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Abstract 
The Circular Restricted Three-Body Problem (CRTBP) with more massive primary 
as an oblate spheroid with its equatorial plane coincident with the plane of motion of 
the primaries is considered to generate the halo orbits around L1 and L2 for the 
seven satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Titan and Iapetus) of Saturn 
in the frame work of CRTBP. It is found that the oblateness effect of Saturn on the 
halo orbits of the satellites closer to Saturn has significant effect compared to the sat-
ellites away from it. The halo orbits L1 and L2 are found to move towards Saturn 
with oblateness. 
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1. Introduction 

Three-Body Problem formulated by Newton provided route to the analysis of closed 
form analytical solution. This solution remains elusive even today, as one has never 
been found for the three-body problem. Euler developed the restricted problem using a 
rotating frame in the 1770s and located collinear points. Along with Euler, Lagrange 
considered this form of the three-body problem and calculated the locations of equila-
teral points, often known as libration or Lagrange points. Jacobi studied the circular- 
restricted problem (CRTBP) and found that an integral of motion exists. Plummer [1], 
using an approximate, second-order analytical solution to the differential equations in 
the circular restricted three-body problem, produced a family of two-dimensional pe-
riodic orbits near the collinear libration points. Farquhar in mid 1960s initiated an 
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analytical investigation into a class of periodic three-dimensional trajectories around 
the collinear points known as halo orbits. These trajectories are associated with the col-
linear points, and are a special case of the more general libration point orbits frequently 
designated as Lissajous orbits. Kamel and Farquhar [2] developed analytical approxi-
mations for quasi-periodic solutions associated with L2, the Earth-Moon libration point 
on the far side of the Moon. Richardson and Cary [3] derived a third-order approxima-
tion for motion near the interior Sun-Earth liberation point in the restricted problem. 
Mission design utilizing the halo orbits become more challenging and several works 
had been established since then in this interesting area. Some of the important contri-
butions are by Farquhar et al. [4], Richardson [5], Huber et al. [6], Gomez et al. [7] [8], 
Rausch [9], Nakamiya et al. [10], Koon et al. [11] and Nath & Ramanan [12]. Consi-
dering the motion in the vicinity of the collinear points in CRTBP, Breakwell and 
Brown [13] numerically extended the work of Farquhar and Kamel [2] to produce a 
family of periodic halo orbits. The discovery of a set of stable orbits in Breakwell and 
Brown’s halo family motivated a search for stable orbits in the families associated with 
all the three collinear points by Howell [14] [15] and Howell et al. [16]. 

The subject of periodic solutions of the CRTBP has received enormous attention in 
the past few decades. Since the late twentieth century until today, enormous amount of 
research has enriched the study of CRTBP, but the influence of the various perturbing 
forces has not been studied in many of such interesting problems. The classical model 
does not account for some of the perturbing forces such as oblateness, solar radiation 
pressure, Poynting-Robertson drag effects and variation in the mass of the primaries. 
Some of significant works in RTBP with oblateness effects are done by Sharma and 
Subba Rao [17] [18], Subba Rao and Sharma [19]-[21] and Sharma [22]-[25] by 
considering the more massive primary as an oblate spheroid with its equatorial plane 
co-incident with the plane of motion of the primaries. Danby [26], Papadakis [27], 
Kalantonis et al. [28], Raheem et al. [29], Stuchi et al. [30] discussed the restricted 
three-body problem with one or two bodies as oblate spheroids. The perturbing force 
due to the oblateness of Saturn is comparable with the perturbing force due to the gra-
vitational attraction of the Sun in the Saturn-Satellites systems. The inclusion of ob-
lateness effect has shown significant improvement in the theories of motion of certain 
satellites in the solar system [31] (Oberti and Vienne). 

In the present study, we consider the restricted three-body problem by considering 
the more massive primary as an oblate spheroid with its equatorial plane coincident 
with the plane of motion (Sharma and Subba Rao [17]). We utilize Newton’s method of 
differential correction (Mireles [32]; Eapen and Sharma [33]; Nishanth and Sharma 
[34]) to compute the halo orbits numerically about the Lagrangian points L1 and L2 in 
seven of the Saturn-Satellites systems. 

