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ABSTRACT 

The standard shooting and fitting algorithm for non-linear two-point boundary value problems derives from conven- 
tional coordinate perturbation theory. We generalize the algorithm using the renormalized perturbation theory of 
strained coordinates. This allows for the introduction of an arbitrary function, which may be chosen to improve nu- 
merical convergence. An application to a problem in stellar structure exemplifies the algorithm and shows that, when 
used in conjunction with the standard procedure, it has superior convergence compared to the standard one alone. 
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1. Introduction 

Consider the two-point boundary value problem gov- 
erned by a non-linear system of k ordinary differential 
equations: 

 d
,

d
x

x


y
f y                 (1) 

with k boundary conditions distributed at each end of the 
domain in x. Such cases may be solved numerically by 
varying the unknown conditions at each boundary and 
integrating each trial to a common fitting point, whence 
differences between the trial runs provide linearly inde- 
pendent functions by which to calculate corrections to 
the initial guesses [1-3]. This method of shoot and fit is 
based on conventional perturbation theory, which ex- 
pands the dependent variables: 

     0 1x x x  y y y  ,          (2) 

where  1 xy  is a correction to  0 xy . The method of 
strained coordinates was first introduced by Lindstedt 
(1882) and other astronomers and now known as the 
Poincaré-Lighthill (PL) or Poincaré-Lighthill-Kuo me- 
thod [4-8]. It is well-known that the PL method was de- 
signed originally for systems  d d , ;x x y f y  that de- 
pend critically on a small parameter  , in order to ren- 
der analytic series solutions uniformly convergent. How- 
ever, we apply it here to problems like Equation (1) 
whose formulation is formally independent of a small 

parameter and for which standard coordinate perturbation 
methods are applicable. We use the adaptation in its re- 
normalized form [9,10], which Dai [11] considers to be 
one of five important improvements in PL theory. Thus, 
we distinguish between standard and renormalized PL 
theory. 

Section 2 shows the utility of the renormalized PL 
(rPL) theory in rendering variational equations homoge- 
neous. Section 3 formulates the standard (std) fitting al- 
gorithm and Section 4 formulates its rPL generalization. 
Section 5 exemplifies the algorithm by means of a two- 
point problem of stellar structure formulated in the Ap- 
pendix, and compares the utility of each algorithm and 
the possibility of their combined usage. Section 6 dis- 
cusses results. 

2. Straining Coordinates 

Apply Equation (2) to Equation (1) and separate orders to 
give to first order: 
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
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Following the standard PL procedure, x may be ex-
panded as well as y(x), each as a function of a new inde-
pendent variable 0x : 
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     0 0 0 1 0x x x  y y y  ,        (5) 

   0 0 1 0x x x x x   .            (6) 

Function  1 0x x  stretches the independent coordinate 
x. Equations (5) and (6), when applied to Equation (1), 
give to zeroth and first order: 
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f y ,                 (7) 
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However, expansions (5) and (6) are not unique. In- 
stead, apply Equation (6) to the equivalent standard ex- 
pansion (2) [10], i.e. let: 

     0 1x x x  y y y  ,            (9) 

   0 0 1 0x x x x x   ,             (10) 

so that Equation (9) becomes: 

         0 0
0 0 1 0 1 0

0

d

d

x
x x x x x

x
   

y
y y y  .  (11) 

On applying Equations (10) and (11) to Equation (1), 
and using the relation: 

     0 0 0 0 0 0 0 0 0
0,

0 0, 0

d , , ,
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k

x x x
f

x y x
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,    (12) 

we discover that all terms in  1 0x x  cancel and: 
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These are equivalent to Equations (3) and (4), except 
that the independent coordinate is x0 rather than x. The 
straining function  1 0x x  now appears only in expan- 
sions (10) and (11), and not in the differential Equation 
(8). On retaining terms to first order, these become the 
rPL perturbation expansions to first order: 

       0 0 1 0 0 0 0, x x x x x y y f y ,       (15) 

 0 1 0x x x x   .                  (16) 

Implementation of Equations (13) and (14), is straight- 
forward as the conventional theory is recovered simply 
by setting  1 0  0x x  , and x0 reverts to its original 
meaning x, as in Equations (3) and (4). In other words, 
in rPL, the straining feature may be applied after, and 

not during, the integration of the variational equa- 
tions. 

