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Abstract 
In this paper, bulk viscous Bianchi type V cosmological model with generalized Chaplygin gas, dy-
namical gravitational and cosmological constants has been investigated. We are assuming the 

condition on metric potential n

R R m
R R t

 

1 2

1 2

= = . To obtain deterministic model, we have considered 

physically plausible relations like P p= + Π , r
0η η ρ=  and the generalized Chaplygin gas is de-

scribed by equation of state Bp αρ
−

= . A new set of exact solutions of Einstein’s field equations has 

been obtained in Eckart theory, truncated theory and full causal theory. Physical behavior of the 
models has been discussed. 
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1. Introduction 
Recent cosmology is on Fridman-Lemaitra-Robertson-Walkar (FLRW) which is completely homogeneous and 
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isotropic. But it is widely believed that FLRW model does not give a correct matter description in the early stage 
of universe. The theoretical argument [1] and the recent experimental data support the existence of an aniso-
tropic phase, which turns into an isotropic one during the evolution of the universe. Anisotropic model plays 
significant role in description of evolution of the early phase of the universe and also helps in finding more gen-
eral cosmological models than the isotropic FRW models. This motivates researcher for obtaining exact aniso-
tropic solution for Einstein’s field equations as a cosmologically accepted physical models for the universe (in 
the early stages). The study of Bianchi type V cosmological model being anisotropic generalization of open 
FRW models is important to study old universe. A number of authors have investigated Bianchi type V cosmo-
logical model in general relativity in different context [2]-[15]. Rajbali and Seema Tinkar have discussed Bianc-
hi type V bulk viscous Barotropic fluid cosmological model with variable G and Λ. Recently Yadav and Sharma 
[16] and Yadav [17] have discussed about transit universe in Bianchi type V space-time with variable G and Λ. 

It has been widely discussed in the literature that during the evolution of the universe, bulk viscosity can arise 
in many circumstances and can lead to an effective mechanism of galaxy formation [18]. It is known that real 
fluids behave irreversibly and therefore it is important to consider dissipative processes both in cosmology and 
in astrophysics. To consider more realistic models, one must take in to account the viscosity mechanism. Bulk 
viscosity leading to an accelerated phase of the universe today has been studied by Fabris et al. [19]. Very re-
cently Kotambkar et al. [20] have investigated anisotropic cosmological models with quintessence considering 
the effect of bulk viscosity. 

A wide range of observations strongly suggest that the universe possesses non zero cosmological term [21]. 
The astronomical observations [22] [23] support that the expansion of the universe is accelerated. It suggests 
that there exists a new component in universe named as dark energy with negative pressure. A natural explana-
tion for the accelerated expansion is due to a positive small cosmological constant. An attention has been paid to 
cosmological models with non zero cosmological term Λ [21] [24], whose existence is favored by supernovae 
SNe Ia observations (refer to [22] [23]) which are consistent with the recent anisotropy measurements of the 
cosmic microwave background (CMB) made by the WAMAP experiment [25]. Sahni and Starobinski [26] have 
presented detailed discussion on current observational situation focusing on cosmological tests on Λ. 

Time varying G has many interesting consequences in astrophysics. Cunuto and Narlikar [27] have shown 
that G-varying cosmology is consistent with what so ever cosmological observations available at present. A new 
approach is appealing; it assumes the conservation of the energy momentum tensor which consequently gives G 
and Λ as coupled fields similar to the case of G in original Brans-Dicke theory. The cosmological model with 
variable G and Λ has been investigated by several researchers [28]-[32]. A number of researchers have dis-
cussed various anisotropic cosmological models with variable G and Λ [33]-[37].  

According to recent observational evidence, the expansion of the universe is accelerated, which is dominated 
by a smooth component with negative pressure, the so called dark energy. To avoid problems associated with Λ 
and quintessence models, recently, it has been shown that Chaplygin gas may be useful. The unification of the dark 
matter and dark energy component creates a considerable theoretical interest, because on the one hand, model 
building becomes reasonably simpler, and on the other hand such unification implies existence of an era during 
which the energy densities of dark matter and dark energy are strikingly similar. For representation of such a  

unification, the generalized Chaplygin gas (GCG) with exotic condition of state Bp αρ
−

=  is considered, where  

constant B and α  satisfy B > 0 and 0 1α< ≤  respectively. Due to observational evidence, cosmological 
models based on CG-EOS are very encouraging. Chaplygin gas and generalized Chaplygin gas cosmological 
models are first time proposed by Kamenshchik et al. [38]. WMAP constraints on the generalized Chaplygin gas 
model have been investigated by Bento et al. [39].  

