
International Journal of Astronomy and Astrophysics, 2015, 5, 155-165 
Published Online September 2015 in SciRes. http://www.scirp.org/journal/ijaa 
http://dx.doi.org/10.4236/ijaa.2015.53020   

How to cite this paper: Singh, J. and Taura, J.J. (2015) Collinear Libration Points in the Photogravitational CR3BP with Zonal 
Harmonics and Potential from a Belt. International Journal of Astronomy and Astrophysics, 5, 155-165.  
http://dx.doi.org/10.4236/ijaa.2015.53020  

 
 

Collinear Libration Points in the  
Photogravitational CR3BP with Zonal  
Harmonics and Potential from a Belt 
Jagadish Singh1, Joel John Taura2 
1Department of Mathematics, Faculty of Science, Ahmadu Bello University, Zaria, Nigeria 
2Department of Mathematics and Computer Science, Federal University, Kashere, Nigeria 
Email: jgds2004@yahoo.com, taurajj@yahoo.com 
 
Received 29 April 2015; accepted 6 September 2015; published 9 September 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We have studied a reformed type of the classic restricted three-body problem where the bigger 
primary is radiating and the smaller primary is oblate; and they are encompassed by a homoge-
neous circular cluster of material points centered at the mass center of the system (belt). In this 
dynamical model, we have derived the equations that govern the motion of the infinitesimal mass 
under the effects of oblateness up to the zonal harmonics J4 of the smaller primary, radiation of 
the bigger primary and the gravitational potential generated by the belt. Numerically, we have 
found that, in addition to the three collinear libration points Li (i = 1, 2, 3) in the classic restricted 
three-body problem, there appear four more collinear points Lni (i = 1, 2, 3, 4). Ln1 and Ln2 result 
due to the potential from the belt, while Ln3 and Ln4 are consequences of the oblateness up to the 
zonal harmonics J4 of the smaller primary. Owing to the mutual effect of all the perturbations, L1 
and L3 come nearer to the primaries while Ln3 advances away from the primaries; and L2 and Ln1 
tend towards the smaller primary whereas Ln2 and Ln4 draw closer to the bigger primary. The col-
linear libration points Li (i = 1, 2, 3) and Ln2 are linearly unstable whereas the Ln1, Ln3 and Ln4 are 
linearly stable. A practical application of this model could be the study of motion of a dust particle 
near a radiating star and an oblate body surrounded by a belt. 
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1. Introduction 
In celestial mechanics, one amidst various inspiring subject is the restricted three-body problem (R3BP). The 
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problem entails three bodies: two primary bodies having finite masses moving under their mutual gravitational 
attraction and the third with a negligible-mass (infinitesimal) body, whose motion is influenced by the primaries. 
If the primaries move on circular orbits about their common centre of mass, it is termed as the circular R3BP 
(CR3BP). Then, the objective of this CR3BP is to determine the motion of the infinitesimal mass. [1] and [2] 
gave a detailed description of the solution of the CR3BP. They showed that if the primary bodies were fixed in a 
rotating coordinate system, five libration points existed. That is the points where the infinitesimal mass can re-
main permanent, if placed there with zero velocity. Three of the points 1 2 3, ,L L L  are on the line linking the 
primaries, whereas the other two 4 5,L L  are in equilateral triangular alignment with the primaries. The colli-
near points 1 2 3, ,L L L  are linearly unstable, while the triangular points 4 5,L L  are linearly stable for the mass 
ratio of the primaries less than 0.03852. 

Researches on the sites and stability of the libration points of the CR3BP with perturbations have achieved 
ample attention in recent times. [3] indicated that small particles were equally influenced by the gravitation and 
light radiation force as they moved toward luminous celestial bodies. [4] [5] established that the presence of di-
rect solar radiation pressure caused a variation in the sites of the libration points of the CR3BP. He called the 
CR3BP, photogravitational when one or both of the masses of the primaries were discharges of radiation. Re-
searchers [6]-[10] have examined the existence of libration points and their linear stability in the photogravita-
tional CR3BP. 

[11] [12] studied a modified CR3BP by considering the influence from a belt (circular cluster of material 
points) for planetary systems and found that the likelihood to get libration points around the inner part of the belt 
was greater than the one nigh the outer part. The impact of the belt makes the configuration of the dynamical 
system altered such that new libration points emerge under certain condition [13]-[16]. 