3. Standard Shoot and Fit 

Frequently, in two-point boundary value problems, it is 
impossible to integrate from one boundary to the other 
without encountering some catastrophic result. This might 
occur while integrating toward a singular boundary, or 
when solutions become imaginary or unphysical. The 
standard (std) shoot and fit algorithm is designed to 
counter these difficulties, and in anticipation of its rPL 
generalization it is useful to spell it out. 

Assume disjoint explicit boundary conditions, a nor- 
malized range, and for clarity distinguish integrations 
from each boundary by lower case and upper case vari- 
ables. Throughout, let 1, 2, , ,   1, 2, , ,i I j J    and 

1, 2, , , 1, , .k I I I J     For integrations from x = 0, 
Equation (13) is: 
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i i i

y
f x y

x
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and from X = 1, it is: 
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where  0, 0I jy   and  0, 1iY  are trial values, and val- 
ues i  and I j   may be transformed to zero. Suppose 
that trial integrations  0,ky x  and  0,kY X  are well- 
behaved up to a common point ξ. From Equations (17)- 
(20), generate J solutions    0,

j
ky x  for 0 x   , and I 

solutions    0,
i
kY X  for 1X   , using initial condi- 

tions chosen as: 
   
       
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 
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where        1, 0, 1, 0,0 0 ,   1 1I j I j i iy y Y Y    , and 
, ii jj    are Kronecker deltas. Assume that the differ- 

ences: 

         1, 0, 0,
j j
k k ky x y x y x   ,          (23) 

         1, 0, 0,
i i
k k kY x Y x Y x   ,          (24) 
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are linearly independent, where of course from Equations 
(17), (19), (21)-(24): 

         1, 0, 0,  0 0 0 0j j
i i iy y y    ,        (25) 

         1, 0, 0,1 1 1 0i i
I j I j I jY Y Y      .     (26) 

Linear superposition of Equations (23) and (24) gives: 

    1, 1,
i

k i kY X C Y X ,             (27) 

     1, 1,
j

k I j ky x C y x ,            (28) 

where  and i I jC C   are constants to be determined. Equa- 
tions (2), (27) and (28) lead to: 

      0, 1,
i

k k i kY X Y X C Y X  ,         (29) 

      0, 1,
j

k k I j ky x y x C y x  .         (30) 

Take the computed mismatches at ξ to be: 

     0, 0, 0,k k kE y Y    ,            (31) 

which, from the difference of Equations (27) and (28) at 
ξ and the desired outcome     0k ky Y   , gives: 

       0, 1, 1,
i j

k i k I j kE C Y C y      .      (32) 

These are I J  linear algebraic equations in I J  
unknowns, whose solution gives  and i I jC C  , and Equa- 
tions (29) and (30) give improved values: 

       0, 1,0 0 0j
I j I j I j I jy y C y 

     ,      (33) 

      0, 1,1 1 0i
i i i iY Y C Y 

  .             (34) 

4. The rPL Generalization 

For 0 x   , Equations (15) and (16) are: 

     
   

0 0 1 0
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   0 0 1 0x x x x x  ,               (36) 

and for 1X   , they are: 

     
   

0 0 1 0

1 0 0 0 0, ,
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X X X

 


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F Y
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   0 0 1 0X X X X X  .              (38) 

By Equations (7) and (13),    0 0 0 0and x Xy Y  are nu- 

merically the same as    0 0and x Xy Y . By Equation 
(15), analogues of Equations (29) and (30) are: 

