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Abstract 

The one time presence of short-lived radionuclides (SLRs) in Cal-
cium-Aluminum Rich inclusions (CAIs) in primitive meteorites has been de-
tected. The solar wind implantation model (SWIM) is one possible model 
that attempts to explain the catalogue of SLRs found in primitive meteorites. 
In the SWIM, solar energetic particle (SEP) nuclear interactions with gas in 
the proto-solar atmosphere of young stellar objects (YSOs) give rise to 
daughter nuclei, including SLRs. These daughter nuclei then may become en-
trained in the solar wind via magnetic field lines. Subsequently, the nuclei, in-
cluding SLRs, may be implanted into CAI precursors that have fallen from 
the main accretion flow which had been destined for the proto-star. This 
mode of implanting SLRs in the solar system is viable, and is exemplified by 
the impregnation of the lunar surface with solar wind particles, including 
SLRs. X-ray luminosities have been measured to be 100,000 times more ener-
getic in YSOs, including T-Tauri stars, than present-day solar luminosities. 
The SWIM scales the production rate of SLRs to nascent SEP activity in 
T-Tauri stars. Here, we model the implantation of 7Be into CAIs in the 
SWIM, utilizing the enhanced SEP fluxes and the rate of refractory mass in-
flowing at the X-region, 0.06 AU from the proto-Sun. Taking into account the 
radioactive decay of 7Be and spectral flare variations, the 7Be/9Be initial iso-
topic ratio is found to range from 1 × 10−5 to 5 × 10−5. 
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1. Introduction 

Studies report evidence for the one-time presence of SLRs, through decay prod-
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uct systematics, including 10Be, 26Al, 36Cl, 41Ca, and 53Mn, in CAIs in primitive 
carbonaceous meteorites at the nascence of the solar system [1]. The possible 
origins of these SLRs are widely varied and include stellar sources (AGB Stars, 
Wolf-Rayet stars, nova, and super nova) and energetic particle interaction, from 
either SEPs, or galactic cosmic rays (GCRs). Bricker & Caffee [2] [3] proposed 
the solar wind implantation model (SWIM) for the incorporation of 10Be and 
36Cl into CAIs early in primitive meteorites. 

In the SWIM, the SLRs come into existence via SEP nuclear reactions in the 
proto-solar atmosphere of the young Sun, characterized by X-ray emissions or-
ders of magnitude greater than main sequence stars. Studies of the Orion Nebu-
lae indicate that pre-main sequence (PMS) stars exhibit X-ray luminosity, and 
hence SEP fluxes on the order of ~105 over contemporary SEP flux levels [4]. 
The irradiation produced SLRs are then trapped by magnetic field lines, and 
these solar wind SLRs eventually impregnate CAI precursors. This mode of 
production of SLRs, entrainment of SLRs in the solar wind, and implantation of 
SLR into solar system material is seen in the implantation of solar wind particles, 
e.g. 10Be [5] [6] and 14C [6] [7], on the Moon.  

10Be is produced via SEP spallation reactions, with oxygen serving as the chief 
target particle in the SWIM. Similar to 10Be, 7Be, half-life of 53 days [8], is also 
primarily produced through SEP nuclear reactions with oxygen as the primary 
target particle, and 7Be has also recently been detected in stellar photospheres [9] 
In addition, the one-time presence of 7Be has been measured in CAIs in primi-
tive meteorites (through the study of Li, the decay product of 7Be, systematics) 
[10] [11]. Owing to the 53 day half-life, local irradiation is the only possible op-
eration pathway for 7Be production. As such, the large difference in half-lives 
between 7Be and 10Be is of interest in terms of chronological processes associated 
with early solar system and CAI formation and evolution. 

In this work, we consider the possible incorporation of 7Be into CAIs in pri-
mitive carbonaceous meteorites in the SWIM. Table 1 below characterizes beryl-
liumisotopes found in CAIs. 

2. Solar Wind Implantation Mode 

2.1. Synopsis 

In the SWIM, SLRs are produced in the solar nebula via SEP nuclear reactions 
on gaseous target material in the solar atmosphere ~4.6 Gyr, during the formation  
 
Table 1. Beryllium isotopes found in CAIs. 

Nuclide Half-life 
Initial  

Isotopic Ratio 
Radionuclide 

(g−1) 

7Be 53 days [8] 
1.2 × 10−3 [10] 
6.1 × 10−3 [11] 

1.0 × 1013 

5.3 × 1013 

10Be 1.36 × 106 yr [12] 9.5 × 10−4 [13] 6.4 × 1012 

Note: Radionuclide content in g−1 calculated from initial isotopic ratio and 9Be content in ppb. The 9Be 
content in CAIs is estimated 100 ppb [14] [15]. 
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of the solar system. These newly produced nuclei are incorporated in the solar 
wind. The SLRs flow along magnetic field lines in the solar wind, and this par-
ticle flow intersects with materials which have fallen out of the main accretion 
flow, which was headed to hot-spots on the Sun. At the intersection of outflow-
ing SLRs, and inflowing fallen CAI precursor material, the SLRs may become 
impregnated into the inflowing materials. The fundamental geometry for the 
implantation process described above and transportation of implanted CAIs to 
the asteroid zone can be gleaned from the X-wind model of Shu et al. [16] [17] 
[18]. Figure 1 below illustrates of the basic magnetic field geometry, 7Be production 
via SEP flaring activity, and subsequent implantation into CAI-precursor material 
from the main funnel flow onto the proto-Sun. 