The primaries in CR3BP are generally considered to be spherical in shape, whereas in real situations, numer-
ous celestial bodies are non-spherical (e.g. the Earth, Jupiter, Saturn, Regulus stars are oblate). The oblateness of 
the planets causes large deviations from a two-body orbit. The most salient instance of disturbance due to ob-
lateness in the solar system is the orbit of the fifth satellite of Jupiter, Amalthea. This planet is extremely oblate 
and the satellite’s orbit is exceptionally small that its line of apsides progresses approximately 900˚ in one year 
[17]. This vindicates the incorporation of oblateness of the primaries in the study of CR3BP [18]-[25]. 

The orbital effects of the oblateness up to the quadrupole, i.e. J2, and the octupole, i.e. J4, on the orbital mo-
tion of a particle in the field of a non-spherical body have been worked out in the general case of an arbitrarily 
oriented spin axis [26]. [22] certified that the sites of the triangular libration points and their linear stability were 
influenced by the oblateness up to J4 of the bigger primary in the CR3BP. [27] examined the effects of photo-
gravitational force and oblateness in the perturbed restricted three-body problem. [15] analyzed analytically and 
numerically the effects of oblateness up to J2 of the smaller primary and gravitational potential from the belt on 
the linear stability of libration points in the photogravitational CR3BP. [16] explored the combined effect of 
radiation and oblateness up to J2 of both primaries, together with additional gravitational potential from the cir-
cumbinary belt on the motion of an infinitesimal body in the binary stellar systems within the frame work of 
CR3BP. [9] studied the effects of oblateness up to J4 of the smaller primary and gravitational potential from a 
belt, on the linear stability of triangular libration points in the photogravitational CR3BP. [24] looked at the ef-
fects of oblateness of both primaries up to zonal harmonic J4 and gravitational potential from the belt on the li-
near stability of the triangular libration points in the CR3BP. 

Here, our intention is to look into the resultant effect of radiation of the bigger primary, oblateness up to the 
zonal harmonic J4 of the smaller primary and gravitational potential from the belt on the sites and stability of 
collinear libration points in the CR3BP. 

The manuscript is structured in five units. Unit 2 deals with the mathematical formulation of the problem, 
while Unit 3 is dedicated to the determination of the sites of the collinear libration points. The linear stability of 
collinear points and the conclusion are presented in Units 4 and 5 respectively.  

2. Mathematical Formulation of Model 
2.1. The Problem  
Let 1m  and 2m  be the masses of the primaries with 1 2m m> , and let m  be the mass of the infinitesimal 
body moving in the plane of motion of the primaries. The positions of the primaries are defined with respect to a 
rotating coordinate frame oxyz whose x-axis overlaps with the line connecting them and whose origin coincides 
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with the center of mass of 1m  and 2m . The y-axis is perpendicular to the x-axis and the z-axis is normal to the 
orbital plane of the primaries. Let r1 be the distance between m and m1, r2 the distance between m and m2; and R 
the distance between 1m  and 2m . The coordinates of m1, m2 and m are (x1, 0), (x2, 0) and (x, y) corresponding-
ly. Our aim is to find the equations of motion of m  under the influence of radiation of 1m , oblateness up to J4 
of the smaller primary, and a circumbinary belt centred at the origin of the coordinate system oxyz (see Figure 
1). 

2.2. The Kinetic Energy 
The kinetic energy (K.E) of the infinitesimal body in the barycentric coordinate system oxyz rotating about 
z-axis with uniform angular velocity n  Figure 1, is given as 

( ) ( ) ( )2 2 2 2 21 1 ,
2 2

K m x y mn xy xy mn x y= + + − + +                         (1) 

where over dot represents differentiation with respect to time t. 