       
   

0, 0 1, 0

1 0 0, 0 0, ,
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k k I j k
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x x f X
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i
k k i k

k
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X X F X
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 Y
        (40) 

and the rPL version of Equation (32) is: 

         
       

0, 1, 1,
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k i k I j k
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E C Y C y

X F x f

    
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 

 
    (41) 

4.1. Constraints 

Functions    1 0 1 0 and x x X X  must satisfy two con- 
straints: 1) In order that the independent variable be con- 
tinuous at 0 0x X   , a stretch  1x   must equal the 
compression  1X  , and vice versa; i.e. 

   1 1x X  .                 (42) 

2) With reference to Equations (39) and (40), 
   1 10  and 1x X  must be such as to nullify any singu- 

larities in    0 00  and 1f F . 

4.2. Stretching 

Functions    1 0 1 0 and x x X X  are otherwise arbitrary, 
but in the spirit of linearization let them vary linearly 
with their arguments. Equations (36) and (38) become: 

 1
0 1

x
x x




 
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 
,                 (43) 

   1
01 1 1

1

X
X X




 
     

.         (44) 

Let the value in Equation (42) be: 

   1 1 1I Jx X C     ,             (45) 

where 1I JC    is the amount of stretching/compression 
at the matching point. Thus: 

  0
1 0 1I J

x
x x C

  ,                 (46) 

  0
1 0 1

1

1I J

X
X X C

 





,            (47) 

and Equation (41) becomes: 

       
   
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1 0, 0, .
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I J k k

E C Y C y

C F f
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 


 

 

   
    (48) 

These are I + J equations in I + J + 1 unknowns, 
which require an extra equation for their solution. 

4.3. Matching Condition 

Let the (I + J + 1)th equation follow from matching s(y,x) 
and its functional twin S(Y,X) at the fitting point ξ. Ex- 
pansions using Equations (39) and (40) are: 
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Y Y

Y   (50) 

The desired outcome s(ξ) – S(ξ) = 0 and the computed 
difference: 

     0, 1 0 0I JE s S      ,          (51) 

lead to: 
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 


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 (52) 

The I + J + 1 constants follow from the solution to 
Equations (48) and (52). With reference to Equations (39) 
and (40), improved guesses are: 

       
   

0, 1,

1 0,

0 0 0

0 0 ,

j
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y y C y

x f
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

 


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           0,i 1, 1 0,1 1 1 1 1 i
i i i iY Y C Y X F 

   .  (54) 

By Section 4.1, the last terms of Equations (53) and 
(54) must be finite or zero. If    1 10  and 1x X  nullify 
these terms, then the rPL Equations (53) and (54) resem- 
ble Equations (33) and (34) of std. In that case, the in- 
fluence of stretching on the improved boundary condi- 
tions is nominally independent of 1I JC   , although of 
course stretching affects all 1kC   through Equations (48) 
and (52). 

4.4. Algorithm Option 

For given trial values, relatively little extra computation 
time is involved in computing and solving the I + J + 1 
algebraic Equations (48) and (52), compared to I + J 
Equations (32), whereupon the option exists to complete 
the next iteration using the rPL or the std algorithm. This 
requires devising a criterion by which to choose iterated 

values from one algorithm over values from the other. 
From Equations (33) and (34), let the relative std cor- 

rections be: 
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0
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C Y
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Y

 
  ,             (56) 

From Equations (39) and (40), let the relative rPL cor- 
rections be: 
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1, 1 0,
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1 0 1
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i
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Y
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  .          (58) 

As noted, quantities        1 0, 1 0,0 0  and 1 1I j ix f X F  
are proportional to the stretching constant 1I JC    and 
must be zero or finite. Define the sum of the squares of 
the relative corrections as: 

