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Abstract

A new set of relative orbit elements (ROEs) is used to derive a new elliptical formation flying
model in previous work. In-plane and out-of-plane relative motions can be completely decoupled,
which benefits elliptical formation design. In order to study the elliptical control strategy and
perturbation effects, it is necessary to derive the inverse transformation of the relative state tran-
sition matrix based on relative orbit elements. Poisson bracket theory is used to obtain the linear
transformations between the two representations: the relative orbit elements and the geocentric
orbital frame. In this paper, the details of these transformations are presented.

Keywords

Relative Orbit Elements, Elliptical Formation Flying, Relative State Transition Matrix, Inverse
Transformation, Poisson Bracket

1. Introduction

In previous papers, an alternative method to study the dynamics of elliptical formation flying based on a new set
of relative orbit elements was presented. The new relative orbit elements are very useful to obtain the geometric
characteristics of relative motion. The principle of the method is simple. To make the ROE-based method more
understandable, it is necessary to derive the transformations between the two representations: the relative orbit
elements and the geocentric orbital frame.

Historically, the first article that presented these transformations was [1], but the author did not use them for
relative motion. Other transformations were used by Garrison et al. [2] to obtain the equations of the relative
motion for an elliptical reference orbit. Alfriend proposed another way to obtain the transformations and intro-
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duced another set of orbital elements in Reference [3]. Using Alfriend’s method, also called geometric method,
Gim [4] introduced J2 perturbations and Sengupta introduced second order effects [5]. This solution has none of
the drawbacks of Hill and Lawden equations. It can take into account second order effects, eccentric reference
orbit, and perturbations. This solution is very well-adapted for control and navigation. Fontdecaba [6] used the
Poisson brackets [7] to have transformations between the two representations: the difference of orbital elements
and the local orbital frame.

Using the spherical geometry, Han’s relative orbit elements are strictly defined through the employment of a
projection rule [8]. A new elliptical relative motion model with no singularity problem based on the relative or-
bit elements is derived [9] [10]. Although the relative orbit elements are derived very differently from the dif-
ferences of orbital elements, the transformation between the two methods can also be obtained. In order to ana-
lyze the perturbation effects and the control strategy, the inverse transformation of relative state transition matrix
is greatly needed. Poisson brackets method is used to derive the inverse transformation in this paper.

The structure of the paper is as follows. The first section is the introduction. The second section will briefly
introduce the new set of relative orbit elements, which are relative average drift rate, relative eccentricity vector,
relative inclination vector, and difference of mean argument of latitude. The transformation between the relative
orbit elements and the difference of orbital elements is given. Then the elliptical relative motion model based on
the improved ROE theory is derived. The inverse transformation of the relative state transition matrix is ob-
tained to analyze the perturbation effects and control strategy in the third section. The end is the conclusion.

2. Relative Motion Equations
2.1. Related Coordinate Systems

1) F, is spacecraft-centered local vertical local horizontal coordinate system, with z-axis pointing to
Earth’s center, x-axis perpendicular to z -axis in the direction of the instantaneous velocity and y -axis per-
pendicular to the orbit plane.

2) F, is Earth-centered node coordinate system, with x-axis pointing toward ascending node, z -axis in
the direction of the moment of orbit motion, and y -axis completing the right-hand rule in the orbit plane.

3) F, isgeocentric orbital coordinate system, with x-axis pointing to spacecraft, z -axis in the direction of
the moment of orbit motion, and 'y -axis completing the right-hand rule in the orbit plane.

4) F, is Earth-centered inertial coordinate system, with x-axis pointing to the vernal equinox, z -axis
fixed at celestial pole, and y -axis completing the right-hand rule in the equatorial plane.

2.2. Definition of Relative Orbit Elements

As introduced in the classical Keplerian orbits, the movement of a satellite is mathematically described by six
quantities, called orbital elements, which are semi-major axis, a, eccentricity, e, inclination, i, right ascen-
sion of ascending node, Q, argument of perigee, «, and mean anomaly, As . For the relative motion between
two close satellites, which means Ar/a, <1, Ar is the relative distance, some simplifications can be made.
Through first-order linear expansion, the relative orbit elements can be expressed as [8]

Ae, = e,C0S®, —€,C0Sm, — & ;Sinm AQCOosi,

Ae, = esine, —e.sinaw, +€,c0sm AQCOSi,

Aiy, =(Q, - )sini; 1)

Al =iy~

AM' = (@, —a,)+(M; =M, ) +(Q, —Q, )cosi,

where n, is the mean motion of the satellite, n, a/y/af . u 1s gravitational coefficient. In this paper, the

quantities referred to the chief satellite are denoted by ()0 , and those related to the deputy satellite by ()l The
subscript * means the subscript 0 or 1. These 6 parameters in Equation (1) can be described as relative aver-
age drift rate D, relative eccentricity vector Ae =(Ae,,Ae, ), relative inclination vector Ai :(Aix,Aiy), and
difference of mean argument of latitude AM'. They are also called the relative orbit elements of the deputy sa-
tellite with respect to the chief satellite.