2.2. Refractory Mass Inflow Rate 

The effective refractory mass inflow rate, S, i.e. the refractory mass that falls 
from the main funnel flow which was accreting onto the star at the X-region, is 
calculated from equation (1): 

D rS M X F= ⋅ ⋅                          (1) 

where DM  is disk mass accretion rate, Xr is the cosmic mass fraction, and F is 
the fraction of material that enters the X-region from the main funnel flow [19]. 
For DM , we adopt 1 × 10−7 solar masses year−1. Disk mass accretion rates range 
from ~10−7 to ~10−10 solar masses year−1 for T Tauri stars from 1 - 3 Myr [20], 
whereas embedded class 0 and class I PMS stars have mass accretion rates of 
~10−5 to ~10−6 solar masses year−1 [21]. Here we adopt for DM , a rate 1 × 10−7 
solar masses year−1, corresponding to class II or III PMS stars. From Lee et al. 
[19] we utilize a cosmic mass fraction, Xr, and fraction of refractory material 
fraction F, of 4 × 10−3 and 0.01, respectively, in our model. Xr represents the frac-
tion of refractory content in the inflowing material, and F represents the fraction 
of inflowing mass that does not accrete onto the proto-sun. The choice 0.01  
 

 
Figure 1. SWIM magnetic field geometry for SLRs production via SEP nuclear reactions. 
The gray area represents the main accretion flow onto “hot spots” on the PMS star. SLRs 
produced close to the proto-solar surface are incorporated into CAI precursor material 
which has fallen from the accretion flow (figure after Shu et al. [17]). 
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maximizes F, and corresponds to all the mass which comprises the planets fall-
ing from the accretion flow. F = 0.01 is the preferred value of Lee et al. [19] in 
their model. (See Lee et al. [19] for a detailed discussion of Xr and F) Employing 
Equation (1) and the parameters detailed above, we find the rate at which this 
refractory material reaches the x-region, called here the refractory mass inflow 
rate, S, is 2.5 × 1014 g s−1. In consideration of the extreme values of, S, S could be 
two orders of magnitude greater if the accretion rates of ~10−5 to ~10−6 solar 
masses year−1, or S could also be four orders of magnitude less if the mass accre-
tion rate was ~10−8 to 10−10 solar masses year−1 and F ~0.0001. 

2.3. Effective Ancient Production Rate 

The effective ancient 7Be outflow rate, P in units of s−1, is given by: 

P p f= ⋅                            (2) 

where p is the ancient production rate and f is the fraction of the solar wind 7Be 
that enters the CAI-forming region; f = 0.1. (See Bricker & Caffee [2] [3] for a 
discussion of factor f). The 7Be production rate is calculated assuming that SEPs 
are characterized by a power law relationship:  

rdF kE
dE

−=                           (3) 

where r ranges from 2.5 to 4. For impulsive flares, i.e. r = 4, we use 3He/H = 0.1 
and 3He/H = 0.3, and for gradual flares, i.e. r = 2.5, we use 3He/H = 0. For all 
spectral indices, we assume α/H = 0.1. Contemporary SEP flux rates at the 
Sun-Earth distance of 1 AU are ~100 protons cm−2⋅s−1 for E > 10 MeV [22]. We 
assume an increase in ancient particle fluxes over the current particle flux of ~4 
× 105 [2] [4], yielding an energetic particle flux rate of 3.7 × 1012 protons cm−2⋅s−1 
for E > 10 MeV at the surface of the proto-Sun. 

The production rates for cosmogenic nuclides can be calculated via: 

( )
i ij

i j

dF E
p N dE

dE
σ= ∑ ∫                     (4) 

where i represents the target elements for the production of the considered nuc-
lide, Ni is the abundance of the target element (g⋅g−1), j indicates the energetic 
particles that cause the reaction, ( )ij Eσ  is the cross section for the production 
of the nuclide from the interaction of particle j with energy E from target i for  

the considered reaction (cm2), and ( )
j

dF E
dE

dE
 is the differential energetic particle  

flux of particle j at energy E (cm−2⋅s−1) [22]. We assume gaseous oxygen target 
particles of solar composition [23]. 

The cross-section we use to calculate 7Be production from protons and 4He 
pathways is from Sisterson et al. [24], and the cross-section we use for produc-
tion from 3He is from Gounelle et al. [25]. The Sisterson et al. [24] cross-section 
is experimental obtained, and the Gounelle et al. [25] cross-section is a combina-
tion of experimental data, fragmentation and Hauser-Feshbach codes. The un-
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certainty associated with model codes are at best a factor of two. Taking into ac-
count both target abundance and nuclear cross-sections, the reaction with oxy-
gen as the target is the primary production pathway. Any other nuclear reaction 
would add little to the overall 7Be production rate. Table 2 shows the nuclear 
reactions considered in the calculations. 