   2 2 21 0i I jY y                  (59) 

and let its value decide between the two options, i.e. be- 
tween Equations (55) and (56), and Equations (57) and 
(58). Since relative errors obtain in Equation (59), it ap- 
plies regardless of whether the converged solution is 
known (as it is in the present discussion), or not; i.e. 
Equation (59) is useful provided a way exists by which to 
decide between the available options. Section 5 contains 
empirical evidence concerning the better option. In prac- 
tice, sequences of iterations generally have corrections 
derived from both algorithms; i.e. the two algorithms 
have the potential to widen the circle of convergence, 
since when one fails for any given iteration, the other 
may not. Thus, at the point of a failed iteration, an addi- 
tional integration is the price to pay for the prospect of a 
wider circle of convergence. 

5. An Illustrative Example 

The shoot and fit method is applicable to an assortment 
of problems, including the two-point boundary problem 
of stellar structure [1,12]. Coordinate stretching has also 
proved useful in the study of rotating stars [13]. Stellar 
structure appears to be a suitable means for testing the 
rPL method against a known solution, for which it suf- 
fices to choose a relatively simple yet realistic model for 
a thirty-solar-mass (6 × 1031 kg) star. This is identical to 
early models [14,15], which were constructed less pre- 
cisely and by different algorithms. The underlying phys- 
ics is stated in the Appendix. 

From transformations of Equations (76)-(81), (84), (85) 
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of the Appendix, consider the problem: 

1 4
v

3 4

d

d

z z
C

x z C z




,                       (60) 

   1 42
4 3 4

d

d

z
C z z C z

x



  ,                 (61) 

3
p 4 3

1

d

d

z x
C

x z
  ,                           (62) 

 
 

4 3 44
p 4 3 2 2 2

rad 1 3 4 4 3

8 3d

d 30 3 5

xz z C zz
C

x z C z z C z z



 

       
,  (63) 

4 2
t 4 3

ad 1

d 4

d

z z
C

x z

    
 

,                        (64) 

where   is an index (see Appendix). Equation (63) or 
(64) obtains when  4 rad

d dz x  is less or greater than 
 4 ad
d dz x , and positive dimensionless constants 

v p t, , ,C C C C  pertain to volume, luminosity, pressure 
and temperature (see Appendix). Boundary conditions are: 

       1 2 3 40 0 1 1 0z z z z    .       (65) 

Physical arguments require 3 40 1z C z   . With 
foresight, and for present purposes, choose values 

v p t, , ,C C C C  that correspond to the converged solution 
in order that unknown boundary values converge to: 

       1 2 3 41 1 0 0 1z z z z    .       (66) 

The unit boundary values of Equation (66) across the 
normalized range of the independent variable may be 
used here because the intent of Section 6 of this paper is 
to investigate the relative efficacy of algorithms by com- 
paring trial values against the known solution. For the 
fourth-order system considered, the solution is charac- 
terized by four eigenvalues that correspond to four nor- 
malized ranges for the set  1 2 3 4, , ,z z z z . An auxiliary 
eigenvalue q marks the transition from one of Equations 
(63) and (64) to the other. Integration proceeds from each 
boundary to an arbitrarily chosen fitting point ξ, chosen 
throughout as 0.5. Integrations used the Odesolve (vector, 
x, b, npoints) routine of MATHCAD 14 [16], where vec- 
tor is the array of sought solutions, x is the independent 
variable, b its terminal value, and npoints is the integer 
number of points used to interpolate the solution func- 
tions. Odesolve dynamically detects whether a system is 
stiff or not, and uses BDF (backward differentiation for- 
mula) or AB (Adams-Bashforth) methods respectively. 
Both methods use non-uniform step sizes, adding more 
integration steps in domains of greater variation. Subrou- 
tine root with tolerance TOL = 10−9 determined the loca- 
tion of the interface fraction q. The default precision is 
17 significant figures. 