2. Equations of Motion 

The equations of motion for the restricted three-body problem are considered with 1r , 

2r  and r  as the positions of three bodies with masses 1m  (more massive oblate sphe-
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roid-Saturn), 2m  (Satellite of Saturn) and m  (spacecraft). 
The origin of the co-ordinate system is the barycentre of the two primaries with the 

more massive primary lying to the left of the origin and the smaller primary to the right 
as shown in Figure 1. For scaling purpose, the distance between the two primaries is 
taken as unity, the sum of masses of the primaries ( )1 2m m+  is assumed unity, and the 
gravitational constant is assumed to be unity. Then the mean motion of the primaries is 

2 31 1
2

n A= + , where 
( )2 2

21
5

AE AP
A

R

−
= . 

AE and AP are dimensional equatorial and polar radii of the more massive primary 
and R is the distance between the primaries. 

The non-dimensional mass ratio ( )µ  is defined as the ratio of the mass of the 
smaller primary to the sum of masses of the primaries i.e. ( )2 1 2m m mµ = + . 

The parameter µ  defines the position of the larger and smaller primaries as ( )µ−  
and ( )1 µ− , respectively (Szebehely [35]; Sharma [17]; Bhatnagar and Chawla [36]). 

The three-dimensional equations of motion are: 

2 ,Ux ny
x

∂
− =

∂
                              (1) 

2 ,Uy nx
y

∂
+ =

∂
                              (2) 

,Uz
z

∂
=
∂

                                (3) 

where U  is the pseudo potential of the system and is given as 

( ) ( ) ( ) ( )22
2 2

3 5
1 2 1 1

1 1 1 3 1 1
.

2 2 2
A z AnU x y

r r r r
µ µ µµ− − −

= + + + + −           (4) 

In the above expression 1r  and 2r  are the position vectors from the more massive 
and smaller primaries to the particle, respectively. 

( ) ( )( )22 2 2 2 2
1 2, 1 .r x y z r x y zµ µ= + + + = − − + +  

 

 
Figure 1. Diagram of the circular restricted three-body problem in normalized units  

2
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3. Liberation Points and Halo Orbits 

From the equations of motion (1)-(3), it is apparent that an equilibrium solution exists 
relative to the rotating frame when the partial derivative of the pseudo potential func-
tion are all zero, i.e. 0U∆ =  or , , 0x y z =   . These points correspond to the positions 
in the rotating frame at which the gravitational force and the centrifugal force associ-
ated with the rotation of the synodic reference frame cancel, with the result that a parti-
cle positioned at one of these points appears stationary in the synodic frame. Also at the 
collinear points, 0y z= = . 

Richardson’s third-order approximation provides a deep qualitative insight. The ap-
proximate solution is sufficient for generating accurate motion near L1 and L2. Ana-
lytical approximation need to be combined with numerical techniques to generate a 
halo orbit accurate enough for mission design. In the present study to generate the halo 
orbits, we use analytical approximation as the first guess for the differential correction 
process, we have modified the third-order approximation of Thurman and Worfolk 
[37] by considering the more massive primary as an oblate spheroid with the help of 
Lindstedt-Poincaré method. 

3.1. Analytical Approximation 

For obtaining an analytical solution, following Tiwary and Kushvah [37], the origin is 
transferred to the Lagrangian points L1 and L2 and the transformation is given by 

1,X x µ ξ= + ± −  

,Y y=  

.Z z=  

The equations of motion can be written as 

( )2 ,X nY
X

ξ ∂Ω
− =

∂
   

( )2 ,Y nX
Y

ξ ∂Ω
+ =

∂
   

.Z
Z

ξ ∂Ω
=
∂

  

where 

( ) ( ) ( ) ( )2 2 2 2

3 5
1 2 2 1

1 1 1 3 1 1
,

2 2 2

n X Y A A Z
R R R R
µ µ µµ+ − − −

Ω = + + + −  

( ) ( ) ( )2 2 2
1 1R X Y Zξ ξ ξ ξ= + + + , ( ) ( ) ( )2 2 2

2 .R X Y Zξ ξ ξ ξ= + +  

The upper sign in the above equations depicts the Lagrangian point L1 and the lower 
sign corresponds to L2. 