Equation (1) can be written as following
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[ D | —% 0 O 0 0 O0f Aa]
a8, 0 cosw O —ecosisine —esine 0O A(.e
A?y _| 0 sine 0 ecosicosw ecosw O O ¥}
Al 0 0 0  sini 0 0| A%
Ayllo 0 4 0 0o of 2
LAM'] | 0 0 0 cosi 1 1] LAM ]

The orbital elements in Equation (2) are all referred to the orbital elements of the chief satellite. In the re-
mainder of the paper, the subscript 0 will be omitted unless declared. Let

)
ROE=[D Ae, Ae, A, Ai, AMT, AOE=[aa Ae Ai AQ Ao aM], ®=oC
S OAOET

then Equation (2) can be written as
ROE = ®AOE 3)
Seen from Equation (3), the transformation between the relative orbit elements and the difference of orbital
elements can be obtained.
2.3. Relative Motion Equations

Seen from Figure 1, using the method of coordinate transfer and one—order linear expansion, the linear ROE-
based relative motion equations expressed in the F, frame of the chief satellite can be easily derived as

X = {1+ (gj 1—1e2 }a(AeXsinu — Ae,cosu ) +1-e? (%) aAM'(t)+A,

y= (éj a(Ai,cosu + Aisinu) (4)

. r
z = a(Ae,cosu + Aeysmu)+(5ja3—n+A2

where

Orbit Plane of The
Deputy Satellite

Z Yo

Orbit Plane of The
Chief Satellite

Equatorial Plane

Figure 1. Relative motion relationship of two satellites.
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r [ 1-+v1-e? ay e
Al:(gj [T_e](?j _E a(Aeycosa)—Aexsma))

A, =— als_in_; (eAM '(t)+(\/1— 2 —l)(Aeycosa)—Aexsina)))

where AM'(t)=AM’(t;)+D(t-t,), t, is the epoch time. r is the position vector in F, frame and
r=|r].

Using the first derivative of Equation (4) with respect to time t, the velocity equations of elliptical relative
motion can be expressed as

2 .
v, =anyl-e (aj 1+(Lj (Ae, cosu +Aeysinu) + anz esind (Ae,sinu—Ae,cosu)
a)l-¢e? —e’ \1-¢?
—anesin&( j AM'(t) +avl-e [ajD+%
r dt
esing ©
=anvl- [ j —ALSinu + Ai cosu)+an\/_Z(Aixcosu+Aiysinu)
1-e
= anv1- ( ) (—sinuAe, +cosuAe, ) +an—= esing 2D | dA,
V1-— e 3n dt
. _ a2 2
where 981 _ g SIN0 [ 1=v1ze” (Ej T (Ae,cosm—Aesine),
dt J1-¢? e r) 1l-e
- 2 _ f a2
dﬂ _ aesing D- anesine(ij AM '(t)—li(Aeycosw—Aexsina)) .
dt N r e
Equation (4) and Equation (5) are referred as the elliptical relative motion equations.
3. The Inverse Transformation
3.1. Relative State Transition Matrix
Equation (4) and Equation (5) can be rewritten as the form of state transition matrix as bellow
X(t)=M(®)[D de, de, ai, A, AM']
[ ox ox ox 0 0 ox |
oD OAe, Ohe, OAM’
o o o X X
OAi,  OAi,
oz oz 0z 0 0 oz
oD OAe,  OAe, OAM'
M (t) = v, ov, ov, 0 0 ov, (6)
oD OAe, OAe, OAM’
ov ov
0 0 0 Y ! 0
OAi,  OAi,
aVZ aVZ aVZ O O Z
oD OAe,  Ohe, OAM’

