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Abstract 
In this paper we rewrite the gravitational constant based on its relationship with the Planck 
length and based on this, we rewrite the Planck mass in a slightly different form (that gives exactly 
the same value). In this way we are able to quantize a series of end results in Newton and Eins-
tein’s gravitation theories. The formulas will still give exactly the same values as before, but eve-
rything related to gravity will then come in quanta. This also gives some new insight; for example, 
the gravitational deflection of light can be written as only a function of the radius and the Planck 
length. Numerically this only has implications at the quantum scale; for macro objects the discrete 
steps are so tiny that they are close to impossible to notice. Hopefully this can give additional in-
sight into how well or not so well (ad hoc) quantized Newton and Einstein’s gravitation is poten-
tially linked with the quantum world. 
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1. Foundation  
We suggest that Newton’s gravitational constant [1] could be written as a function of Planck’s reduced constant 

2 3
p

p

l c
G =



                                        (1) 

where   is the reduced Planck’s constant, c is the well tested round-trip speed of light, and pl  is the Planck 
length [2]. We could call this Planck’s form of the gravitational constant. This way of writing Newton’s 
gravitational constant does not change the value of the constant. If one knows the Planck length, then the 
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gravitational constant is known, or alternatively and more practically one can calibrate the Planck length based 
on empirical measurements of the gravitational constant. There is still considerable uncertainty in the exact 
measurement of the gravitational constant. Experimentally, substantial progress has been made in recent years 
based on various methods. See, for example, [3]-[7]. Also the relationship between physical constants from the 
microcosms (subatomic world) and the macrocosms (cosmos) plays an important role in physics and a 
continuous effort is going into improving our measurements and understanding of these relationships. See, for 
example, [8]. 

As shown by Haug [9], the Planck form of the gravitational constant enables us to rewrite the Planck length as 
2 3

3 3

p

p
p p

l c
G

l l
c c

= = =




                                 (2) 

and the Planck mass as 

2 3
1

p
p pp

c cm
G l cl c

= = =
  



                               (3) 

Using the gravitational constant in the Planck form, as well as the rewritten Planck units, we are easily able to 
modify a series of end results from Newton and Einstein’s gravitational theories to contain quantization as well. 

2. Newton’s Universal Gravitational Force  
Newton’s gravitational force is given by 

1 2
2G p

m mF G
r

=                                      (4) 

Using the gravitational constant of the form 
2 3
p

p

l c
G =



 and the Planck mass of 1
p

p

m
l c

=
 , we can rewrite 

Newtons gravitational force for two Planck masses as 
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p p
G p

m m
F G

r
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                                (5) 

In the special case where pr l= , we get 

pG
p p

cF
l l

=
                                       (6) 

It seems from this that gravity potentially could be related to hits per second, even if the output naturally is the 
same as from the standard formula. For large masses the form will be 
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1 2 2pGF N N c
r

=
                                     (7) 

where 1N  is the number of Planck masses in object one and 2N  is the number of Planck masses in object two. 
In the case where the two masses are of equal size, we have 

2
2PGF N c

r
=

                                      (8) 

3. Escape Velocity at the Quantum Scale 
The traditional escape velocity [10]-[12] is given by 

2
e

GMv
r

=                                       (9) 

where G is the traditional gravitational constant, M is the mass of the object we are “trying” to escape from, and 
r is the radius of that object. In other words, we stand at the surface of the object, for example a hydrogen atom 
or a planet. Based on the gravitational constant written in the Planck form, we can find the escape velocity at 
Planck scale; see the Appendix for a derivation from “scratch”. It must be 
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where N is the number of Planck masses in the planet or mass in question. 
A particularly interesting case is when we only have one Planck mass 1N =  and 2 pr l=  (this is actually 

the Schwarzschild radius of a Planck particle). This gives us 

,

2 1
2
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e p

p

l
v c

l
× ×

=  

,e pv c=                                       (11) 

as the escape velocity for a particle with Planck mass is c. Next we will see if the formula above can also be 
used to calculate the escape velocity of Earth. The Earth’s mass is 245.972 10 kg× . We must convert this to the 
number of Planck masses. The Planck mass is 

81 2.17651 10p
p

m
l c

−= ≈ ×
  

The Earth’s mass in terms of the numbers of Planck masses must be 
24

32
8

5.972 10 2.74388 10
2.17651 10−

×
≈ ×

×
. Further 

the radius of the Earth is 6371000r ≈  meters. We can now simply plug this into the Planck scale escape 
velocity: 

,

2 p
e p

Nl
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32 35

,
2 2.74388 10 1.61622837 10299792458 11185.7 meters second

6371000e pv
−× × × ×

= × ≈  

which is equal to 40,269 km/h, the well-known escape velocity from the Earth’s gravitational field. We think 
our new way of looking at gravity could have consequences for the understanding of gravity. Gravitation must 
come in discrete steps and the escape velocity must also come in discrete steps for a given radius; this is because 
the amount of matter likely comes in discrete steps. 