Motivated by above work we thought that it was worthwhile to study bulk viscous Bianchi type V space-time 
with generalized Chaplygin gas and dynamical G and Λ. 

2. Metric and Field Equations  
The spatially homogeneous and anisotropic space-time metric is given by 

2 2 2 2 2 2 2 2 2 2
1 2 3d d d e d e dkx kxs t R x R y R z= − + + +                            (1) 

where 1 2 3, ,R R R  are functions of t alone. 
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Einstein field equation with time dependent Λ and G may be written as 

1 8π
2ij ij ij ijR Rg GT g− = − + Λ                               (2) 

where G and Λ are time dependent gravitational and cosmological constants. ijT  is energy momentum tensor of 
cosmic fluid in the presence of bulk viscosity defined as  

( ) ( )ij i j ijT P u u P gρ= + −                                (3) 

P p= +Π                                      (4) 

where p is equilibrium pressure, Π  is bulk viscous stress together with 1j
iu u = . 

Einstein’s field Equation (2) for the metric (1) takes form 

( )3 31 1
2

1 3 1 3 1

1 8π ,
R RR R G p

R R R R R
+ + − = − +Π +Λ
  

                        (5) 

( )3 32 2
2

2 3 2 3 1

1 8π
R RR R G p

R R R R R
+ + − = − +Π +Λ
  

                        (6) 

( )1 2 1 2
2

1 2 1 2 1

1 8π
R R R R G p
R R R R R

+ + − = − +Π +Λ
   

                        (7) 

3 31 2 2 1
2

1 2 2 3 3 1 1

3 8π ,
R RR R R R G

R R R R R R R
ρ+ + − = + Λ

    

                         (8) 

31 2

1 2 3

2 0.
RR R

R R R
− − =

 

                                (9)  

By the divergence of Einstein’s tensor i.e. 
;

1 0
2ij ij

j

R Rg − = 
 

 which lead to  

( );8π 0ij ij j
GT g−Λ = , then yields 

( ) 31 2

1 2 3

8π 8π 0
RR RG G p

R R R
ρ ρ ρ

  
+ Λ + + + +Π + + =  

   

 

 

                  (10) 

The energy momentum conservation equation ( ); 0ij
jT =  splits Equation (10) into two equations. 

( ) 31 2

1 2 3

0
RR Rp

R R R
ρ ρ

 
+ + + + = 

 

 

 ,                              (11) 

31 2

1 2 3

8π 8π
RR RG G

R R R
ρ

 
+ Λ = − Π + + 

 

 

  .                            (12) 

For the full causal non-equilibrium thermodynamics the causal evolution equation for bulk viscosity is given 
by [40] 

3 31 2 1 2

1 2 3 1 2 32
R RR R R R T

R R R R R R T
ετ τ ητ η

τ η
   Π

Π + Π = − + + − + + + − −   
   

    




 .                  (13) 

0T ≥  absolute temperature, η  is bulk viscosity coefficient which cannot become negative, τ  denote the 
relaxation time for transient bulk viscous effects. Causality requires 0τ > . When 0ε = , Equation (13) reduces 
to evolution equation for truncated theory. For 1ε =  Equation (13) reduces to evolution equation for full caus-
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al theory and for 0τ =  Equation (13) reduces to evolution equation for non-causal theory (Eckart’s theory). 

3. Cosmological Solutions  
It can be easily seen that we have five Equations (5)-(9) with eight unknowns 1 2 3, , , , , , andR R R p Gρ ηΛ . 
Hence to solve the system of equations completely we need three additional physically plausible relations 
among these variables.  

3.1. Case I: Non-Causal Cosmological Solution 
For non causal solution 0τ = , therefore the evolution Equation (13) takes the form of  

31 2

1 2 3

3
RR R H

R R R
η η
 

Π = − + + = − 
 

 

                             (14) 

To find the complete solution of the system of equations, following relations are taken into consideration. 
The power law relation for bulk viscosity is taken as  

0 ,rη η ρ=                                       (15) 

where 0 0η ≥  and r is a constant. 
We consider an exotic background fluid, the Chaplygin gas, described by the equation of state 

,Bp αρ
−

=                                        (16) 

where B is constant and 0 1α< ≤  
To obtain the deterministic scenario of the universe, we assume the condition 

1 2

1 2
n

R R m
R R t

= =
 

                                     (17) 

From Equation (9) and (17), one can get  

3

3

,n

R m
R t

=


                                       (18) 

From Equations (17)-(18), one can easily calculate  
1 1 1

1 1 1
1 1 2 2 3 3e , e , e .

n n nmt mt mt
n n nR K R K R K
− − −

− − −= = =                         (19) 

Using Equations (17) and (18), Equation (11) yields 

3 0.n

B m
tαρ ρ

ρ
  + − =  

  
                                  (20) 

By solving Equation (20), we get  

1
1

1e
nDtB C αρ

− +− = +  .                                  (21) 

where 
( )3 1

,
1

m
D

n
α+

=
−

 and where C  is constant of integration. 