Singular gradients at the boundaries require asymp- 

totic developments, here limited to one significant term 
owing to the high precision of the calculations. Follow- 
ing Sections 3 and 4, lower and upper case variables dis- 
tinguish integrations from x = 0 and x = 1. For small δx, 
δX, starting values are: 

   
   

1 4
4

1 v
3 4

0

0 0

z
z x C x

z C z

 


,          (67) 

       1 4
2 4 3 40 0z x C z z C z x

      ,    (68) 

  4 3
3 p 1Z X C Z X  ,                   (69) 

   
 

2
4 t 4 3rad

1

1
.

1

Z
Z X C X

Z
                 (70) 

Figure 1 shows the normalized solution. Its derived 
boundary values and the auxiliary eigenvalue q agree to 
1% or less with the aforementioned 30 solar mass model, 
with discrepancies explained by fitting by interpolation 
or by hand used previously. 

Section 6.1 applies the std and rPL formulations. Inte- 
gration proceeds through interfaces brought about by 
changes between Equations (63) and (64), and terminate 
at ξ = 0.5. To test the sensitivity of each independent 
variable to guesses in its unknown boundary value, we 
assign in turn the correct value 1 to all but one variable 
per Equation (65), to which we give values progressively 
farther from 1. Trial values are changed at intervals of ± 
0.001 in the log, and convergence is considered continu- 
ous until the iteration fails to converge. Sometimes, con- 
vergence resumes for further changes in the guessed 
value, but it suffices for our purposes to apply the crite- 
rion of first failure uniformly across all cases. Execution 
ceases when one (or two) of the corrected guesses turns 
negative or when the number of iterations exceeds 20. 

For the extra matching condition s(x), we require the 
continuity of a combination of variables unaccounted for 
by the original system. Consider the 6 products 
     , , 1, , 4;i jz x z x i j i j   and require: 

       i j i jz z Z Z    .           (71) 

None of these conditions is explicitly required in the 
problem formulation. Table 1 compares results for the 6 
cases that use these rPL constraints simultaneously with 
the standard std algorithm. Iterations ceased upon satis- 
faction of the convergence criteria: 

  51 1  10iZ   ,               (72) 

  5z 0 1 10j
  ,                (73) 

for i = 1,2 and j = 3,4. Results for entry 2 of Table 1 ap- 
pear in Figures 2(a)-(d). 

Devise two statistics by which to assess overall relative 
performance. For every iz , the extrema of the positive    
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Figure 1. Solution to the posed problem. Subscripts identify volume (i = 1), luminosity (i = 2), total pressure (i = 3), radiation 
pressure (i = 4), and x is the normalized mass fraction. 
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Figure 2. (a)-(d). Cases 1 and 2 of Table 1, showing the number of iterations to convergence by varying one unknown bound- 
ary value at a time, for the std algorithm alone (dashed line) and the std + rPL combined algorithm (solid line; see text). 
 

and negative values of log iz  are of interest, hence there 

is a total of 1, 2, ,8    for the four variables. Let ω 

be the number of cases for which 
 max

log iz  is wider 

than that of the std algorithm, i.e. for which: 

max, other  max,
log log

std
z z  .       (74) 

Choose the other statistic as the relative rms measure: 

   
8 82 2

 max  maxother
1 1

log log
std

z z 
 


 

   .  (75) 
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6. Discussion 

The std algorithm sets the standard by which to judge the 
efficacy of the rPL algorithm. It appears as Case 1 in Ta- 
ble 1, for which by definition ψ = 1. When the rPL algo- 
rithm alone is applied, only in about half the cases there 
is there an improvement over the std; i.e. for the present 
experiment, there is not much to choose between the two. 
Little is gained by showing these cases. 

