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Abstract 
In the present paper, an efficient algorithm based on the continued fractions theory was estab-
lished for the universal Y’s functions of space dynamics. The algorithm is valid for any conic mo-
tion (elliptic, parabolic or hyperbolic). 
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1. Introduction 
Today, one of the well-known facts of space dynamics is the desperate needs of the universal formulations of 
orbital motion. This is because, in complete interplanetary transfer, all types of the two body motion (elliptic, 
parabolic, or hyperbolic) appear, moreover, the given type of an orbit is occasionally changed by perturbing 
forces acting during finite interval of time. Thus far, we have been obliged to use different functional represen-
tations for motion depending upon the energy state (elliptic, parabolic, or hyperbolic) and a simulation code 
must then contain branching to handle a switch from one state to another. In cases where this switching is not 
smooth, branching can occur many times during a single integration time-step causing some numerical “chatter”. 
Consequently, through the use of the universal formulations, orbit predictions will be free of the troubles, since a 
single functional representation suffices to describe all possible states.  

Recently Sharaf and Saad [1] (hereafter will be referred to as Paper I) established new set of the universal 
functions (Y-functions) for the two-body initial value problem. Due to the importance of accurate universal 
orbital predications using the Y-functions, an efficient algorithm based on the continued fractions theory was 
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established for these functions. 

2. The Universal Y’s Functions  

The universal Y’s functions are given by: 
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where χ  is to be considered, as a new independent variable—a kind of generalized anomaly, α  is just the 
inverse of the semi-major axis a given as: 
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µ  is the gravitational parameter, finally, r and v are the magnitudes of the position and velocity vectors respec-
tively. 

What concerns us among the properties of the Y’s functions given in Paper I are: 
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Figure 1 and Figure 2 show the three dimension visualizations of 1 2&Y Y  with 1, 2π 1.5πµ χ= − ≤ ≤  and
3 3α− ≤ ≤ . 

3. Continued Fraction Method 
In fact, continued fraction expansions are generally far more efficient tools for evaluating the classical functions  
 

 
Figure 1. Visualization of Y1 function in three-dimensional space.       
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Figure 2. Visualization of Y2 function in three-dimensional space.     

 
than the more familiar infinite power series. Their convergence is typically faster and more extensive than the 
series. 

Top-Down Continued Fraction Evaluation 
There are several methods available for the evaluation of continued fraction. Traditionally, either the fraction 
was computed from the bottom up, or the numerator and denominator of the nth convergent were accumulated 
separately with three-term recurrence formulae. The drawback of the first method is obviously, having to decide 
far down the fraction to being in order to ensure convergence. The drawback to the second method is that the 
numerator and denominator rapidly overflow numerically even though their ratio tends to a well-defined limit. 
Thus, it is clear that an algorithm that works from top down while avoiding numerical difficulties would be ideal 
from a programming standpoint.  

Gautschi [2] proposed very concise algorithm to evaluate continued fraction from the top down and may be 
summarized as follows. If the continued fraction is written as 

1

2
1

3
2

3

,
nc

nd nd
d

=
+

+
+

 

then initialize the following parameters 
1 1 1 1 1 1 11, ,a b n d c n d= = =  

and iterate ( )1,2,k =   according to: 
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In the limit, the c sequence converges to the value of the continued fraction. Continued fraction method was 
used in many problems in astrophysics [3] [4] as well as in special functions of astrodynamics [5] [6]. 

4. Evaluation of the Y’s Functions 
In the following, we shall consider the evaluations of the four functions ( ); ; 0,1, 2,3jY jχ α =  only, because 
these four functions appear in the orbital motion when treated by the Y’s functions (see Paper I) , on the other 



M. A. Sharaf et al. 
 

 
18 

hand, the functions ( ); ; 4iY iχ α ≥  could be obtained from ( ); ; 0,1, 2,3jY jχ α =  by using the recurrence rela-
tion (3.2) for 0α ≠  and directly from Equation (3.1) if 0.α =  

4.1. Expression of    
   
   

u Y Y1 0
1 1; ;
2 2

= χ α χ α  as Continued Fractions 

From the expressions of tanx and tanh x  as continued fractions [7] for any α  we can show that, 
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4.2. Computational Algorithm 
Input: , ,α µ χ  
Output ( ); ; 0,1, 2,3jY jχ α =  
Computational sequence  
1-Compute a’s from  
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2-Compute u from the continued fraction 
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by using Gautschi’s algorithm of Subsection 3.1 
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8-The algorithm is completed.  

4.3. Numerical Applications 
The applications of the above algorithm for the numerical values of 0 1 2 3, ,  and Y Y Y Y , 1µ =  and for some val-
ues of  and α χ , are listed in Table 1. 
 
Table 1. Numerical values of Y0,1,2,3, μ = 1 for some values of α and χ.                                              

No α χ Y0 Y1 Y2 Y3 

1 −3 −3.14159 115.384 −66.6147 38.1282 −21.1577 
2 −2 −2.14159 10.359 −7.29074 4.67952 −2.57457 
3 −1 −1.14159 1.72553 −1.40622 0.725531 −0.264628 
4 0 −0.141593 1.00000 −0.141593 0.0100242 −0.0004731 
5 1 0.858407 0.653644 0.756802 0.346356 0.1016050 
6 2 1.85841 −0.871076 0.347294 0.935538 0.7555560 
7 3 2.85841 0.236263 −0.561005 0.254579 1.198000 
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The more accurate calculation of ( ); ; 0,1, 2,3jY jχ α = , the more accurate orbit determination. That is be-
cause the universal Kepler’s equation is expressed in terms of Y’s functions [1]. Thus efficient tools used for 
evaluating Y’s functions have contributions in well describing the two-body initial value problem.  

5. Conclusion 
In concluding the present paper, an efficient algorithm based on the continued fractions theory was established 
for the recent universal Y’s functions of space dynamics. The algorithm is valid for any conic motion (elliptic, 
parabolic or hyperbolic). 
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