From Figure 1 one can easily see that energy density is decreasing with evolution of the universe. 
On differentiating Equation (21), we get  

1 1
1 1

13 e e .
n nDt Dt

n

mC B C
t

αρ
− − −

+− − = − + 
                            (22) 
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Figure 1. This figure shows variation of energy density ρ  with respect to 
cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2 and 1α = .           

 
Now with the help of Equations (17)-(19) and (21), Equation (8) becomes  

2 1

2 2
1

3 3 28π exp .
1

n

n

m mtG
nt K

ρ
− −

+ Λ = −  
− 

                          (23) 

Which on differentiation yields 

2 1

2 1 2
1

6 6 28π 8π exp ,
1

n

n n

m n m mtG G
nt K t

ρ ρ
−

+

 − −
+ + Λ = +  

− 
 

                     (24) 

With the help of Equations (12), (14), (17)-(18) and (21), Equation (24) becomes  

2 1

2 2 1
1

9 6 1 28π exp ,
1

n

n n n

m m mt mnG
nt t K t

ηρ
−

+

    
+ = − −    −     
                     (25) 

By use of Equations (15), (21) and (22) in Equation (25), we get 

( ) ( )1 1 1

111 1
1 10

2 1
1

31 1 2exp e e e ,
4π 1

n n n
rn

Dt Dt Dt
n n

mmt mnG C B C B C
nK t t

α αη− − −

−
− −

+ +− − −
+

   −
= − − + + +   

−       
    (26) 

From Figure 2 it can be seen that G is increasing with evolution of the universe. 
Now using Equations (21) and (26) in Equation (23) gives 

( ) ( )1 1 1

2 1 1

2 2 2 1
1 1

111
10

3 3 2 1 2exp 2 exp
1 1

3
 e e e

n n n

n n

n n

r
Dt Dt Dt

n

m mt mt mn
n nt K K t

m
C B C B C

t
αη− − −

− −

+

−−
−

+− − −

    − −
Λ = − − −    

− −     

 
⋅ − + + + 
  

                 (27) 

Figure 3 shows that cosmological constant is decreasing with the evolution of the universe. 
On solving Equations (21) and (15) we can obtain the expression for bulk viscosity coefficient as  

1 1
0 e .

n
r

DtB C αη η
− +− = +                                  (28) 
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Figure 2. This figure shows variation of gravitational constant with respect 
to cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2, 1α = , r = 
1.5, a = 1 and 0 1η = .                                                        

 

 
Figure 3. This figure shows variation of cosmological constant with respect 
to cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2, 1α = , r = 
1.5, a = 1 and 0 1η = .                                                        

 
Figure 4 shows that bulk viscosity coefficient is decreasing with evolution of the universe. 
Thus the metric (1) reduces into the form 

 ( )
1

2 2 2 2 2 2 2 22d d exp d e d e d .
1

n
k kmts t K x y z

n

− 
= − + + + 

− 
                     (29) 

The deceleration parameter is given by  

21 Hq
H

= − −


, for this model deceleration parameter is  



S. Kotambkar et al. 
 

 
214 

 
Figure 4. This figure shows variation of bulk viscosity coefficient with 
respect to cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2, 

1α = , r = 1.5 and 0 1η = .                                                        

11 n

nq
mt −= − +                                     (30) 

Expansion scalar, Shear coefficient, relative anisotropy for this model is given by 

3 3
n

H m
H t

Θ = =


                                    (31) 

22 2 2
2 31 2

1 2 3

1
2 6

RR R
R R R

σ
      Θ = + + −    
       

 

 

2 0σ =                                        (32) 
2

Relative anisotropy 0σ
ρ

= =                               (33) 

The critical energy density and the critical vacuum energy density are respectively given by 
23 ,

8π 8πc
H

G Gνρ ρ Λ
= =  

for the anisotropic Bianchi type V model can be expressed respectively as  

( ) ( )1 1 1

2 2

111 1
1 10

2 1
1

3 ,
31 22 exp e e e

1
n n n

n

c rn
Dt Dt Dt

n n

m t

mmt mn C B C B C
nK t t

α α

ρ
η− − −

−

−
− −

+ +− − −
+

=
   −

− − + + +   −      

     (34) 