2.3. Force Due to Radiation Pressure 
Now, since the radiation pressure force pF  varies with distance by the same law as the gravitational attraction 
force gF  and works opposite to it, it is likely that this force will lead to a decrease of the effective mass of the 
bigger primary. Furthermore this decrease relies on the properties of the particle; it is therefore tolerable to talk 
about a reduced mass. Hence, the consequential force on the particle is [4] 

1 ;p
g p g g

g

F
F F F F qF

F
 

= − = − =  
 

                            (2) 

where 1 p

g

F
q

F
 

= −  
 

, a constant for a particular particle, is the mass reduction factor. We represent the radiation 

factor for the bigger primary as 1 11q p= − , 1

1

10 1.p

g

F
p

F
< = 

 

2.4. Potential Due to an Oblate Body 
In free space the gravitational potential exterior to an oblate body with its mass distributed symmetrically about 
its equator, can be expanded in terms of Legendre polynomials in the form 

( ) ( )
2

2 2
1

, , 1 cos
n

o o
o o n n

no o

Gm R
V r J P

r r
φ θ θ

∞

=

  
 = − −  
   

∑                        (3) 

 

 
Figure 1. The planar configuration of the problem. 
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[28]. Equation (3) is expressed in standard spherical coordinates, with f the longitude and q representing the an-
gle between the body’s symmetry axis and the vector to a particle ro (i.e., the colatitudes). Ro is the mean radius 
of the oblate body. The terms ( )2 cosnP θ  are the Legendre polynomials, given by  

( )
( ) ( )

2 22
2 2 2

1 d 1
2 2 ! d

n n

n n nP x x
n x

= −                          (4) 

J2n are dimensionless coefficients that characterize the size of non spherical components of the potential, 
called the zonal harmonic coefficients. Since the present study is concerned with planar problem, assuming the 
equatorial plane of the smaller primary coincides with the plane of motion, then with 90θ = ° , Equation (3) be-
comes 

( )
2 4 6

2 4 6
3 5 7

3 51, ,
2 8 16

o o o
o o o

o o o o

J R J R J R
V r Gm

r r r r
φ θ

 
= − + − + + 

 
                   (5) 

We denote the oblateness coefficient for the smaller primary as Bi, 2
2 00 1, 1,2i

i iB J R i< = = .  

2.5. Potential Due to the Belt 
The gravitational potential from belt (circular cluster of material points) centered at the origin of a coordinates 
system oxyz, Figure 1 as specified by [29] is 

( )
( )2

2 2 2

, ,b
b

M
V r z

r a z b
= −

+ + +
                           (6) 

where bM  is the total mass of the belt, 2 2 2r x y= + , a  and b  are parameters which determine the density 
profile of the belt. The parameter a controls the flatness of the profile and is known as the flatness parameter. 
The parameter b controls the size of the core of the density profile and is called the core parameter. When a = b 
= 0, the potential reduces to the one by a point mass. Restricting ourselves to the xy -plane, Equation (6) be-
comes 

( )
( )1 22 2

,0 , where .b
b

M
V r T a b

r T
= = +

+
                         (7) 

2.6. The Potential Energy of the Infinitesimal Body 
The potential energy of the infinitesimal body, under the influence of the oblateness up to J4 of smaller primary, 
radiation of the bigger primary and the circumbinary belt, now takes the form 

( )
1 1 2

1 2 3 5 1 22 21 2 2 2

31 ,
2 8

bMq B BV Gm m m
r r r r r T

   = − + + − +  
  +  

                    (8) 

with ( )22 2
1 1 ,r x x y= − +  ( )22 2

2 2 ,r x x y= − +  G is the gravitational constant.  

2.7. The Equations of Motion 
We start from Lagrangian (L) of the problem which is the kinetic energy minus the potential energy of the infi-
nitesimal body. That is 

( ) ( ) ( )2 2 2 2 21 1 .
2 2

L m x y mn xy xy mn x y V= + + − + + −     

or 

( ) ( )2 21 ,
2

L m x y mn xy xy U= + + − −                               (9) 
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where ( )2 2 21 .
2

U V mn x y= − +  

Subsequently, we obtain the equations of motion of the infinitesimal body as 

12 ,

12 .