The usage of Legendre polynomials can result in some computational advantages, 
when non-linear terms are considered. The distance between these Lagrangian points 
and the smaller primary is considered to be the normalized unit as in Koon et al. [11] 
[38] and [39]. 
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The non-linear terms are expanded by using the following formula as given by [11]: 

( ) ( ) ( )2 2 2
0

1 1 ,
m

m
m

Ax By CzP
D D Dx A y B z C

ρ
ρ

∞

=

 + + =    
   − + − + −

∑  

where  
2 2 2 2 2 2 2, .x y z D A B Cρ = + + = + +  

The above formula is used for expanding the non-linear terms in the equations of 
motion. The equations of motion after substituting the values of the non-linear terms 
and carrying out some algebraic manipulations by defining a new variable cm after ex-
panding up to m = 2 become 

( )2
2

3
2 2 ,m

m m
m

XX nY n c X c P
X

ρ
ρ

∞

≥

 ∂
− − + =  ∂  

∑                 (5) 

( )2
2

3
2 ,m

m m
m

XY nX c n Y c P
Y

ρ
ρ

∞

≥

 ∂
+ + − =  ∂  

∑                  (6) 

2
3

,m
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m
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Z
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ρ

∞

≥

 ∂
+ =  ∂  

∑                      (7) 

with  
( )

( )
2 2

2 2
0

3 4 2 ,
m

m m k
k

XP k n P
ρ

−  

− −
=

 
= + −  

 
∑  

( ) ( )
( )

( ) ( ) ( ) ( )1

3 1 2 3

1 1 3 1 1 9 1 11 1 1 .
2 21

m m
m

m m

A A
c

µ ξ µ µ
µ

ξ ξ ξξ

+

+

 − − − − 
= + ± − + −  

   

 

Neglecting the non-linear higher-order terms in Equations (5)-(7), we get 

( )2
22 2 0,X nY n c X− − + =                        (8) 

( )2
22 0,Y nX c n Y+ + − =                         (9) 

2 0.Z c Z+ =                             (10) 

It is clear that the z-axis solution, obtained by putting X = Y = 0, does not depend 
upon X and Y and c2 > 0. Hence we can conclude that the motion in Z-direction is sim-
ple harmonic. The motion in XY-plane is coupled. A fourth degree polynomial is ob-
tained which gives two real and two imaginary roots as eigenvalues: 

( ) ( )2 2 2 2 2 2
2 2 2 2 2 22 9 8 2 9 8

, .
2 2

c n c n c c n c n c
α λ

− + − − − −
= =  

The solution of the linearized Equations (7)-(9), as derived in [36], is 

( ) 1 2 3 4e e cos sin ,
a a a a

t tX t A A A t A tα α λ λ−= + + +  

( ) 1 1 1 2 2 3 2 4e e sin cos ,
a a a a

t tY t k A k A k A t k A tα α λ λ−= − + − +  

( ) 5 2 6 2cos sin ,
a a

Z t A c t A c t= +  

where  
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2 2 2 2
2 2

1 2
2 2; .

2 2
c n c nk kα λ

α λ
+ − + +

= =  

1 2 6, , ,
a a a

A A A  are arbitrary constants. Since we are concentrating on constructing a 
halo orbit, which is periodic, we consider 1 2 0

a a
A A= = . 

There is a necessity to introduce frequency and amplitude terms to perform the 
Lindstedt-Poincaré method. The solution of the linearized equations is again written in 
terms of amplitudes (Ax and Az) and phases (in-plane phase, ϕ and out-of-plane phase, 
ψ) and the frequencies (λ and 2c ), with an assumption that 2cλ = , as 

( ) ( )cos ,xX t A tλ φ= − +  

( ) ( )2 sin ,xY t k A tλ φ= +  

( ) ( )sin .zZ t A tλ ψ= +  

The amplitudes xA  and zA  are constrained by a non-linear algebraic relationship 
given by Richardson as 

2 2
1 2 0,x zl A l A+ + ∆ =  

where l1 and l2 depend upon the roots of the characteristic equation of the linear equa-
tion. The correction term, 2

2cλ∆ = −  arises due to the addition of frequency term in 
Equation (10). 

Hence, any halo orbit can be characterized by specifying a particular out-of-plane 
amplitude zA  of the solution to linearized equations of motion. Both analytical and 
numerical developments employ this scheme. From the above expression, we can find 
the minimum permissible value of Ax to form the halo orbit (Az > 0). 

The phases ϕ and ψ are related as 
π , 1,3.

2
m mψ φ− = =  

When Ax is greater than certain value, the third-order solution bifurcates. This bi-
furcation is manifested through the phase-angle constraint. The solution branches are 
obtained according to the value of m. For m = 1, Az is positive and we have the northern 
halo (z > 0) and for m = 3, Az is negative and we have the southern halo (z < 0). 