However, strength of the rPL lies in the similarity of 
Equations (4) and (14), which allows application of the 
rPL algorithm at little extra cost in computing time. We 
discover empirically (and counter-intuitively) that the 
better choice has the lesser value of Δ2 in Equation (59). 
This appears to minimize the tendency for iterations to 
diverge by over-correcting. Under these conditions, when 
the std option is tested simultaneously with the rPL 
(Cases 2-7 of Table 1), there is an improvement in con- 
vergence characteristics in all but one case. In Case 2, 
convergence occurs for as little as ≈3 × 10−2 of the cor- 
rect value. This phenomenon results from the fact that 
the model investigated is only a factor of 8 less than the 
Eddington luminosity limit at which stars are dynami- 
cally unstable (see Appendix), so that underestimates are 
computationally beneficial. 

The excellent statistics of Case 2 in Table 1 attract at- 
tention. Figures 2(a)-(d) compare it to the std Case 1. 
Convergence in Case 2 is assisted by the extra rPL re- 
quirement of continuity in the product 1 2z z , where 1z  
and 2z  happen to be the two variables with the least 
uniformly-changing traces, as seen in Figure 1. For the 
present experiment, the comparative pathologies turn out 
to be virtual double-mirror images of one another and the 
product is quite well-behaved. It would seem a priori that 
these two variables would benefit most from an inde- 
pendent condition of continuity that involves them. 

The chief result based on the problem definition and 
methodology here articulated, is that coordinate stretching 
 
Table 1. Performance characteristics of the renormalized 
coordinate stretching (rPL) generalization of the standard 
(std) shooting and fitting algorithm, using the lesser value of 
Δ2 as the choice determinant (see text). 

Case Algorithm Constraint ω ψ 

1 std - - 1 

2 std + rPL 1 2z z  8 1.91 

3 std + rPL 1 3z z  8 1.07 

4 std + rPL 1 4z z  7 1.15 

5 std + rPL 2 3z z  7 1.28 

6 std + rPL 2 4z z  5 0.86 

7 std + rPL 3 4z z  8 1.22 

applied to numerical analysis may render dependent 
variables more uniformly convergent, if the extra condi- 
tion is a simple function of variables with the least linear 
traces, provided this continuity condition is not otherwise 
part of the problem formulation. In a sense, this result for 
numerical analysis is analogous to the original intent of 
coordinate stretching, which is to render analytic series 
solutions uniformly convergent. 
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Appendix 

Consider a non-rotating, radially symmetric star of mass 
M = 6 × 1031 kg (30 solar masses) in quasi-hydrostatic 
equilibrium. Suppose that it is chemically homogeneous 
and that thermonuclear conversion of hydrogen to helium 
has just begun and is in a steady state. Assume that the 
material is entirely ionized and that it obeys the ideal gas 
law throughout. Let the relative mass abundances of hy- 
drogen, helium and heavier elements be X = 0.70, Y = 
0.27, and Z = 0.03, and let the mean molecular weight of 
the fully ionized gas in units of the proton mass H be  

μ = 
–1

3 1
2 0.61824

4 2
X Y Z

    
 

. 

Constants are k (Boltzmann’s constant), c (the speed 
of light), a = 8π5k4/15c3h3 (the radiation density constant), 
h (Planck’s constant) and G (the gravitational constant). 
Variables are: v (volume), r (radius), ρ (material density), 
ℓ (luminosity or power), p total pressure, equal to the 

sum of radiation pressure 4
r

1
3

p at  and gas pressure  

gp k t H  , where ρ is the material density, t tem- 
perature, and m mass fraction, i.e. the mass contained 
within volume v. In many applications, it is customary to 
choose m as the independent variable. Gradients are then: 

 
d

d ,

v kt

m Hp p t 
 ,                 (76) 

 CNO

d
,

d
p t

m
 ,                   (77) 

1 3

4 3

d 4π

d 3 3

p Gm

m v
   
 

,                (78) 

 1 34

2 4 3
rad

3 ,d 4π

d 3 16π

p tt

m acv

       
  


,       (79) 

  44
2

ad

4 1 1 ,d d

d d

p t tt p

m p m

      
 

,      (80) 

where 

 
4

g, 1
3

p at
p t

p p
    .              (81) 