Ux ny
m x

Uy nx
m y

∂
− = −

∂

∂
+ = −

∂

 

 

                                 (10) 

To covert the variables to non dimensional, we choose unit for the mass as the sum of the masses of the pri-
maries, the unit of length as the distance between the primaries and unit of time is such that the gravitational  

constant is unit. Consequently, 1 1m µ= − , 2m µ=  where 2

1 2

10
2

m
m m

µ< = ≤
+

 is the mass ratio. Thus, in the  

dimensionless synodic coordinate system, the equations of motion (10) reduce to  

2 , 2 ,x yx ny y nx− = Ω + = Ω                                (11) 

with  

( ) ( )
( )

2 2 2
1 1 2

3 5 1 22 21 2 2 2

1 3
,

2 2 8
b

n x y q MB B
r r r r r T

µ µ µµ+ −
Ω = + + + − +

+
 

( ) ( )2 22 2 2 2
1 2, 1 ,r x y r x yµ µ= + + = + − +                         (12) 

and n is the mean motion, given by [24] as 

( )
2

1 2 3 22 2

23 51 ,
2 4

b c

c

M r
n B B

r T

 = + − + 
  +

                          (13) 

cr  is the radial distance of the infinitesimal body in the classical restricted three-body problem. 

3. Locations of Collinear Libration Points 
We now search for possible collinear libration points of the infinitesimal mass in the rotating reference frame. 
The libration points are positions of gravitational balance between the primaries. At these points the two finite 
masses would exert zero net force on the infinitesimal mass, in effect, allowing the infinitesimal mass to have 
zero velocity in the rotating frame of reference. That is the libration points satisfy 0x y x y= = = =    . It thus 
follows, from Equation (11), that the libration points are the solutions of 

( )( ) ( ) ( ) ( )
( )

1 1 22
3 3 5 7 3 22 2

1 2 2 2

1 1 3 1 15 1
0,

2 8
bx q x x B x B M x

n x
r r r r r T

µ µ µ µ µ µ µ µ− + + − + − + −
− − − + − =

+
   (14) 

and 

( )
( )

12 1 2
3 3 5 7 3 22 2

1 2 2 2

1 3 15
0.

2 8
bq y M yB y B yyn y

r r r r r T

µ µ µµ−
− − − + − =

+
                (15) 

Now, an evident solution of Equation (15) is y = 0, corresponding to the collinear libration points (the libra-
tion points which lie on the x-axis). This deciphers to 

( )( ) ( ) ( ) ( )
( )

1 22
3 3 5 7 3 22 2

1 1 3 1 15 1
0.

1 2 1 8 1
bx x x B x B M x

n x
x x x x x T

µ µ µ µ µ µ µ µ

µ µ µ µ

− + + − + − + −
− − − + − =

+ + − + − + − +
  (16) 
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Equation (16) reduces to those of [1], in the absence of the perturbations. That is when 1 1 21, 0bq B B M= = = = ), 
we have 

( )( ) ( )
3 3

1 1
0,

1

x x
x

x x

µ µ µ µ

µ µ

− + + −
− − =

+ + −
                     (17) 

with three collinear points 1 2,L L  and 3.L  Only the collinear point 2L  is located between the primaries 
(Figure 2). 

If we consider the effects of the potential from the belt only (i.e. 1 2 1 2 0A A B B= = = = ), the Equation (17) 
reduces to 

( )( ) ( )
( )

2
3 3 3 22 2

1 1
0.

1
bx x M x

n x
x x x T

µ µ µ µ

µ µ

− + + −
− − − =

+ + − +
               (18) 

[16] showed that whenever 2T µ<  and  

( )
2

3 3 3 22
2

1 1
2 2 2 0

2
1

2 2 2

b
T T TM

Tn
T T T T

µ µ µ µ

µ µ

     − − + − + − −            − − − − > 
    − + − + − − +     

 in the interval ( ),0 ,µ−  Equation  

(18) will have five collinear points (Figure 3). 
Now, using Equation (16) and with the help of the MATLAB (R2007b) software package, we obtain the 

coordinates of the collinear libration points for different cases as classified in the following order which are por-
trayed in Table 1: 