Lindstedt-Poincaré method involves successive adjustments of the frequencies to 
avoid secular terms and allows one to obtain approximate periodic solution. The equa-
tions of motion with non-linear terms up to third-order approximation as in Richard-
son and Thurman and Worfolk are 

( ) ( ) ( ) ( )2 2 2 2 2 2 2
2 3 4

32 2 2 2 2 3 3 4 ,
2

X nY n c X c X Y Z c X Y Z X О− − + = − − + − − +   

( ) ( ) ( )2 2 2 2
2 3 4

32 3 4 4
2

Y nX c n Y c XY c X Y Z Y О+ + − = − − − − +  , 

( ) ( )2 2 2
2 3 4

33 4 4 .
2

Z c Z c XZ c X Y Z Z О+ = − − − − +  

A new independent variable τ = ωt is introduced, where '  refers to 
d

dτ
. 
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1
1 , 1.n

n n
n

ω ν ω ω
>

= + <∑  

It is to be noted that the values of nω  are chosen in such a way that the secular 
terms get removed with successive approximations. Most of the secular terms are re-
moved by the following assumptions 

2 2
1 2 1 20; .x zs A s Aω ω= = +  

The coefficients 1s  and 2s  are given in Appendix. The equations of motion are:  

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
2 3 4

32 2 2 2 2 3 3 4 ,
2

X nY n c X c X Y Z c X Y Z X Оω ω′′ ′− − + = − − + − − + (11) 

( ) ( ) ( )2 2 2 2 2
2 3 4

32 3 4 4 ,
2

Y nX c n Y c XY c X Y Z Y Оω ω′′ ′+ + − = − − − − +     (12) 

( ) ( )2 2 2 2
2 3 4

33 4 4 .
2

Z c Z c XZ c X Y Z Z Оω ′′ + = − − − − +            (13) 

We continue the perturbation analysis by assuming the solutions of the form: 

( ) ( ) ( ) ( )2 3
1 2 3 ,X X X Xτ ν τ ν τ ν τ= + + +                 (14) 

( ) ( ) ( ) ( )2 3
2 3 ,Y Y Y Yτ ν τ ν τ ν τ= + + +                  (15) 

( ) ( ) ( ) ( )2 3
1 2 3 ,Z Z Z Zτ ν τ ν τ ν τ= + + +                 (16) 

where ν  is a small parameter which takes care of the non-linearity. 
Substituting Equations (14)-(16) in Equations (11)-(13), and equating the coefficients 

of the same order of ν , we get the first-, second- and the third-order equations, respec-
tively. 

3.1.1. First-Order Equations 
The first-order equations are obtained by taking the coefficients of the term ν . These 
are given as 

( )21 11
22 2 0,X nY n c X′′ ′− − + =  

( ) 11 1
2

22 0,Y nX c n Y′+ + − =′′  

2 11 0.Z c Z′′+ =  

The periodic solution to the above equations is 

( ) ( )1 cos ,xX t A tλ φ= − +                       (17) 

( ) ( )1 sin ,xY t kA tλ φ= +                        (18) 

( )1 ,zZ t A=                             (19) 

where k = k2. 

3.1.2. Second-Order Equations 
By collecting the terms of 2ν , we get the second-order equations 

( )2
2 2 2 2 212 2 ,X nY n c X γ′′ ′− − + =  
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( ) 22
2

2 2 2 22 ,Y nX c n Y γ′′ ′+ + − =  

2 2 22 3 ,Z c Z γ′′ + =  

where 

1 2; .τ λτ φ τ λτ ψ= + = +  
2

21 1 1 2 2 1 1 1cos 2 cos 2 2 2 ,x xA A nkγ γ τ γ τ α ω λ ω λ = + + + +   

22 3 1 4 1sin sin 2 ,γ γ τ γ τ= +  

( ) ( )23 5 2 6 1 2 2 1sin sin sin .γ γ τ γ τ τ τ τ= + + + −    

To remove the secular terms, we need to set the value ω1 = 0. The particular solution 
of the second-order equations are obtained with the help of Maxima software as 

( )2 20 21 1 22 2cos 2 cos 2 ,X τ ρ ρ τ ρ τ= + +                 (20) 

( )2 21 1 22 2sin 2 sin 2 ,Y τ σ τ σ τ= +                    (21) 

( ) ( ) ( )2 21 1 2 22 2 1sin sin .Z τ κ τ τ κ τ τ= + + −                (22) 

The coefficients are given in the Appendix. 