( ) ( )

( )

1 1 1

1 1

112 1 1 1
10

2 2 2 1
1 1

11 1
1 0

2 1
1

33 3 2 1 2exp 2 exp e e e
1 1

 
31 22 exp e e e

1

n n n

n n

v

rn n
Dt Dt Dt

n n n

n
Dt Dt

n n

mm mt mt mn C B C B C
n nt K K t t

mmt mn C B C B C
nK t t

α

α

ρ

η

η

− − −

− −

−−− − −
+− − −

+

− −
+− − −

+

=

     − −
− − − − + + +     − −        

  −
− − + + +  −  

( )1

1

1

,
n

r
Dt α−

−

+
 
 
  

(35) 
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Mass density parameter and the density parameter of the vacuum are given by 

,M
c c

νρρ
ρ ρΛΩ = Ω =  

for the anisotropic Bianchi type V model can be expressed respectively as 

( ) ( )

1

1 1 1

1 1
12

2 1
1

1 1
1 12 0

1 22 e exp
1

33 e e e

n

n n n

n
n Dt

n

M r
Dt Dt Dt

n

mt mnt B C
nK t

mm C B C B C
t

α

α αη

−

− − −

−
+−

+

−
+ +− − −

  − + −    −  Ω =
 
− + + + 
  

                 (36) 

( ) ( )1 1 1

2 2 1 1

2 2 2 2 1
1 1

111
10

3 3 2 1 2exp 2 exp
1 13

3
e e e

n n n

n n n

n n

r
Dt Dt Dt

n

t m mt mt mn
n nm t K K t

m
C B C B C

t
αη− − −

− −

Λ +

−−
−

+− − −

     − −
Ω = − − −      − −     

  ⋅ − + + + 
   

               (37)  

The State finder parameters 3

Rr
RH

=


 and 1
13
2

rs
q

−
=

 − 
 

. 

For this model  

( )
1 2 2 2

131 n n

n nnr
mt m t− −

+
= − +                                   (38) 

( ) 1

2 1

2 1 6
9 6

n

n

n n t mn
s

m t mn

−

−

+ −
=

− −
                                  (39) 

3.2. Case II: Causal Cosmological Solution 
In addition to physically plausible relations (15)-(17), in this case we assume  

2 .HβΛ =                                        (40) 

where H is Hubble parameter, given by  

( )1 3
1 2 3and .RH R R R R

R
= =


                               (41) 

From Equation (17)-(19) and (41), the Hubble parameter is given by  

n

mH
t

=                                         (42) 

Using equations (17)-(19), (40) and (42) in equation (8), we get  

( ) 2 1

2 2
1

3 3 28π exp ,
1

n

n

m mtG
nt K

β
ρ

−−  −
= −  

− 
                          (43) 

From Equations (21) and (43), 

( ) ( ) ( )
1

1 11
12 2

1

31 3exp exp
8π

n n
nG B C Dt D t

t K
α β−

− −+
−  = + − −    

                   (44) 

where 1
2

1
mD
n

−
=

−
. 
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From Figure 5 one can easily see that gravitational constant is increasing with cosmic time. 
Substitute the values from Equations (17)-(19), (40) and (44) in Equation (5), we get  

( ) ( )
2

1
12 1 2

1

3 2 1 1exp ,
8π

n
n n

m mn BD t
Gt t K α

β
ρ

−
+

 − −
Π = − − ⋅ + 

  
                    (45) 

By use of Equation (21), Equation (44) gives 

 

( )
( )
( ) ( )

1
1 1 1

21 1

exp
exp

n

n

U tB B C Dt
U t

B C Dt

α
α
α

− +

− +

 Π = − + − 
 + − 

                (46) 

where ( ) ( ) ( )
2

1
1 12 1 2

1

3 2 1 exp n
n n

m mnU t D t
t t K
β −

+

 −
= − − 
  

, ( ) ( ) ( )1
2 12 2

1

3 3 exp n
nU t D t

t K
β −− 

= − 
 

 

Figure 6 shows that bulk viscous stress is decreasing with the evolution of the universe. 