1) Absence of radiation, oblateness and potential from the belt (classical case). 
2) Radiation of the bigger primary only. 
3) Potential from the belt only. 
4) Oblateness of the smaller primary up to J2 only. 
5) Oblateness of the smaller primary up to J4 only. 
6) Radiation of the bigger primary, oblateness of the smaller primary up to J4 and potential from the belt.  
The combined effect of these perturbations on the collinear points is given in Table 2. 
In the absence of the perturbations (i.e. 1 1 21, 0bq B B M= = = = ) Table 1 Case 1, it is observed that there are 

three collinear libration points (Li, i = 1, 2, 3) which correspond to the classical case of [1]. Owing to the effect of 
the radiation of the bigger primary only (i.e. 1 1 20.98, 0bq B B M= = = = ) Case 2, L1 and L3 stepped closer to the 
primaries while L2 moved towards the bigger primary. Nevertheless, on taking into account the effect of the po-
tential from the belt only (i.e. 1 1 21, 0, 0.01bq B B M= = = = ) Case 3, there surface five collinear libration points 
(Ln1, Ln2 and Li, i = 1, 2, 3), this confirms those of [14]-[16]. The collinear points L1 and L3 shifted nearer to the 
primaries while L2 moved away from the bigger primary, due to the potential from the belt. In the presence of the 
oblateness of the smaller primary up to J2 only (i.e. 1 1 21, 0.01, 0bq B B M= = = = ) Case 4, the collinear point L1 
sifted away from the primaries while L2 and L3 stepped closer to the bigger primary. In Case 5, due oblateness of 
the smaller primary up to J4 only (i.e. 1 1 21, 0.01, 0.005, 0bq B B M= = = = ), Ln1 moved away from the bigger 
primary while Ln2 stepped towards it. Similarly, owing to the oblateness of the smaller primary up to J2 with  
 

 
Figure 2. Disposition of the collinear points in the classical case.                   

 

 
Figure 3. Disposition of the collinear points under the effects of the belt.           

1m 2m

3L µ− 0 2L (1 )µ− 1L

2m
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Table 1. Positions of the collinear points when µ = 0.35, q1 = 0.98, B1 = 0.01, B2 = 0.005 and Mb = T = 0.01, rc = 0.8789.          

Case L1 
L2 

L3 
Ln1 Ln2 

Ln3 Ln4 

1 1.244813
 

0.213295
 

−1.142867
 

    

2 1.243714 0.210813 −1.137286     

3 1.239362 0.224700 −1.137090 −0.000451 −0.038855   

4 1.249564 0.205046 −1.138453     

5 1.235582 0.245494 −1.141267   0.961931
 

0.319350 

6 1.228444 0.259431 −1.129916 −0.000441 −0.039247 0.962537 0.314837 

 
Table 2. Combined effects of the perturbations on the collinear points when m = 0.35, T = 0.01, rc = 0.8789.                

q1 B1 B2 Mb L1 
L2 

L3 
Ln1 Ln2 

Ln3 Ln4 

1 0 0 0 1.24481 0.21329
 

−1.14287
 

− − − − 

0.99 0.001 0.0005 0.01 1.23795 0.22579 −1.13420 −0.000445 −0.03905 0.82421 0.47525 

0.98 0.002 0.0006 0.02 1.23240 0.23420 −1.12557 −0.000219 −0.05365 0.83068 0.46863 

0.97 0.003 0.0007 0.03 1.22707 0.24145 −1.11719 −0.000144 −0.06391 0.83634 0.46280 

0.96 0.004 0.0008 0.04 1.22194 0.24787 −1.10906 −0.000107 −0.07207 0.84138 0.45758 

 
potential from the belt only (i.e. 1 2 2 10, 0.01bA A B B M= = = = = ) Case 5, collinear points L1 and L3 moved 
nigh to the primaries while L2 stepped away from the bigger primary; and there emerge additional two new colli-
near points Ln3, Ln4. In the presence of all these perturbations (i.e. 1 1 20.98, 0.01, 0.005bq B M B= = = = ) Case 6, 
there appeared seven collinear points: L1, L2, L3, Ln1, Ln2, Ln3, Ln4 as shown in Figure 4. With increase in these 
perturbations Table 2, the collinear points L1, L3 draw closer to the primaries while Ln3 moves away from the 
them; L2, Ln1 move away from the bigger primary while Ln2, Ln4 tend towards it. 

4. Linear Stability of the Collinear Points 
To study the stability of a libration point (x0, y0), we employ small displacement ,η ξ  to the coordinates (x0, y0). 
So, the variations η  and ξ  can take the form: 0x xη = −  and 0y yξ = −  and the equations of the motion 
(5) become  

( ) ( )
( ) ( )

0 0

0 0

2 ,

2 .

xx xy

yx yy

n

n

η ξ η ξ

ξ η η ξ

− = Ω + Ω

+ = Ω + Ω









                          (19)  

The superscript “0” indicates that the partial derivatives have been evaluated at the libration point under con-
sideration (x0, y0). 