3.1.3. Third-Order Equations 
By collecting the terms of 3ν , we get the third-order equations 

( )2
3 3 2 3 312 2 ,X nY n c X γ′′ ′− − + =  

( ) 33
2

3 2 3 22 ,Y nX c n Y γ′′ ′+ + − =  

2 3 33 3 ,Z c Z γ′′+ =  

where 

( ) ( ) ( )31 1 2 1 7 1 8 2 1 9 2 12 cos 2 cos cos 2 cos 2 ,xA knγ ν ω λ λ τ γ τ γ τ τ γ τ τ= + − + + + + −    

( ) ( ) ( )32 2 2 1 3 1 4 2 1 5 2 12 sin sin 3 sin 2 sin 2 ,xA k nγ ν ω λ λ τ β τ β τ τ β τ τ= + − + + + + −    

( ) ( ) ( )2
33 3 2 2 3 2 4 1 2 5 1 22 sin sin 3 sin 2 cos 2 .zAγ ν ω λ τ δ τ δ τ τ δ τ τ = + + + + + −   

From the above equations, it is not possible to remove the secular terms by setting ω2 = 
0. Hence, the phase relation is used here to remove the secular terms. 

π , 0,1,2,3.
2

p pψ φ= + =  

The solution of the third-order equation is obtained as 

( )3 31 1cos3 ,X τ ρ τ=                         (23) 

( )3 31 1 32 1sin 3 sin ,Y τ σ τ σ τ= +                     (24) 

( )
( )

( )

2 31 1
3 1

2 32 1

1 sin 3 , 0, 2

1 cos3 , 1,3

p

p

p
Z

p

κ τ
τ

κ τ
−

 − == 
 − =

                 (25) 

The coefficients are given in the Appendix. Thus, the third-order analytical solution 
is developed. 
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3.1.4. Final Approximation 
The mapping, x xA A ν→  and z zA A ν→ , will remove ν from all the equations. We 
now combine the solutions up to third-order to get the final solution: 

( ) ( )20 21 1 22 2 31 1cos 2 cos 2 cos3 cos ,xX A tτ ρ ρ τ ρ τ ρ τ λ φ= + + + − +  

( ) ( )21 1 22 2 31 1 32 1sin 2 sin 2 sin 3 sin sin ,xY kA tτ σ τ σ τ σ τ σ τ λ φ= + + + + +  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

221 1 2 22 2 1 31 1

1
221 1 2 22 2 1 32 1

sin sin sin 1 sin 3 , 0, 2

sin sin sin 1 cos3 , 1,3

p

z

p

z

A t p
Z

A t p

λ ψ κ τ τ κ τ τ κ τ
τ

λ ψ κ τ τ κ τ τ κ τ
−

 + + + + − + − == 
 + + + + − + − =

 

The coefficients are given in the Appendix. 

3.2. Numerical Computation of Halo Orbits 

The method of differential correction is a powerful application of Newton’s method 
that employs the state transition matrix (STM) to solve various boundary value prob-
lems. Differential correction method is used to determine the initial conditions of the 
halo orbits from the initial guess [32] [34] [40]. Taking advantage of the fact that halo 
orbits are symmetric about xz-plane, the initial state vector takes the form 

[ ]T0 0 0 00 0 0 .X x z v=  

The equations of motion and state transition matrix are integrated numerically until 
the trajectory crosses the xz-plane again. The desired final condition is of the form 

T
0 0 0 .f f f fX x z v =    

It is obtained by modifying the known parameters of the initial state vector. Then the 
orbit will be periodic with period 1 22T t= . The state transition matrix at 1 2t  can be 
used to adjust the initial values of a nearby periodic orbit. Using fourth-order Runge- 
Kutta method, the equations of motion are integrated until y changes sign. Then the 
step size is reduced and the integration goes forward again. This is repeated until y be-
comes almost zero, and the time at this point is defined to be 1 2t . The tolerance is 
considered to be of the order of 10−12. The orbit is considered periodic if x  and z  
are zero at 1 2t . If this is not the case, x  and z  can be reduced by correcting two of 
the three initial conditions and by integrating again. Figures 2-8 provide numerical as 
well as analytical solution of L1 and L2 halo orbits about Saturn-Satellite systems. The 
variation in halo orbits due to oblateness of Saturn on its satellites is studied in sec-
tion 4. 