3. Results  

The content of 7Be found in refractory material, in atoms g−1, predicted by 
SWIM is given by: 

7Be

D r

P p fN
S M X F

⋅
= =

⋅ ⋅

                       (5) 

where P is given atoms s−1 and S is given in g⋅s−1. 
Using the refractory mass inflow rate, S, of 2.5 × 1014 g⋅s−1 from Equation (1), 

and calculations of P, the effective ancient 7Be outflow rate, from Equation (2) & 
Equation (4), we determine the content of 7Be in CAIs in atoms g−1 using Equa-
tion (5), and find the associated isotopic ratio for different flare parameters giv-
en in Table 3. Figure 2 depicts the 7Be isotopic ratio predicted by the SWIM 
from SEPs. 

4. Discussion 

Similar to 10Be, the primary target for SEP production of 7Be is oxygen. As such, 
the SEP origin of 7Be and 10Be are uniquely intertwined. The estimated 7Be/10Be 
production ratio from MeV SEPs in the early solar system is estimated to be ~70 
[14]. Using the production rate from Equation (4) and the production rate for 
10Be from Bricker & Caffee [2] from SEP interaction with oxygen targets, we ob-
tain a production ratio of ~50, which is similar to Leya [14]. It would then be 
expected that the original ratio of 7Be/9Be found in CAIs would be ~50 times 
greater than the 10Be/9Be ratio, assuming the simple SWIM mechanism described 
above. Using 9.5 × 10−4 [13] as the canonical 10Be/9Be ratio, the 7Be/9Be ratio 
would scale to 4.8 × 10−2. We find this ratio is reproducible within a factor of ~5, 
the uncertainty associated with SWIM, for spectral indices r > 3.2. The SWIM 
can account for the scaled up 7Be/9Be ratio. Figure 3 below details the ratio of 
7Be/9Be from SWIM to 4.8 × 10−2.  

Experimentally obtained measurements for the original 7Be/9Be ratio in CAIs 
are limited and a matter of considerable debate. Limited experimentally deter-
mined values for the ratio range from about 1.2 × 10−3 [11] to 6.1 × 10−3 [10]. 
The experimentally obtained ratios are at least a factor of 10 less than SWIM  
 
Table 2. Nuclear reactions considered in this paper. 

16O(p, x)7Be 

16O(3He, x)7Be 

16O(4He, x)7Be 
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Table 3. Predicted 7Be content in CAIs. 

Flare Parameter atoms g−1 (in CAIs) Isotopic Ratio 

p = 2.7, 3He/H = 0 1.1 × 1016 1.6 

p = 4, 3He/H = 0.1 3.8 × 1014 5.7 × 10−2 

p = 4, 3He/H = 0.3 1.1 × 1015 1.6 × 10−1 

 

 
Figure 2. Predicted 7Be content in CAIs from energetic protons as a function of solar 
flare parameter. 
 

 
Figure 3. Ratio of 7Be/9Be found from SWIM.A ratio of one indicates exact match, a ratio 
greater than one indicates overproduction, and a ratio less than one indicates underpro-
duction. 
 
calculations, and also a factor of at least 10 less than the scaled up 7Be/9Be found 
from scaling the canonical 10Be/9Be ratio to 7Be and 10Be production rates. Figure 
4 depicts the ratio of SWIM obtained ratio to the canonical 7Be/9Be ratio. 

Clearly, some other mechanism is needed to explain the overproduction of the  
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Figure 4. Ratio of SWIM 9Be/10Be ratio to canonical 7Be/9Be ratio. A factor greater than 
one indicates overproduction relative to canonical. 
 

 
Figure 5. Days to canonical ratio vs. spectral index. 

 
7Be/9Be ratio, both in terms of SWIM calculations and the scaling of the 10Be/9Be 
to relative 7Be and 10Be production rates.  

An assumption of SWIM is that radionuclides are produced via SEP interac-
tion and then immediately incorporated into CAI precursor materials. With a 
half-life of 53 days, it is possible that some temporal evolution occurs before 
7Be becomes implanted. Figure 5 shows days to canonical ratio for spectral 
index. 

Figure 5 shows that with a delay on the order of ~100 days from the time of 
production of 7Be to implantation in to CAI precursor materials, the canonical 
ratio is replicated. Taking into account the time from production of the radio-
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nuclide to implantation into CAI precursors, i.e., two half-lives of 7Be, explains 
the deficit in 7Be/10Be measured ratio in comparison to the 7Be/10Be production 
ratio. It is possible and likely for nuclei to have some finite residence time in the 
photosphere. Calculations of this residence time have not been performed and 
are beyond the scope of this paper. Our ad hoc choice of two half-lives of resi-
dence time for 7Be was to explain the 7Be/10Be measured ratio in comparison to 
the 7Be/10Be production ratio. 
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