4. Orbital Speed  
The orbital speed is given by 

o
GMv

r
≈                                      (12) 

We can rewrite this in the form of the Planck gravitational constant and the Planck mass as 

,
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This can also be written as 

, 2
pe

o p

Nlvv c
r

≈ =                                  (14) 

5. Gravitational Acceleration Field  
The gravitational acceleration field in modern physics is given by 

2
GMg
r

=                                       (15) 

This can be rewritten in quantized form as 
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6. Gravitational Parameter  
The standard gravitational parameter is given by 

GMµ =                                       (17) 

This can be rewritten in quantized form as 

p pG Mµ =  
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p p pG Nmµ =  

2 3 1p
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p
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µ =





 

2
p pNl cµ =                                      (18) 

7. Kepler’s Third Law of Motion  
The Newtonian “mechanics version” of Kepler’s third law of motion for a circular orbit is given by 

( )
2 2

3
4π

s

P
G M ma

=
+

                                 (19) 

where sM  is the mass of the Sun, m the mass of the planet, P is the period, and a is the semi-major axis. This 
can be rewritten as 

( )
2 2

3
1 2

4π

p p p

P
a G N m N m

=
+

 

2 2

3 2 3

1 2

4π
1 1p

p p

P
a l c

N N
l c l c

=
 

+  
 

 



 

( )
2 2

3 2
1 2

4π

p

P
a l c N N

=
+

                                (20) 

where 1N  is the number of Planck masses in the mass of the Sun sM  and 2N  is the number of Planck mass 
of the planet m. In the case where the planet’s mass is much smaller than the Sun’s mass, we can use the 
following approximation 

2 2

3 2
4π

p

P
a l c N

≈                                      (21) 

where N is now the number of Planck masses in the Sun. 

8. Gravitational Time Dilation at Planck Scale  
Einstein’s gravitational time dilation [13] is given by 

2

0 2 2
21 1 e

f f
vGMt t t

rc c
= − = −                             (22) 

where ev  is the traditional escape velocity. We can rewrite this in the form of quantized escape velocity 
(derived above). 
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Let’s see if we can calculate the time dilation at, for example, the surface of the Earth from Planck scale 
gravitational time dilation. The Earth’s mass is 245.972 10 kg× . And again, the Earth’s mass in terms of the  

Planck mass must be 
24

32
8

5.972 10 2.74388 10
2.17651 10−

×
≈ ×

×
. Further, the radius of the Earth is 6371000r ≈  meters. 

We can now just plug this into the quantized gravitational time dilation 

2
1 p

o f

Nl
t t

r
= −  

32 352 2.74388 10 1.61622837 101 0.999999999303915
6371000o f ft t t

−× × × ×
= − ≈ ×  

That is for every second that goes by in outer space (a clock far away from the massive object), 
0.99999999930391500 seconds goes by on the surface of the Earth. That is to say, for every year in outer space 
(very far from the Earth), there are about 22 milliseconds left to reach an Earth year. This is naturally the same 
as we would get with Einstein’s formula. Still, the new way of writing the formula gives additional insight. 

Circular orbit’s gravitational time dilation 
The time dilation for a clock at circular orbit1 is given by 

2

0 2 2
3 2 31 1
2 2

e
f

vGMt t
rc c

= − = −                             (24) 

where ev  is the traditional escape velocity. We can rewrite this in the form of quantized escape velocity 
(derived above). 
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9. The Schwarzschild Radius  
The Schwarzschild radius [14] [15] of a mass M is given by 

2
2

s
GMr
c

=                                      (26) 

Rewritten into the quantum realm as described in this article, it must be 
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1At orbital radius larger then 
3
2 sr . 
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2s pr Nl=                                      (27) 

For a clock at the Schwarzschild radius, we get a time dilation of 

2
1 0.

2
p

o f
p

Nl
t t

Nl
= − =                                  (28) 

At the Schwarzschild radius, time stands still. For a radius shorter than that the gravitational time dilation 
equation above breaks down.2  

Mass in Schwarzschild meters 
The Schwarzschild mass in terms of meters is given by 

2meter GM
c

=                                     (29) 

This can be rewritten as 
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meter pNl=                                      (30) 

10. Quantized Gravitational Bending of Light  
The angle of deflection in Einstein’s General Relativity theory is given by 

2
4

GR
GM
c r

δ =  

This can be rewritten as 
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GRH

l
N
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δ =                                     (31) 

where N is the number of Planck masses making up the mass we are interested in. From the formula above, this 
means that the deflection of angles comes in quanta. Lets also “control” that our Planck scale deflection rooted  
in Planck and GR is consistent for large bodies like the Sun, for example. The solar mass is 301.988 10 kgsM ≈ × . 