4. Halo Orbits in the Saturn-Satellites System 

Saturn, the sixth planet from the Sun, is home to a vast array of intriguing and unique 
satellites. It is also the largest oblate body in the solar system. Hence, studying the halo 
orbits about the moons of Saturn is interesting to observe the oblateness effect on the 
periodic orbits about the collinear points of the Saturn-Satellite systems. Christian 
Huygens discovered Titan, the first known moon of Saturn in 1655. Jean-Dominique  
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Figure 2. Numerical and analytical solutions for Saturn-Mimas system. 
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Figure 3. Numerical and analytical solutions for Saturn-Enceladus system. 
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Figure 4. Numerical and analytical solutions for Saturn-Tethys system. 
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Figure 5. Numerical and analytical solutions for Saturn-Dione system. 
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Figure 6. Numerical and analytical solutions for Saturn-Rhea system. 
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Figure 7. Numerical and analytical solutions for Saturn-Titan system. 

 
Cassini made the next four discoveries: Iapetus (1671), Rhea (1672), Dione (1684), and 
Tethys (1684). Mimas and Enceladus were both discovered by William Herschel in 
1789. We have used these known moons of Saturn for our study. The mass parameter μ 
and the oblateness coefficient A1 of the systems under study are presented in Table 1 
[17]. 
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Figure 8. Numerical and analytical solutions for Saturn-Iapetus system. 

4.1. Saturn-Mimas 

Mimas is the closest moon to Saturn which is considerably larger than other moons 
closer to Saturn. Mimas has an enormous crater on one side, the result of an impact 
that nearly split the moon apart. We have computed the initial guesses for the differential 
correction process provided in Table 2. The initial guess for the halo orbit computation 



N. Pushparaj, R. K. Sharma 
 

363 

about L1 and L2 of Saturn-Mimas system is subjected to differential correction process 
and then the equations of motion are numerically integrated with Adams-Bashforth- 
Moulton multistep method with relative tolerance of 2.5e−10 and absolute tolerance of 
1.0e−14. Figure 9 and Figure 10 provide the variation of Saturn-Mimas L1 and L2 halo 
orbits with and without oblateness effect. We observe that the initial conditions change 
for different values of A1 and hence the orbits about the collinear points L1 and L2 
shift. It is observed that the effect of Saturn’s oblateness on the halo orbits is significant  

 

Table 1. Systems and their parameters. 

S.No System μ A1 

1 Saturn-Mimas 0.0000000659 0.0042349996 

2 Saturn-Enceladus 0.0000001480 0.0025865767 

3 Saturn-Tethys 0.0000010950 0.0016835857 

4 Saturn-Dione 0.0000020390 0.0010308526 

5 Saturn-Rhea 0.0000032000 0.0005275432 

6 Saturn-Titan 0.0002461294 0.0000981153 

7 Saturn-Iapetus 0.0000039400 0.0000115606 

 
Table 2. Initial conditions for Saturn-Mimas system. 

Case x Z y  Time period 

L1 
A1 = 0 0.999148645816 0.002697118688 0.003631032924 0.012962186612 

with A1 0.997756317041 0.002698311236 0.003221853710 0.013961626242 

L2 
A1 = 0 1.001494387394 0.002668571267 0.004130733335 0.051026202231 

with A1 1.001334728492 0.002669710410 0.004159604147 0.047929194009 

 

 
Figure 9. Saturn-Mimas L1 halo orbit with and without oblateness. 
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and the L1 halo orbit shifts towards Saturn by 260 km and L2 halo orbit shifts by 11.6 
km. We also find that the non-dimensional time period of the halo orbits increases at 
L1 and decreases at L2 of the Saturn-Mimas system. 

4.2. Saturn-Enceladus 

Enceladus is the second closest moon next to Mimas at a distance of 237,948 km from 
Saturn. It displays evidence of active ice volcanism. Cassini observed warm fractures 
where evaporating ice evidently escapes and forms a huge cloud of water vapour over 
the South Pole. Similar to Saturn-Mimas system, we compute the halo orbits about the 
L1 and L2 of Saturn-Enceladus system with the initial guesses provided in Table 3 and 
the parameters taken from Table 1. We refine these conditions with differential correc-
tion method and compute halo orbits numerically. The oblateness effect on this system 
is lesser than on Saturn-Mimas system. Figure 11 and Figure 12 provide the L1 and L2 
halo orbits with and without oblateness for Saturn-Enceladus system. 

We observe that the halo orbits about L1 and L2 shift towards Saturn with oblateness 
by 153 km and 25 km, respectively. Similar to Saturn-Mimas system, the non-dimen- 
sional time period of the halo orbit increases at L1 and decreases at L2. 

 

 
Figure 10. Saturn-Mimas L2 halo orbit with and without oblateness. 