The inverse matrix M~ can be expressed as
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[ @ @ @ o D
OX oz ov, f
OAe, 0 OAe,  OAe, 0 OAe,
X 674 ov, ov,
oAe, 0 ohe,  OAe, oAe,
OX oz ov ov
M= . X . z @)
0 OAI, 0 0 OAI, 0
oy v,
0 OAi, 0 OAl,
oy v,
0AM’ 0 OAM’  O0AM' 0 OAM’
| OX oz ov, o, |
Then the following equations can be obtained
-1
0(D,Ae,, Ae,,Ai,,Ai,,AM’ o(X,Y,2,v,,V,,V,
M= ( Yy Y ) =P ( y : y ) :(I)Bfl(t) (8)
a(x,y,z,vx,vy,vz) 6(Aa,Ae,AI,AQ,Aa),AM)

3.2.Solving B~ (t)

V,,V,,V

1 U Yy ¥y

a(x, ¥,z )
(Aa, Ae, Ai, AQ, Aw, AM)

] , n=+1-¢", s, =sina, c, =cosa, « isan angle chosen at will
t

Let B('[)=[a

and X (t) :[x y z vV, ]T. Lane and Axelrad [11] has given the expressions of B(t) as shown in

Equation (9). The relative state vector X (t) can be changed to X (t)' , which is obtained by coordinate trans-

(X )

= AOE" which can be ex-

formation without considering correlative velocity. Afterwards, let B(t)

pressed in Equation (10).
Combining Equation (9) and Equation (10), the equations shown in Equation (11) can be obtained.

3an(t—t 2 )
_San(t-t)y a[1+i2£jsin9 0 rcosi r an
2r n°a r
0 0 —rsinu rsinicosu 0 0
3n(t-t,)esing i
L % acosd 0 0 0 _aesing ©)
n n
_ 2 3 P02 fei : 3
B(t)= 31n2 (t-t, )esin@—ﬁnq . 1002 ) cos . 280SIn 0 0 aencosising aensind —ensing| &
2r? 0 2r p ) r? 7 n n r2
an an . ... .
0 0 ——(cosu +ecosw) ——sini(sinu+esinw) 0 0
. 2 3 3
nasing zia+zi2 n®(t—t,)ecosd —nsinery(a—zj 0 0 0 —encosa[a—zJ
n r r r’)]
[ 1r). . a’n |
0 all+——|singd 0 rcosi r an
n-a r
0 —rsinu rsinicosu 0 0
r aesing
—— acosd 0 0 0 -
, a - . n (10)
B(t) = na na e+cosé 0 aencosising aensinéd 0
2r noon 7 n
an an . ., . .
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0 0O " o Ay
0 0 Of—nn —nn(—z]cosa 00 0 ensin&[—zJ
r r r
' 0 0O
B(t) -B(t,) = 10 0 0 0 00 0 0 (11)

H 2 2 2 3

0 0 Of|o nsing a_z (p+r) 0 A7 osi N2 np a_3

00 1l n o \r r r r |

where p=a(l-€°).
Poisson brackets of orbital elements are well-known, which can be expressed as followings

2 1-e* . 1 cosi
a,M =—-— E,M =- Lhoj=———F——"F
tam} na te.M} na’e th.of na+/1—e? sini 12
_ a2
o} = "0 {i0)=——
na-e na2 1_e2 sini
Then the Poisson Matrix can be written as
0 0 0 0 0 —i
na
2
0o 0 0 0 7 -
na‘e na‘e
0o o 0 R L
nna® sini. zna“ sini
P= 11 )
0 0 ——— 0 0 0
nna’ sini
o -1 L, 0 0
na‘e  pna“ sini
2
2z 0 0 0 0
Lna na‘e _
0 I, _ _ .
Let S= Lol accordingto B'! = PB'"S™?, the expression of B’-! can be obtained as
'3
— Z - 7
0 0 —Z(Ej 2na 0 _ 2esind
r nr nn
- 2 3 -
sing 0 _77_(3_ ) _m 0 _nsing
a re\r na‘e ner na
0 _sinu +§sma)£ 0 0 : rcosg 0
Bt n a nna
0 cosu2+ e_cgsa) 0 0 B I‘Slan-l _ 0
n-asini nna‘sini
_e+cosd _ COSU +ecose _sind nsing 1+i£ rsinu ncosé
n‘ae n*atani re nae n*a) nna’tani nae
2 - 2 . 2
i(e+cos€_7y_j 0 smb’(n_Jrgj _(7]2+LJSIH9 0 r 2 n°cosd
L7\ ea r n \re a a ) nae ana nae |
(14)