3.2.1. Sub Cease (i): Evaluation of Bulk Viscosity in Truncated Causal Theory 
Now we study variation of bulk viscosity coefficient η  and relaxation time τ  with respect to the cosmic time. 
It has already been mentioned that for truncated theory 0ε =  and hence Equation (13) reduces to  

3 .Hτ ηΠ + Π = −                                  (47) 

In order to have exact solution of the system of equations one more physically plausible relation is required. 
Thus, we consider the well known relation  

.ητ
ρ

=                                     (48) 

Using Equations (17)-(19), (46) and (48) in Equation (47) one can obtain coefficient of bulk viscosity as  

( ) ( ) ( ) ( )
( )
( )

( ) ( )
( )

( )
( ) ( ) ( )

( ) ( )

1
11 11 1

1 2

11 1 2 1 1 1
2

2 22

21 1

exp exp

3 exp exp

3 3exp exp

n n

n n
n

n n
n n

B B C Dt U t U t B C Dt

U t U t U t U t mC Dt B C Dt
U t U t tU t

BCm mDt B C Dt
t t

α
α α

η

α

−
−− −+ +

−
− −

−
− −

   − + − + + −     =
′ ′

 − + − − + −   

 − − + − + 

         (49) 

 

 
Figure 5. This figure shows variation of gravitational constant with respect to 
cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2, 1, 1α β= = .                 
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Figure 6. This figure shows variation of bulk viscous stress with respect to 
cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2, 1, 1α β= = , 
and 1 1K = .                                                           

 

 
Figure 7. This figure shows variation of bulk viscosity coefficient with respect 
to cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2, 1α = .            

 
From Figure 7 one can see that bulk viscosity coefficient is decreasing with time. 

3.2.2. Sub Caese (ii). Evaluation of Bulk Viscosity in Full Causal Theory 
It has already been mentioned that for full causal theory 1ε =  and hence Equation (13) reduces to  

3 3 .
2

TH H
T

τ τ ητ η
τ η

 Π
Π + Π = − − − − − 

 





                           (50) 

On the basis of Gibb’s inerrability condition, Maartens [40] has suggested the equation of state for tempera-
ture as 

dexp ,pT
pρ

∝
+∫                                    (51) 

which with the help of Equation (21) gives 
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( )1 1
0 1 .T T B

α
α αρ− + + = −                                  (52) 

Figure 8 shows that temperature is decreasing with evolution of the universe. 
using Equations (21), (42), (48) and (52) in Equation (50) one can obtain 

1 2 1 22 2
,

2n n

m m m m T
Tt t

η η ρη
ρ ρ ρ

 + +Π
Π + Π = − − − − 

 





  

which on simplification yields the expression for bulk viscosity as  

( ) ( ) ( ) ( )

( )( )
( )
( )

( ) ( ) ( )
( )( )

1
11 11 1

1 2

1
1

1 1
2

exp exp

3 1 exp3 13
exp exp

n n

n

n nn n n

B B C Dt U t U t B C Dt

mC DtU t mm B
U tt tB C Dt t B C Dt

α
α α

η
αα

ρ

−
−− −+ +

−

− −

   − + − + + −     =
   + −+Π    + + − +
   + − + −   



     (53) 

where 

( )
( )

( ) ( )
( )

( )
( ) ( ) ( )

( ) ( )

11 1 2 1 1 1
2

2 22

21 1

3 exp exp

3 exp exp

n n
n

n n
n

U t U t U t U t mC Dt B C Dt
U t U t tU t

BCm Dt B C Dt
t

ρ

α

−
− −

−
− −

′ ′Π  = − + − − + −   

 − − + − 



 

Figure 9 shows that bulk viscosity coefficient decreasing with evolution of universe. 

4. Conclusion 
In this paper, we have studied bulk viscous Bianchi type V space-time geometry with generalized Chaplygin 
gas and varying gravitational and cosmological constants. We have obtained a new set of exact solutions of  

Einstein’s equations by considering 1 2

1 2
n

R R m
R R t

= =
 

. For n > 1, the deceleration parameter q < 0 for ( )
1

1 nt n m −> .  

When 1n →  considering present day limit for deceleration parameter 0.17
0.130.53q +
−= −  [40] suggests

1.56 2.94m≤ ≤ . It is observed that in case I energy density, bulk viscosity and cosmological constant decrease 
where as gravitational constant G(t) is increasing with time. In case II, bulk viscosity η , bulk viscous stress Π  
and temperature T decrease with evolution of the universe which agrees with cosmic observations. In order to  
 

 
Figure 8. This figure shows variation of temparature with respect to 
cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2 and 1α = .                
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Figure 9. This figure shows variation of bulk viscosity coefficient with 
respect to cosmic time t. Here we consider B = 1, C = 1, n = 1.5, m = 2, 

1α = .                                                         
 
have clear idea of variation in behavior of cosmological parameters, relevant graphs have been plotted; all  
graphs are in fair agreement with cosmological observations. 
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