Let solutions of the equations of (19) be ( )expA tη λ= , ( )expB tξ λ=  where 𝐴𝐴, 𝐵𝐵 and 𝜆𝜆 are constants. 
Then, Equation (19) will have a non –trivial solution for A and B when 

2 0 0

0 2 0

2
0.

2
xx xy

yx yy

n
n
λ λ
λ λ
−Ω − −Ω

=
−Ω −Ω

                           (20) 

On expanding the determinant we obtain the characteristic equation equivalent to the variational equations of 
(19) as 

( ) ( )24 2 0 0 2 0 0 04 0xx yy xx yy xynλ λ+ −Ω −Ω +Ω Ω − Ω =                  (21). 

Now, we obtain the second partial derivatives as: 
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Figure 4. Disposition of the collinear points under the combined effects of the 
perturbations.                                                       
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r

µ µ µ µ µ µ µµµ

µ µµ

µ µ µ µµ µ

µ µ

− − + + − + −
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+ −
+ − − +
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− −
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( )
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2
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2
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2

3
,

8
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2
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.

8

b b

xy yx

b

M M yy B
r r T r T

x q y x y x yB
r r r

x yB M xy
r r T

µ µ µ µ µ µ

µ µ

− +
+ +

− + + − + −
Ω = Ω = + +

+ −
− +

+

     (22) 

The partial derivatives computed at any collinear libration points (x0, 0), are 

( )
( ) ( )

2
10 2 01 2

3 3 5 7 5 2 3 22 2 2 2
0 0 0 0 0 0

2 1 36 452 ,
1 1 4 1

b b
xx

q M x MB Bn
x x x x x T x T

µ µ µµ
µ µ µ µ

−
Ω = + + + − + −

+ + − + − + − + +
    (23) 

( )
( )

10 2 1 2
3 3 5 7 3 22 2

0 0 0 0 0

1 3 15
,

1 2 1 8 1
b

yy

q MB Bn
x x x x x T

µ µ µµ
µ µ µ µ

−
Ω = − − − + −

+ + − + − + − +
         (24) 

0 0 0.xy yxΩ = Ω =                                    (25) 

Substituting these values in Equation (21), the characteristic equation reduces to  
4 2 0b cλ λ+ + =                                   (26) 

where 2 0 04 xx yyb n= −Ω −Ω , 0 0 .xx yyc = Ω Ω  
The libration point is stable if all the roots of the characteristic equation (26) are either negative real numbers 

or distinct pure imaginary numbers or real parts of the complex numbers are negative. 
The roots of the characteristic equation (26) for the libration points Li (i = 1, 2, 3), Lnj (j = 1, 2, 3, 4) of Table 

1 are presented in Tables 3-9 correspondingly. 
Studying Tables 3-9, we find that all the collinear libration points Li (i = 1, 2, 3) and Ln2 are unstable (Table 3, 

Table 4, Table 5, Table 7), whereas the additional new collinear points Ln1, Ln3 and Ln4 are stable (Table 6, Ta-
ble 8, Table 9). 

5. Conclusion  
The collinear libration points are investigated in a modified CR3BP when the bigger primary is a source of 
radiation, the smaller primary is an oblate spheroid; and the bodies are surrounded by a belt (circular cluster of 
material points). We have established the equations that govern the motion of the infinitesimal body under the  

1m 2m

3L 0.35− 2nL 1nL 0 2L 4nL 0.65 3nL 1L
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Table 3. Stability of L1.                                                                                     

Case L1 0
xxΩ  0

yyΩ  1,2λ  3,4λ  Remark 

1 1.244813
 

4.6468 −0.8234 ±1.3674 ±1.4305i Unstable 

2 1.243714 4.6595 −0.8297 ±1.3722 ±1.4329i Unstable 

3 1.239362 4.7796 −0.8510 ±1.3897 ±1.4512i Unstable 

4 1.249564 4.8515 −0.8355 ±1.4112 ±1.4267i Unstable 

5 1.235582 4.2890 −0.8377 ±1.2772 ±1.4841i Unstable 

6 1.228444 4.3987 −0.8739 ±1.2973 ±1.5113i Unstable 

 
Table 4. Stability of L2.                                                                                     