Formula (A, - A12A22‘1A21)_1 =ATHATA (A, - ALALTA, )_1 A, A, can be used in order to derive
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B(t,). Let
00000 17 100
A,=B(t), A,=/0 0 0 0 00, A,=0 10
000100 0 01
[a a’ _(a¥)]
?nn -nn o cos¢ O 0 0 ensing 7
Ay,=| 0 0 0o 0 0 0
H 2 2 2 3
0 nsing a_2 (p+r) O A7 osi NAT np a_3
n \r r r r
Afterwards, B(t,)=A,—A,A, A, hence B™(t) can be expressed as
1 0000 0]
0 1 0000O0
0 01000
B1(t)= 0 0010 0 BYt) (15)
0 00010
3n(t—t
_Sn(t-t) 00001
L 2a J

3.3.Solving M

According to Equation (2), Equation (8) and Equation (12), the expressions of M ™ can be easily obtained. This
method leads to very simple results, and easy to simplify. M~ can be expressed in two ways: including ¢
and without [ . The detailed results are given in Appendix A.

Obviously the in-plane and out-of-plane motions can be decoupled based on the relative orbit elements. Using
M and M, the initial relative position and relative velocity can be used to describe the relative trajectory
too.

X(t)=M(t)M™(t,) X (t,) (16)

Equation (16) is equivalent to Lawden’s equations but with a much higher accuracy. Meanwhile the introduc-
tion of the integrals as in Lawden’s equations is avoided. The finite difference form can be obtained to design
control strategy as follow

[ oD 0 oD |
OAV, OAvV,
OAe, 0 OAe,
T dD ] | GAv, OAvV,
dAe, oAe, 0 oAe, A
dAe OAV, OAv, Vi
y
. = . AVy (17)
dAlX 0 aAlx 0
dAiy OAv, Av,
dAM’ OAi,
- - 0 0
OAv,
OAM’ 0 OAM'
OAv, OAv,




J. F.Yin et al.

Take Av as perturbation acceleration f , the equations above would become differential equations. Based
on the differential equations and the finite difference form, the perturbation effects and control problem can be
easily solved.

4. Numerical Simulations

In this section, a numerical simulation is proposed to demonstrate the performance of the ROEs-based relative
motion equations. Suppose that at the beginning the chief and deputy satellites have the same location and ve-
locity in space. The two satellites move on an elliptical orbit with semi-major axis 7555 km and inclination of
angle 48°. The initial right ascension of ascending node, argument of perigee, and true anomaly of the satellites
are all set to be zero. Let e, =0.3. Let Ad =1000 m. The desired relative orbit elements are

(D Ae, Ae, Ai, A, AM')=(0 Ad/a Ad/a 2Ad/a 2Ad/a 0) (18)
The relative orbit trajectory for deputy satellite with respect to the chief established with the ROE-based con-
trol law is shown in the chief satellite F, frame in Figure 2. The chief and the deputy satellites are assumed to

be coincident initially. Thus the relative orbit starts from the origin. The <> in Figure 2 denotes the thrust lo-
cation. The control laws can be obtained from the inverse matrix of the relative state transition matrix (Table 1).

Table 1. The control strategy of formation establishment.

Sequence Thrust location (0) Impulsive velocity in F, frame (m/s)
1 0.9992 [0.1452, 0, 0.0592]
2 3.7132 [-0.4238, 0, 0.092]
3 5.4978 [0, 3.4553, 0]
4 7.2824 [0.1274,0, 0]
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Figure 2. Relative orbit trajectory for formation establishment.
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5. Conclusion

The paper investigated the problem of the inverse transformation of the state transition matrix based on relative
orbit elements. Poisson bracket theory is used to obtain the linear transformations between the two representa-
tions: the relative orbit elements and the geocentric orbital frame. This new method leads to very simple results,
and very easy to simplify. Two different expressions of the inverse matrix are presented, which can be used to
analyze the elliptical relative motion control strategy and perturbation effects.
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Appendix A
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OAi,  rcosu . naesingd _  1-+1-¢°
= where = n= .
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2) Without f
@_3nesin9(g)2 @_3n(2+ecos«9)(gj2 D _ 3z 0D _3esing
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OX r r l-e“a a r
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' i 3Vi1-e? (t—t —e?
oM’ (1 r e 775|n9+ (t-t,) oAM’ & scosd+ Li_SesmH(t L)
ov, J1_e? a na r ov, ana an
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OX r a r oz rr r
oAe, 21-¢? esindr . OAe, 1-e? . 0Ae,  esing . (1 1)
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ov, na nang a f na X r r a
oAe, OAe —g?
L=-3(1-e )( jlslnu+2esm¢9cosu y V1€ Gy SN0 T s
oz r ov, na nan a
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