Equations (79) and (80) pertain to radiative and adia- 
batic convective energy transport for which the lesser of 
|dt/dm| applies. Physical conditions set limits 0 < β < 1. 
The ratio of gas specific heats at constant pressure and  

volume is p vc c  , which is 
5

3
 for an ideal gas. Γ2 

is the second adiabatic exponent for a mixture of gas and 
radiation, for which 

  
  

–12
2

14 4 2 8 2

1 1 2 4 3 32 24 3

6 30 15p p at apt a t p

   


    

   
 

for an ideal monatomic gas and, in the present case, is  

limited to the range 2

4 5

3 3
  . Assume the opacity  

throughout is due to Thompson scattering by free elec- 
trons, κ = 0.02(1 + X) (kg–1·m2). Hydrogen fusion to he- 
lium is by the carbon-nitrogen-oxygen (CNO) cycle for 
which we let the combined C, N and O abundance be 

CNO 2Z Z . Take the rate of energy generation to be 
   1 4

CNO 0 CNO, 1 3p t XZ H kpt at p     Jkg–1·s–1, 
where ν = 15 and 0  = 10–113.6Jm3·kg–2·s–1. Nomencla- 
ture in this formulation is standard, and symbols ε, k, X, 
Y, and Z are not to be confused with occurrences out of 
context. 

During computation, starting values δx and δX were 
diminished until there were no further changes in the 
converged solution to a relative accuracy <10–6. For trial 
integrations sufficiently close to the true solution, we 
discover through trial and error or otherwise that radia- 
tive equilibrium obtains in the envelope and convective 
equilibrium in the core. Near the center 0m   and 
Equations (76) and (77) give  

0 and 0v kTm HP m      . 
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Near the surface , , m M L v V   , where it 
suffices to let p and t vanish. Equations (78) and (79) 
give: 

 
1 3

4 3

4π

3 3

GM
p M m

V
   
 

,          (82) 

 
1 3

4
4 3

4π

3 4π

L
t M m

acV

   
 

.      (83) 

Thus, boundary conditions are: 

       0 0 1 1 0v p t    .       (84) 

The stretching functions    1 0 1 0, x x X X  in Equa- 
tions (39) and (40) must be such as to cancel singularities 
at the boundaries. For the center, the terms of interest in 
Equation (35) both vary as 1 3 2 3m m m  , and condi- 
tion 2 of Section 4.1 is met. For the surface, 

3 4d dv m X  ,   3 3 4

rad
d dt m t X   , 1X X . 

Both relevant products in    1 0 0 0 0,X X XF Y  of Equa- 
tion (37) vary as 1 4X  and condition 2 of Section 4.1 is 
again met. 

Define dimensionless variables: 

1 2

4 4
3 4

,  ,  , 

 ,  .

x m M z v V z L

z p P z t T

  

 


       (85) 

For present purposes, it is convenient to proceed with 
foreknowledge of the converged solution so that the un- 
known boundary values are normalized. The factors are 

29 34.0024 10 mV   , 31 15.1403  10 JsecL   , 
151.9214 10 PaP    and 73.6519 10 KT   . The transi- 

tion between Equations (79) and (80) occurs at mass 
fraction 0.60566q  . Dimensionless constants are: 

vC kMT HVP ,               (86) 

1
0 CNOC XZ HMPT kL   ,        (87) 

 1 3 2 4 34π 3 3pC GM PV ,       (88) 

 1 3 4 3 44π 3 16πtC ML acV T ,    (89) 

4 3C aT P  .               (90) 

Since 0 1  , by Equations (81)-(83) in the limit 
m M , 1 4π 1.L cGM     The quantity 

Edd4πcGM L   is the Eddington limit for the dy- 
namical stability of a star whose opacity κ is constant, as 
it is in the present case, for which 32 1

Edd 4.44 10 JsecL   , 
which exceeds L by a factor of only 8. 

 