The Sun’s mass in terms of the number of Planck masses must be 
30

37
8

1.988 10 9.134 10
2.17651 10−

×
≈ ×

×
. Further, the 

radius of the Sun is 696342000sr ≈  meters. We can just plug this into the Planck scale deflection: 

 

 

2Except if we assume the pl  represents the radius of an indivisible particle. Thus if we move away from the point particle concept, this 
would simply mean that we could not go below the Planck scale Schwarzschild Radius.  
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37 35
064 4 9.134 10 1.61622837 10 8.48 10

696342000
p

GRH

Nl
r

δ
−

−× × × ×
= = ≈ ×              (32) 

If we multiply this by 648000
π

, we get a bending of light of about 1.75 arcseconds or 1.75
3600

 of a degree. 

This is the same as has been confirmed by experiments and helped make Einstein famous, as Newton gravitation 
supposedly only predicted half of the bending of light. Newton’s bending of light is given by 

Newton 2
2GM
c r

δ =                                      (33) 

See for example [16] for derivations of bending of light under Newton’s gravitation. 

11. Gravitational Redshift  
Einstein’s gravitational redshift is given by 

( )
2

1lim 1
2

1

r

e

z r
GM
c
R

→+∞
= −

−

                               (34) 

where eR  is the distance between the center of the mass of the gravitating body and the point at which the 
photon is emitted. This we can rewrite as 
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                               (35) 

Further, in the Newtonian limit when eR  is sufficiently large compared to the Schwarzschild radius, we can 
approximate the above expression with 

( ) 2lim
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≈  
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≈                                    (36) 

12. Einstein’s Field Equation  
And finally we get to Einstein's field equation. It is given by 
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Table 1. The table shows some of the standard gravitational relationships given by Newton and Einstein and their expression 
in quantized form.                                                                                          

Units Newton and Einstein form Quantized-form 

Gravitational constant 116.67408 10G −≈ ×  
2 3
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l c
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Einstein bending of light 
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4
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Black holes Possible Depends on quantum interpretation 
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Gravitational red-shift approx ( ) 2
limr

e

GMz r
c R→+∞ ≈  ( )lim p

r
e

Nl
z r

R→+∞ ≈  

 

4
1 8π
2v v v

GR g R T
cµ µ µ− =                                (37) 

I am far from an expert on Einstein’s field equation, but based on the Planck gravitational constant given in 
this paper, we can rewrite it as 

4

8π1
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p
v v v

G
R g R T

cµ µ µ− =  
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2 3

4

8π1
2

p

v v v

l c

R g R T
cµ µ µ− =   

28π1
2

p
v v v

l
R g R T

cµ µ µ− =
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                                (38) 

Bear in mind 
2π
h

=  and based on this we can alternatively write Einstein’s field equation as 

2 216π1
2

p
v v v

l
R g R T

hcµ µ µ− =                               (39) 

The potential interpretation and usefulness of this rewritten version of Einstein’s field equation we leave to 
other experts for consideration. An interesting question is naturally whether or not it is consistent with some of 
the derivations given above in this form. 

13. Table Summary 
Table 1 summarizes our rewriting of some gravitational formulas. The output is still the same, but based on this 
view of gravity, masses, gravitational time dilation, and even escape velocity all come in discrete steps. 

14. Conclusion  
By making the gravitational constant be a function form of the reduced Planck constant, one can easily rewrite 
many of the end results from Newton and Einstein’s gravitation in quantized form. Even if this is seen as an ad 
hoc method, it could still give new insight into what degree quantized Newton’s gravitation and General 
Relativity are consistent with the quantum realm. 
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Appendix: Escape Velocity  
Derivation of the escape velocity from Planck scale 

21
2

GmME mv
r

≈ −  

1 22
1

1
2

p p
p

GN m N m
E N m v

r
≈ −  

2 3

1 2
2

1

1 1
1 1
2

p

p p

p

l c
N N

l c l c
E N v

l c r
≈ −

 



  

2
1 1 2

1 1
2 p

E N v N N c
l c r

≈ −
                              (40) 

where 1N  is the number of Planck masses in the smaller mass m (for example a rocket) and 2N  is the 
number of Planck masses in the other mass. This we have to set to 0 and solve with respect to v to find the 
escape velocity: 
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22 pl
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r
=                                    (41) 

This is a quantized escape velocity. Since 1N  cancels out, we can simply call 2N  for N and write the 
escape velocity as 

2 pl
v c N

r
=                                      (42) 

where N is the number of Planck masses in the mass we are trying to escape from. 
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