 
Table 3. Initial conditions for Saturn-Enceladus system. 

Case x Z y  Time period 

L1 
A1 = 0 0.997637174347 0.002523536751 0.002967906138 0.009187401493 

with A1 0.996995119904 0.002523943758 0.002866920875 0.012994111232 

L2 
A1 = 0 1.001898926264 0.002482616839 0.003088643942 0.162015872405 

with A1 1.001794977728 0.002488450813 0.003107834204 0.133201604509 
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Figure 11. Saturn-Enceladus L1 halo orbit with and without oblateness. 
 

 
Figure 12. Saturn-Enceladus L2 halo orbit with and without oblateness. 

4.3. Saturn-Tethys 

Tethys is the third closest and interesting satellite of Saturn at a distance of 294,619 km. 
Tethys has a huge rift zone called Ithaca Chasma that runs nearly three-quarters of the 
way around the moon. Telesto and Calypso are the two moons occupying the two La-
grangian points of Saturn-Tethys system. With the help of the initial guess, we compute 
the halo orbits about L1 and L2 of Saturn-Tethys system using the parameters of Table 
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1 and Table 4. Figure 13 and Figure 14 illustrate the L1 and L2 halo orbits. We ob-
serve that, the initial conditions change for different values of A1 and the halo orbits 
shift towards Saturn by 101 km at L1 and 3 km at L2. 

4.4. Saturn-Dione 

Dione is the fourth closest moon of Saturn with considerable higher mass than Tethys, 
and is 377,396 km from Saturn. Similar to Tethys, Helene and Poly deuces are the two 
other moons occupy the corresponding Lagrangian points of Dione in Saturn-Dione 
system. Using Table 1 and Table 5, we compute the L1 and L2 halo orbits of Sa-
turn-Dione system. These are shown in Figure 15 and Figure 16, respectively. The L1 
halo orbit moves towards Saturn by 77.15 km and L2 halo orbit moves towards it by 
0.48 km with oblateness. 

4.5. Saturn-Rhea 

Rhea is the moon of Saturn orbiting about 527,108 km from Saturn. It experiences the 
oblateness effect of Saturn very less compared to the previous moons. Using Table 1  
 

Table 4. Initial conditions for Saturn-Tethys system. 

Case X Z y  Time period 

L1 
A1 = 0 0.994072883928 0.003397738416 0.003679026495 0.019397166689 

with A1 0.993731440476 0.003397956122 0.003655841907 0.021581205672 

L2 
A1 = 0 1.005479499139 0.003310157713 0.003821612540 0.440763838604 

with A1 1.005469580625 0.003312429828 0.003818185981 0.427826024799 

 

 
Figure 13. Saturn-Tethys L1 halo orbit with and without oblateness. 
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Figure 14. Saturn-Tethys L2 halo orbit with and without oblateness. 
 

 
Figure 15. Saturn-Dione L1 halo orbit with and without oblateness. 

 
Table 5. Initial conditions for Saturn-Dione system. 

Case X Z y  Time period 

L1 
A1 = 0 0.992572578340 0.003979398600 0.004276068694 0.023996523692 

with A1 0.992368151952 0.003979543225 0.004263465270 0.025297934225 

L2 
A1 = 0 1.006945979742 0.003827419168 0.004564847025 0.712807021300 

with A1 1.006945850052 0.003829629598 0.004558905658 0.701629441557 
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and Table 6, the L1 and L2 halo orbits of Saturn-Rhea system are computed and are 
plotted in Figure 17 and Figure 18 with and without oblateness. L1 halo orbit moves 
towards Saturn by 50.3 km and L2 halo orbit moves towards it by 0.3 km. 

4.6. Saturn-Titan 

Titan is the solar system’s second-largest moon with 5150 km diameter after Ganymede 
(5362 km) of Jupiter. Titan hides its surface beneath a thick, nitrogen-rich atmosphere. 
Cassini’s instruments have revealed that Titan possesses many parallels to Earth-clouds, 
dunes, mountains, lakes, and rivers. Titan’s atmosphere is approximately 95 percent ni-
trogen with traces of methane. While Earth’s atmosphere extends about 60 km into 
space, Titan’s extends nearly by 600 km (10 times that of Earth’s atmosphere) into 
space. Effect of oblateness of Saturn on Titan in the frame work of restricted three-body 
problem was previously studied by Beevi and Sharma [41] [42]. Here we compute L1 
and L2 halo orbits about Saturn-Titan system under the effects of Saturn’s oblateness. 
Table 1 and Table 7 provide the initial conditions for numerical computation of these 
orbits. It is noticed that the effect of Saturn’s oblateness on the halo orbit is quite less.  

