in confusion matrix shown in the following 
 

Table 3. 
Default class: smurf 
Evaluation on training data <105131 items>: 
Tested 105131, errors 18343 (17.4%) 
In Table 3 we see that the rules achieved an error rate 

17.4% on the test data. The rules are grouped according 
to their output classes. Furthermore, the classes are 
ordered. The rules are applied in th order given. If none 
of the rules applies to an example, then the example is 
assigned to the “default” class. The top left entry in the 
confusion matrix shows that 6038 of the actual “normal” 
test examples were predicted to be normal by this entry. 
The last column indicates that in total 99.6% of the actual 
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Table 3. Confusion matrix obtained by C4.5. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Table 4. Performance comparison of C4.5 vs enhanced C4.5. 

 
 C4.5 Algorithm Enhanced C4.5 Algorithm 

Class Detection Rate False Positive False Negative Detection Rate False Positive False Negative 
Normal 0.9603 0.0397 - 0.9826 0.0174 - 
DoS 0.906 - 0.094 0.9455 - 0.0545 
Probe 0.84 - 0.16 0.8801 - 0.1199 
U2R 0.8366 - 0.1634 0.8830 - 0.117 
R2L 0.5376 - 0.4624 0.5580 - 0.442 

 

 
normal examples were recognized correctly. The bottom 
row shows that 89.3% of test examples said to be normal 
were indeed normal in reality. From the last column, we 
can obtain the average detect rate of 84.9%, the false 
positive rate is 15.1%. 
 

Classifying and Detecting Anomalies 
Misuse detection is done through applying rules to the 

test data. Test data is collected from the DARPA. The 
test data is stored in the database. The rules are applied 
as SQL query to the database. This classifies data under 
different attack categories as follows: 

1) DOS (Denial of Service) 
2) Probe 
3) U2R (User to Root) 
4) R2L (Root to Local) 
The C4.5 algorithm builds a decision tree, from the 

root node, by choosing one remaining attribute with the 
highest information gain as the test for the current node. 
In this paper, Enhanced C4.5, by choosing one remaining 
attribute with the highest information gain ratio as the test 
for current node is considered a later version of the C4.5 
algorithm, will be used to construct the decision trees for 
classification. From the table 5.4 it is clear that Enhanced 
C4.5 outperforms the classical C4.5 algorithm. R2L 
attack was a bit challenging to Enhanced C4.5 but even 
in that case, it has reported a subtle improvement over its 
counter part.    

Split info is the information due to the split of T on the 
basis of the value of the categorical attribute D, which is 
defined by 

( ) 2
1

log
n

i i

i

T T
SplitInfo X x

T T=

 
= −   

 
∑                           (4) 

 
And the gain ratio is then calculated by 
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( )
,

,
,

Gain D T
GainRatio D T

SplitInfo D T
=                          (5) 

 
In Enhanced C4.5 the gain ratio, expresses the 

proportion of useful information generated by split, i.e., 
that appears helpful for classification. If the split is near-
trivial, split information will be small and this ratio will 
be unstable. To avoid this, the gain ratio criterion selects 
a test to maximize the ratio above, subject to the 
constraint that the information gain must be large, at least 
as great as the average gain over all tests examined. 

It has been observed that the class distribution in 
training data will affect classifier learning significantly 
since the decision trees are built with the statistical 
information of the samples, and naturally occurring class 
distribution may not be the best in terms of classification 
performance. Thus, not all the connection records from 
original training set were used. Some heuristics have 
been employed in selecting the training set. Basically, all 
the samples will be used if the number of samples is 
relatively small, and only a small subset will be randomly 
selected from the original training data if the size of the 
training data is huge. 

 

Predicted 
 
Actual 

 
smurf 

 
Ipsweep 

 
nmap 

 
neptune 

 
portal 

 
land 

 
teard 

% 
correct 

smurf 72535   1     99.6 
ipsweep 2       99.1 
nmap 375  737 2 3   97.4 
neptune 504  2 2922    93.2 
portal 598   91 376  3 89.4 
land 47  9   242 2 0 
teard 9        
% correct 83.3 93.2 99.2 94.6 94.2 84.3 0 0 
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6.  Conclusions and Future Enhancement 
 
In this paper, a novel architecture for NIDS has been 
proposed which uses an Enhanced C4.5 algorithm for 
intrusion detection in the system. The NIDS monitors 
network packets and connection status from the network 
layer to the application layer of the TCP/IP protocol 
stack. The NIDS detects anomaly behaviors through state 
transition and classification that has been carried out 
using Bayes-like decision. The major advantage of this 
architecture is that it creates profile using enhanced C4.5 
algorithm and utilizes the original C4.5 algorithm to 
implement behavior classification. The system has been 
tested with a set of attacks using KDD-99 data set. The 
test show that this NIDS detects low-level network 
attacks effectively with low false positive rate, and it has 
a good performance in detection of unknown attacks, 
especially for PROBE, DOS and U2R attacks. 

In the future work, number of inside attacks can be 
simulated and the attack can be detected. More attention 
shall be paid for U2R and R2L attacks. The detection of 
U2R and R2L attack is more difficult because of their 
close resemblance with the normal connections. More 
accurate detection methods can be used for U2R and R2L 
attacks. In the future work the anomaly is going to be 
detected by the clustering technique. 
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