Case L2 
0
xxΩ  0

yyΩ  1,2λ  3,4λ  Remark 

1 0.213295
 

16.6783 −6.8391 ±3.7405 ±2.8552i Unstable 

2 0.210813 16.4862 −6.7431 ±3.7147 ±2.8383i Unstable 

3 0.224700 18.7266 −7.8271 ±3.9966 ±3.0293i Unstable 

4 0.205046 17.7676 −7.0603 ±3.8738 ±2.8912i Unstable 

5 0.245494 8.5669 −5.9936 ±2.5451 ±2.8155i Unstable 

6 0.259431 7.6595 −6.4396 ±2.3914 ±2.9368i Unstable 

 
Table 5. Stability of L3.                                                                                     

Case L3 
0
xxΩ  0

yyΩ  1,2λ  3,4λ  Remark 

1 −1.142867
 

3.7297 −0.3648 ±0.9441 ±1.2355i Unstable 

2 −1.137286 3.7334 −0.3667 ±0.9463 ±1.2364i Unstable 

3 −1.137090 3.8282 −0.3753 ±0.9574 ±1.2519i Unstable 

4 −1.138453 3.7908 −0.3726 ±0.9540 ±1.2458i Unstable 

5 −1.141267 3.7523 −0.3675 ±0.9476 ±1.2392i Unstable 

6 −1.129916 3.8558 −0.3805 ±0.9638 ±1.2568i Unstable 

 
Table 6. Stability of Ln1.                                                                                     

Case Ln1 0
xxΩ  0

yyΩ  1,2λ  3,4λ  Remark 

3 −0.000451 −9874.8 −9985.0 ±98.6059i ±100.7019i Stable 

6 −0.000441 −9879.7 −9986.0 ±98.6019i ±100.7356i Stable 

 
Table 7. Stability of Ln2.                                                                                     

Case Ln2 0
xxΩ  0

yyΩ  1,2λ  3,4λ  Remark 

3 −0.038855 327.1441 −176.4617 ±18.0135 ±13.3382i Unstable 

6 −0.039247 319.0101 −171.7775 ±17.7859 ±13.1617i Unstable 

 
Table 8. Stability of Ln3.                                                                                     

Case Ln3 0
xxΩ  0

yyΩ  1,2λ  3,4λ  Remark 

5 0.961931
 

−36.7586 −1.1726 ±1.0266i ±6.3953i Stable 

6 0.962537 −36.0006 −1.2218 ±1.0453i ±6.3447i Stable 
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Table 9. Stability of Ln4.                                                                                     

Case Ln2 0
xxΩ  0

yyΩ  1,2λ  3,4λ  Remark 

5 0.319350 −15.5449 −4.5783 ±1.8538i ±4.5507i Stable 

6 0.314837 −11.8748 −5.0872 ±1.8490i ±4.2035i Stable 

 
influence of radiation of the bigger primary, oblateness up to the zonal harmonics J4 of the smaller primary and 
gravitational potential from the belt. The equations are affected by the aforementioned perturbations. Numeri-
cally, we have determined the positions of the collinear libration points and investigated the resultant effect of 
the aforesaid perturbations on them. It is found that in count to the three libration points L1, L2, L3 in the classical 
problem, there emerge four new collinear points which we call Ln1, Ln2, Ln3 and Ln4. Ln1 and Ln2 arise from the 
effect of the potential from the belt, whereas Ln3 and Ln4 stem from the influence of the oblateness up to the zon-
al harmonics J4 of the smaller primary. Due to the pooled impact of the aforesaid perturbations, the collinear 
points L1 and L3 advance toward the primaries while Ln3 moves away from the primaries; and L2 and Ln1 tend 
towards the smaller primary as Ln2 and Ln4 come closer to the bigger primary. Despite the influence of radiation 
of the bigger primary, oblateness up to the zonal harmonics J4 of the smaller primary and gravitational potential 
from the belt, the collinear libration points Li (i = 1, 2, 3) as in the classical case, remain unstable. However, all 
the additional new collinear points are stable except Ln2. The existence of stable new collinear points can be uti-
lized as stations for artificial satellites. 
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