 

 
Figure 16. Saturn-Dione L2 halo orbit with and without oblateness. 

 
Table 6. Initial conditions for Saturn-Rhea system. 

Case X Z y  Time period 

L1 
A1 = 0 0.990483630180 0.003038157227 0.003133921797 0.029033398230 

with A1 0.990388234447 0.003038192546 0.003132075003 0.029690594615 

L2 
A1 = 0 1.008973973795 0.002907084824 0.003849027800 1.188870485719 

with A1 1.008972498613 0.002910487598 0.003820135275 1.160933403200 
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Figure 17. Saturn-Rhea L1 halo orbit with and without oblateness. 
 

 
Figure 18. Saturn-Rhea L2 halo orbit with and without oblateness. 

 
Table 7. Initial conditions for Saturn-Titan system. 

Case x z y  Time period 

L1 
A1 = 0 0.957987711866 0.008197464523 0.008308377495 0.122381274243 

with A1 0.957985353543 0.0081893443451 0.008308123980 0.123434542342 

L2 
A1 = 0 1.035106494273 0.007326224792 0.023183141982 3.079932656019 

with A1 1.035116122187 0.007327676268 0.023150570604 3.072760388593 
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Oblateness attracts L1 halo orbit towards Saturn by 2.88 km and L2 halo orbit by 0.1 
km. Figure 19 and Figure 20 show Saturn-Titan L1 and L2 halo orbits. As is expected, 
the effect of oblateness on the halo orbits decreases as the distance between the satellites 
of Saturn and the planet (Saturn) increases. 

4.7. Saturn-Iapetus 

Iapetus has one side as bright as snow and other side as dark as black velvet, with a huge  
 

 
Figure 19. Saturn-Titan L1 halo orbit with and without oblateness. 

 

 
Figure 20. Saturn-Titan L2 halo orbit with and without oblateness. 
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ridge running around most of its dark-side equator. Iapetus is 3,560,820 km from Sa-
turn and is smaller than Titan, Rhea and larger than Mimas, Enceladus. Initial condi-
tions for computation of L1 and L2 halo orbits of Saturn-Iapetus system are given in 
Table 8. Figure 21 and Figure 22 show L1 and L2 halo orbits for this system. The effect 
of oblateness on the halo orbits of Saturn-Iapetus system is found to be negligible. 

5. Results and Conclusion 

Halo orbits in the vicinity of L1 and L2 collinear points in Saturn-Satellites systems in 
the frame work of circular restricted three-body problem with more massive primary 
Saturn as an oblate spheroid with its equatorial plane coincident with the plane of mo-
tion of the primaries are considered. The halo orbits with oblateness effect of Saturn for 
seven largest satellites of Saturn are computed through the differential correction me-
thod of Mireles [32]. It is found that oblateness effect on halo orbits of the satellites 
closer to Saturn has significant effect compared to the satellites away from it. The halo 
orbits L1 and L2 are found to move towards Saturn with oblateness effect and the re-
sults are tabulated in Table 9. 

 
Table 8. Initial conditions for Saturn-Iapetus system. 

Case x z y  Time period 

L1 
A1 = 0 0.989102546102 0.000561734312 0.000564566003 0.032123470396 

with A1 0.989101982635 0.000561697239 0.000564432349 0.031342342225 

L2 
A1 = 0 1.009284587510 0.000511851697 0.005023822252 2.965141856279 

with A1 1.009270089379 0.000512126964 0.004999698237 2.945465601853 

 

 
Figure 21. Saturn-Iapetus L1 halo orbit with and without oblateness. 
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Figure 22. Saturn-Iapetus L2 halo orbit with and without oblateness. 
 
Table 9. Variation in location and time period of halo orbit with oblateness effect. 

System 
L1 L2 

Δx (km) ΔTime Period(s) Δx (km) ΔTime Period(s) 

Saturn-Mimas 260 12.3689 11.6 38.3282 

Saturn-Enceladus 153 73.2844 25 554.7144 

Saturn-Tethys 101 57.0621 3 338.02465 

Saturn-Dione 77.15 48.3183 0.48 414.9974 

Saturn-Rhea 50.3 40.6694 0.3 1728.7311 

Saturn-Titan 2.88 231.7356 0.1 1578.0121 
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Appendix 

Coefficients for the second and third-order equations and solution: 
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